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This paper combines and extends two optical models based on a two-collimated-flux approach that we previously
proposed for the reflectance and transmittance of nonscattering elements, i.e., stacked nonscattering plastic films
on the one hand, and films printed in halftone on the other hand. Those twomodels are revisited and combined by
introducing different reflectances and transmittances on the two sides of a printed film, a common situation in
practice. We then address the special case of stacks of identical films for which we obtain closed-form expressions
for the reflectance and transmittance of the stacks as functions of the number of films. Experimental testing has
been carried out on several different films printed with an inkjet printer. The accuracy of the model is good up to
16 films in most cases, despite a slight decrease in the case of yellow ink, which is more scattering than the other
inks. By transposing the model to thin diffusing layers and considering diffuse fluxes instead of collimated ones,
the closed-form expressions yield the well-known Kubelka–Munk reflectance and transmittance formulas. When
these stacks of films are backed by a colored specular reflector, the reflectance is in certain conditions independent
of the number of films. © 2012 Optical Society of America

OCIS codes: 120.5700, 120.7000, 330.1690, 100.2810.

1. INTRODUCTION

The visual appearance of stratified surfaces results from com-

plex physical phenomena. This complexity makes it difficult

to model, and it is scarcely possible to represent them accu-

rately without a thorough knowledge of optics and material

sciences and/or advanced skills in computational mathe-

matics. In some special cases, however, simple formulas com-

bined with easily measurable quantities have a good

predictive performance. This is the case of strongly diffusing

layers for which the description of the mutual exchange of

two perfectly diffuse fluxes flowing in opposite directions,

known as the Kubelka–Munk two-flux model, yields analytical

formulas [1]. The amazing success of this theory in scientific

and technical domains is due to the easy handling of these

formulas. More than 80 years after their first publication, color

reproduction specialists keep investigating its capacity to

yield accurate predictions in various application domains be-

yond the limits drawn by its fundamental assumptions [2–6].

Piles of thick nonscattering media, even though less studied

than the diffusing multilayers, are a second example of stra-

tified media where simple formulas apply despite the infinity

of possible paths followed by light before being reflected of

transmitted. These formulas, presented in a previous study

[7], provide a good prediction accuracy for stacks of nonscat-

tering polymer sheets. They are also issued from a two-flux

model similar to the Kubelka–Munk theory, except for the fact

that the fluxes are collimated instead of being diffuse. Reflec-

tance and transmittance of the sample are therefore angular

functions, whereas those of strongly diffusing media are not.

Indeed, aside from that important physical difference, the

similarity between the models for nonscattering films and

the Kubelka–Munk model is an interesting issue that will

be developed at the end of this paper.

In this work, we propose to explore the limitations of this

model and to adapt it to cases where its assumptions are not

exactly satisfied. We especially address stacks of films printed

in halftone. Two assumptions of the model for stacked films

are not satisfied: homogeneity of the substrates and absence

of scattering. Substrate volumes are not homogeneously co-

lored because the absorbing substances, i.e., the inks, are de-

posited on the surface without covering it completely. Emmel

et al. [8] proposed a first model for the spectral transmittance

of halftone printed films, based on a description of the multi-

ple reflections of light between the film surfaces. We extend

this model in order to predict both reflectance and transmit-

tance and to take into account the fact that light may cross

different ink dots during the multiple reflection process, yield-

ing an effect similar to the Yule–Nielsen effect in paper prints

[9,10]. Regarding the assumption of nonscattering, it is in op-

position with the fact that most pigmented inks are slightly

scattering. It is therefore an issue to verify whether accurate

predictions can be achieved in practice with printed films

according to the number of stacked films.

In order to provide the largest overview of what can be pre-

dicted using this two-flux angular approach, we first review

light reflection and transmission by a nonscattering film

(Section 2) and by films printed with halftones colors

(Section 3). Section 4 is dedicated to stacks of printed films.

Since the inked and noninked faces of films have slightly dif-

ferent reflectances, we extend the reflectance and transmit-

tance prediction model previously proposed in [7] so as to

represent the reflectances and transmittances on each side
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as distinct parameters in the equations. This constitutes the

first main contribution of this paper since it seems that, for

the first time, the two-flux approach is used with nonsym-

metric nonscattering elements. In Section 5, we deal with

the special case where all stacked films are identical; we pre-

sent closed-form expressions under a fractional form in which

the number of films appears as a simple parameter. These ex-

pressions are the second main contribution of this paper since

they had not been obtained at the time of the previous study

on polymer sheets. Stacks are then placed above a specular

colored background (Section 6). We analyze the variation of

spectral reflectance of the specimens as the number of films

increases. An interesting invariant property appears in

specific conditions; its mathematical rationale is explained.

In each section, experiments are presented and discussed

in order to validate the models and estimate to which extent

the media, especially the inks, can deviate from the assump-

tion of nonscattering. We will see that scattering may impair

the prediction accuracy when it is too strong or when the

number of films increases. However, an alternative calibration

permits us to reach acceptable accuracy for visual rendering

purpose up to 16 stacked films, expanding the model to what

appears to be the limits of the two-flux angular approach.

2. REFLECTANCE AND TRANSMITTANCE
OF NONSCATTERING FILMS

Let us consider a nonscattering film with flat and parallel sur-

faces whose thickness h is much larger than the time coher-

ence length of visible light. Interferences are thus insignificant

and models based on incoherent optics laws apply. The film

substrate has a real refractive index n1 and a spectral absorp-

tion coefficient α�λ�. According to Beer’s law, the attenuation

of a collimated spectral flux traveling a distance x within the

film substrate is exp�−α�λ�x�. Hence, the spectral transmit-

tance of the film substrate for a collimated light crossing it

perpendicularly, called “normal transmittance,” is

t�λ� � e−α�λ�h: �1�

If the light path forms an angle ψ with respect to the layer’s

normal, its path length across the film is h∕ cos ψ , and its spec-

tral angular transmittance is

�t�λ��1∕ cos ψ : �2�

At the surface of the film, light is reflected and refracted,

which generates an infinite number of flux components each

following a different number of internal reflections within the

film. Let us denote θ the incident angle of light coming from air

and rθ the Fresnel angular reflectance of the surfaces at inci-

dence θ on air side [11]. The refraction angle of the light is

given by Snell’s law:

θ1 � arcsin�sin θ∕n1�: �3�

For light coming from the film bulk at this angle θ1, the re-

flectance is also rθ. The transmittance is 1 − rθ.

Let us describe the first flux components exiting the film.

The first component is specularly reflected by the front

interface; it is a fraction rθ of incident flux. The second

one is refracted into the film, with the following attenuation

factor:

t�θ; λ� � �t�λ��1∕ cos θ1 � �t�λ��n1∕
���������������

n2
1
−sin2 θ

p
: �4�

Then it is refracted again into air at the back side, repre-

senting the fraction �1 − rθ�2t�θ; λ� of the incident flux. The

third component is refracted into the film, attenuated a first

time into the film, then reflected by the back surface and at-

tenuated a second time across the film before being refracted

again into air at the front side; it is the fraction

�1 − rθ�2rθt2�θ; λ� of the incident flux, and so on (see Fig. 1).

By summing up the different components exiting at each

side of the film, one obtains a geometrical series that can

be summed under the following closed-form formula for

the spectral angular reflectance of the film:

R�θ; λ� � rθ �
�1 − rθ�2rθt2�θ; λ�

1 − r2θt
2�θ; λ�

; �5�

and the following one for its spectral angular transmittance:

T�θ; λ� � �1 − rθ�2t�θ; λ�
1 − r2θt

2�θ; λ�
: �6�

Equations (5) and (6) are valid for either p- or s-polarization

of light, using the corresponding Fresnel formulas for the

surface angular reflectance. With natural incident light, the

film reflectance is the average of the p-polarization and

s-polarization reflectance contributions. However, we ob-

served that with typical films used for inkjet printing, it is al-

most identical to use the Fresnel angular reflectance defined

for natural light, i.e., to average the Fresnel coefficients before

summing rather than the opposite, which provides simpler

equations.

At normal incidence (θ � θ1 � 0), the angular reflectance

of the surfaces is �n1 − 1�2∕�n1 � 1�2. The film’s transmittance

expressed by Eq. (6) thus becomes

T�0; λ� � 16n2
1t�λ�

�n1 � 1�4 − �n1 − 1�4t2�λ�
: �7�

If not known, the refractive index n1 may be assumed to be

1.5, which is a typical value for polymers. By measuring

T�0; λ�, one deduces the normal transmittance t�λ� given by

the following relation issued from Eq. (7):

t�λ� �

����������������������������������������������������

64n4
1 � �n2

1 − 1�4T2�0; λ�
q

− 8n2
1

�n1 − 1�4T�0; λ�
: �8�

θ1

(1−rθ)2

× rθt2(θ,λ)

(1−rθ)2

× t(θ,λ)

θ θ

Film (n1)

Air

Air

t(θ,λ
)

(1−rθ)2

× rθ t
4(θ,λ)3

(1−rθ)2

× rθ t
3(θ,λ)2

rθ

Fig. 1. Trajectories of collimated light within a transparency.
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Equations (5)–(8) remain valid when the film is coated with

a thick layer of nonscattering substance whose index is close

to n1. In this case, the normal transmittance given by formula

(8) accounts for light absorption by both film bulk and

coating.

3. REFLECTANCE AND TRANSMITTANCE
OF PRINTED FILMS

Since the model presented above is valid when the film is

coated by a nonscattering layer, it can be applied with a—

not too much scattering—ink. It is also valid with halftones

where the ink covers a fraction of the film surface provided

the observed area is large enough to measure relevant average

reflectances and transmittances. We will consider that the

inked face of films is in front of the observer.

A halftone is a mosaic of colored areas resulting from the

partial overlap of the ink dot screens. The areas without ink,

those with a single ink layer, and those with two or three

superposed ink layers are each one considered as a distinct

“colorant,” also called “Neugebauer primary.” For three pri-

mary inks, e.g., cyan, magenta and yellow, one obtains a

set of eight colorants: white (no ink), cyan alone, magenta

alone, yellow alone, red (magenta and yellow), green (cyan

and yellow), blue (cyan and magenta), and black (cyan, ma-

genta, and yellow). In classical clustered dot halftoning or er-

ror diffusion, the fractional area ak occupied by each colorant

can be deduced from the surface coverages xc, xm, and xy of

the three primary inks according to Demichel’s equations [12]

aw � �1 − xc��1 − xm��1 − xy�;
ac � xc�1 − xm��1 − xy�;
am � �1 − xc�xm�1 − xy�;
ay � �1 − xc��1 − xm�xy;

am�y � �1 − xc�xmxy;
ac�y � xc�1 − xm�xy;
ac�m � xcxm�1 − xy�;

ac�m�y � xcxmxy: (9)

We denote Rk�θ; λ� and Tk�θ; λ� the angular reflectance, re-

spectively transmittance, of a film wholly covered by one of

the eight colorants, labeled k. When the film is coated with

halftone inks, we assume in a first approach as in [8] that

the colorant areas contribute to the print’s angular reflectance

proportionally to their respective surface coverages ak

R�θ; λ� �
X

8

k�1

akRk�θ; λ�: �10�

This model, known as the spectral Neugebauer model, may

be noticeably improved by applying to Eq. (10) the Yule–

Nielsen transform as suggested by Viggiano [13]

R�θ; λ� �
�

X

8

k�1

akR
1∕n
k �θ; λ�

�n

; �11�

where n is a number to be fitted in the calibration step. The

Yule–Nielsen transform, well known for paper prints [9,10],

empirically models the nonlinear relationship between

halftone reflectance and individual colorant reflectances

due to the complex paths of scattered light in the paper that

cross several colorant areas [14]. In the case of printed films,

scattering is much less pronounced. However, at oblique in-

cidence, light also shifts from colorant areas to other ones

during the multiple reflection process.

The extension of the Yule–Nielsen reflectance model to

transmittance, experimentally validated in the case of printed

papers [15], remains valid for printed films. The transmittance

equation is similar to the reflectance equation (11), with an

n-value that is generally different in transmittance mode

versus reflectance mode:

T�θ; λ� �
�

X

8

k�1

akT
1∕n
k �θ; λ�

�n

: �12�

Calibration of the reflectance and transmittance models fol-

lows the procedure detailed in [15]. Using spectral measure-

ments, one has to determine the reflectances and

transmittances of the colorants as well as the amount of

spreading of the ink dots in halftones. Let us recall this pro-

cedure in the specific case of printed films.

In a first step, each of the eight colorants k � 1;…8 is

printed separately on the film. Its spectral reflectance

Rk�0; λ� and spectral transmittance Tk�0; λ� are measured at

normal incidence. These measurements are sufficient for

the prediction of halftone reflectances or transmittances at

normal incidence using Eq. (11), respectively Eq. (12). If

one rather wants to make predictions at oblique incidence,

unless the eight angular reflectances and the eight angular

transmittances can be measured at this angle, one has to com-

pute them. For this purpose, one uses the eight measured

transmittances Tk�0; λ� to compute the eight normal transmit-

tances tk�λ� using Eq. (8), then the eight angular transmit-

tances tk�θ; λ� using Eq. (4) for the considered incident angle

θ, and finally the eight colorant angular reflectances Rk�θ; λ�
and transmittances Tk�θ; λ� using Eq. (5), respectively Eq. (6).

In a second step, the spreading of the ink dots is assessed

knowing that spreading depends on the nominal surface cov-

erage of the dots and on their eventual superposition with

other inks [16]. Spectral measurements are performed on spe-

cific halftones where the nominal surface coverage of one ink

is a � 0.25, 0.5, or 0.75, and the nominal surface coverage of

each of the two other inks is 0 or 1. This forms a set of 36

halftones, each one containing two colorants: the colorant

out of the halftone dots labeled u, which covers a fractional

area 1 − a, and the colorant in the dots, obtained by superpo-

sition of ink i and colorant u, labeled i� u, which covers a

fractional area a. According to Eq. (12), the spectral reflec-

tance at normal incidence of each of these 36 halftones is

given by

Ri∕u�a; λ� � ��1 − a�R1∕n
u �0; λ� � aR

1∕n
i�u�0; λ��

n
: �13�

Surface coverage a is fitted in order to optimize the agree-

ment between the predicted spectral reflectance, Ri∕u�a; λ�,
and the measured one, Rm�λ�. The optimal a value, called “ef-

fective surface coverage,” minimizes the sum of squared dif-

ferences between the two spectra:

ai∕u � arg min
a

�

X

λ

�Ri∕u�a; λ� − Rm�λ��2
�

: �14�
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Repeating this process for the 36 halftones, one gets the

effective surface coverages associated with the nominal sur-

face coverages 0.25, 0.5, and 0.5 for each ink—colorant pair

i∕u. In order to determine the optimal n value, one can test

various values and select the one for which the average metric

computed in Eq. (14), i.e., the sum of square differences be-

tween predicted and measured spectral reflectances, is mini-

mal. One assumes that nominal surface coverage 0 (no ink)

and 1 (full coverage) yields effective surface coverage 0, re-

spectively 1. By linear interpolation between these points, one

obtains 12 ink spreading functions f i∕u�a� giving the effective

surface coverage of each ink as a function of the nominal one

(a) when the ink is alone on paper, or (b) when it is super-

posed with a second ink, (c) superposed with the third ink,

or (d) superposed with the two other inks (see [15,16]).

Let us now show how to predict the reflectance and trans-

mittance of a three-ink halftone defined by the nominal sur-

face coverages c, m, and y for the cyan, magenta, and

yellow inks, respectively. The corresponding effective surface

coverages are obtained by a weighted average of the ink

spreading functions f i∕u. The weights are expressed by the

surface coverages of the colorants u in the halftone. For ex-

ample, the weight of the ink spreading function f c∕w (cyan

halftone over white colorant) is �1 − xm��1 − xy�, where xm
and xy denote the effective surface coverage of the magenta,

respectively yellow, inks. The effective surface coverages are

obtained by performing a few iterations with the following

equations:

xc � �1 − xm��1 − xy�f c∕w�c� � xm�1 − xy�f c∕m�c� � �1 − xm�xy f c∕y�c� � xmxy f c∕m�y�c�;
xm � �1 − xc��1 − xy�fm∕w�m� � xc�1 − xy�fm∕c�m� � �1 − xc�xy fm∕y�m� � xcxy fm∕c�y�m�;
xy � �1 − xc��1 − xm�f y∕w�y� � xc�1 − xm�f y∕c�y� � �1 − xc�xm f y∕m�y� � xcxm f y∕c�m�y�: (15)

For the first iteration, xc � c, xm � m, and xy � y are taken

as initial values on the right-hand side of the equations. The

obtained values of xc, xm, and xy are then inserted again into

the right side of the equations, which gives new values of xc,

xm, and xy and so on, until the values of xc, xm, xy stabilize.

The effective surface coverages of the colorants, ak, are cal-

culated by plugging the obtained values for xc, xm, and xy into

the Demichel equations (9). Finally, with the colorant reflec-

tances Rk�θ; λ� and transmittances Tk�θ; λ� and the colorant

surface coverages ak provided by the Demichel equations,

Eqs. (11) and (12) yield the spectral reflectance, respectively

transmittance, of the film printed with the considered half-

tone color.

We tested the reflectance and transmittance prediction

model for halftones printed in inkjet on 3 M CG3460 transpar-

ency films. One hundred twenty-five halftones were printed,

corresponding to combinations of cyan, magenta, and yellow

inks printed each one at a nominal surface coverage of 0, 0.25,

0.5, 0.75, or 1. Each one is measured in reflectance and trans-

mittance modes at normal incidence (θ � 0) with the X-rite

Color i7 spectrophotometer. This instrument provides diffuse

illumination thanks to an integrating sphere; samples are

placed against the sphere. However, in the case of a nonscat-

tering sample, only the luminance normal to the sample goes

to the detector; the geometry is therefore a 0°∶0° geometry;

see [17]. Reflectance predictions are based on Eq. (11) and

transmittance predictions on Eq. (12). In order to assess

the deviation between predicted and measured spectra in re-

spect to the human vision, we use the CIELAB ΔE94 color

distance obtained by converting the predicted and measured

spectra into CIE-XYZ tristimulus values, calculated with a D65

illuminant and in respect to the 2° standard observer, then by

converting the CIE-XYZ values into CIELAB color coordinates

using as white reference the spectral reflectance of a perfect

diffuser illuminated with the D65 illuminant [18]. The average

color distance for each mode, presented in Table 1, is less than

0.4, therefore lower than the perceptible color difference

threshold, which is generally assumed to be 1. The achieved

prediction accuracy is therefore satisfying.

In theory, printed films should have the same reflectance

and transmittance on their two faces. Flipping them without

changing the illumination and observation conditions should

not modify their visual aspect. However, optical phenomena

such as scattering or the bronzing effect may generate a

colored sheen visible in reflectance only on the face with

ink. It is therefore important to pay attention to the observed

face. The model calibrated from measurements on one face is

specific to this face. The prediction of the spectral reflectance

or transmittance on the other face needs a second model,

similar to the first one but calibrated from measurements

on this face.

We can illustrate such difference with the Canon inkjet

cyan ink used in our experiments: on the inked face in the

specular direction, areas where cyan ink is not covered by

other inks display a purplish aspect that is not observed on

the other face. The spectral reflectances on the inked face

(“front side”) and noninked face (“back side”) of a film printed

with cyan ink at full surface coverage are plotted in Fig. 2. The

higher reflectance measured on the inked face below 350 nm

and beyond 550 nm is at the origin of the purplish sheen, while

the opposite face has a bluish color characteristic of cyan ink

deposited on a weakly reflecting support. In transmittance,

the difference between front and back sides is much smaller.

We can consider with inkjet prints that the relative difference

between the two transmittances, generally inferior to 1%, is

independent of wavelength.

Table 1. Prediction Accuracy of the Model for
Spectral Reflectance and Transmittance of Printed

Films

Measurement

Mode

Optimal n value Average

ΔE94

95%-

Quantile

Reflectance 10 0.15 0.48

Transmittance 2 0.34 0.87
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4. STACKS OF PRINTED FILMS

In this section, we consider stacks of several printed films par-

allel to each other. The corresponding spectral reflectance

and transmittance model is similar to the one introduced in

[7] for stacks of nonscattering plastic sheets, except that here

we consider a more general case where the films have differ-

ent spectral reflectances and transmittances when illuminated

at the front and back sides. The model describes the multiple

reflections of collimated light between the films, assuming

that even though the films are in contact with each other

in a mechanical point of view, they are not in optical contact

unless a fluid is used to paste them to each other: there re-

mains a layer of air between them in which light has a same

orientation as the incident light (angle θ), or a symmetric or-

ientation with respect to the normal of the films (“regular” or

“specular” direction, with same angle θ). The angular reflec-

tances and transmittances of stacks are functions of the indi-

vidual angular reflectances and transmittances of films all

evaluated at this angle θ. In order to simplify the notations,

we will omit dependence on angle θ and on wavelength λ

in the general equations.

Let us first consider two films labeled with numbers 1 and 2,

label 1 being attached to the film located at the back side.

Their front and back reflectances and front-to-back and

back-to-front transmittances are respectively denoted as Ri,

R0
i, T i, and T 0

i�i � 1; 2�. Figure 3 represents the multiple re-

flections between the two films as well as the first fractions

of flux exiting at the front and back sides.

By summing up the fractions of flux exiting at the front side,

one obtains a geometrical series expressing the front reflec-

tance of the two-stack, which reduces as

R21 � R2 �
T2T

0
2R1

1 − R1R
0
2

: �16�

At the back side, the summation of fractions of flux also

constitutes a geometrical series, which expresses the

front-to-back transmittance:

T21 �
T2T1

1 − R1R
0
2

: �17�

A similar reasoning for incident light coming from the back

side at the same angle gives the following expression for the

back reflectance:

R0
21 � R0

1 �
T1T

0
1R

0
2

1 − R1R
0
2

; �18�

and the back-to-front transmittance:

T 0
21 �

T 0
1T

0
2

1 − R1R
0
2

: �19�

Expressions like (16)–(18) can be given when a film q is in

front of a stack of p films. The reflectances and transmittances

of the p films (subscript p…1) are related to those of the q

films (subscript qp…1) as

Rqp…1 � Rq �
TqT

0
qRp…1

1 − Rp…1R
0
q

; �20�

Tqp…1 �
TqTp…1

1 − Rp…1R
0
q

; �21�

R0
qp…1 � R0

p…1 �
T 0
p…1Tp…1R

0
q

1 − Rp…1R
0
q

; �22�

T 0
qp…1 �

T 0
qT

0
p…1

1 − Rp…1R
0
q

: �23�

Equations (20)–(23) are similar to Kubelka’s equations for

stacked diffusing layers because they are consequences of a

similar mathematical model [19]. However, they have different

physical meaning: Kubelka’s equations model the propagation

of diffuse light in diffusing stratified media and therefore rely

on diffuse reflectances and transmittances whereas the above

equations model the propagation of collimated light in non-

scattering stratified media and rely on angular reflectances

and transmittances. Nevertheless, this mathematical analogy

is interesting, in particular when the films are identical since

specific formulas presented in the next section are connected

to the Kubelka–Munk model (see Section 8).

In order to obtain the reflectances and transmittances of a

given stack of films whose individual reflectances and trans-

mittances are known, one may iteratively use Eqs. (20)–(22).

In the first iteration, films 1 and 2 are considered, and then one

obtains the reflectances and transmittances of this two-stack;

0

0,05

0,1

0,15

400 500 600 700 λ (nm)

R(0°)

Inked face

Noninked face

Fig. 2. Spectral reflectance measured at normal incidence on the
inked face (dotted curve) and the opposite face (solid curve) of a film
printed with cyan and yellow inks at surface coverages 0.57, respec-
tively 0.12.

Fig. 3. (Color online) Multiple reflections of collimated flux between
two nonscattering films.
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in a second step, one considers film 3 in front of the previous

two-stack and so on, until film N is considered in front of the

previous (N − 1)-stack.

By experimental testing, we predicted the spectral trans-

mittances of stacks of two, three, and four printed films.

On each film, 25 randomly selected halftones were printed

in the same positions; in this way, every film superposition

has given 25 colored samples. The same films and printer were

used as for the experiment presented in Section 3 and the half-

tones were generated by the stochastic screening algorithm

proposed in [20] in order to prevent moirés. Measurements

were performed at normal incidence. Using the model pre-

sented in Section 3, duly calibrated from the spectral reflec-

tance and transmittance measurement of the 44 specific

halftones, we predicted the spectral reflectance and transmit-

tance of all halftones (25 per film), assuming that both film

faces have same reflectance. We then predicted the spectral

transmittances of the samples and compared them to mea-

surements in terms of equivalent color distance by CIELAB

ΔE94 values. The average ΔE94 values presented in Table 2

(over 25 samples), all below 0.9, are comparable to the ones

typically obtained for halftones printed on paper in transmit-

tance mode [15]. Despite the error accumulation due to the

2N � 1 predictions performed for N stacked films (reflec-

tance and transmittance of each film, then transmittance of

the stack), we can consider that a good accuracy has been

achieved in this experiment.

5. STACKS OF IDENTICAL FILMS

Let us now focus on the special case where N identical films

are stacked together. The stack’s front and back reflectances

and front-to-back and back-to-front transmittances are respec-

tively denoted as RN , R
0
N , TN , and T 0

N , and those of individual

films are denoted as R, R0, T , and T 0. As shown in Appendix A,

the iterative use of Eqs. (20)–(22) yields in this case closed-

form formulas for RN , R
0
N , TN , and T 0

N . The formula for the

front reflectance is

RN � 1

α − β

�

1 − 2

1−

�

1−�α�β�R
1−�α−β�R

�

N

� ; �24�

and the formula for the front-to-back transmittance is

TN � 2bTN

�α� β��1 − �α − β�R�N − �α − β��1 − �α� β�R�N
; �25�

where α and β are functions of R, R0, T , and T 0; therefore of

angle and wavelength are defined as

α � 1� RR0
− TT 0

2R
; �26�

and

β �
���������������

α2 −
R0

R

r

: �27�

The front and back reflectances are related according to

R0
N � RN

R0

R
; �28�

and the front-to-back and back-to-front transmittance accord-

ing to

T 0
N � TN

�

T 0

T

�

N

: �29�

As N tends to infinity, the transmittance TN tends to zero

and the front reflectance asymptotically converges toward a

spectral angular reflectance called “infinite stack reflectance,”

denoted as R∞. Since an infinite stack is unchanged when one

film is added on it, we can write Eq. (20):

R∞ � R� TT 0R∞

1 − R∞R
0: �30�

Solving Eq. (30) for R∞,

R∞ � �α − β� R
R0 �

1

α� β
: �31�

According to Eq. (28), the reflectance of an infinite stack of

films observed from the back side is given by

R0
∞ � α − β � R0

R
·

1

α� β
: �32�

By way of example, we plotted in Fig. 4 the spectral front

reflectance and the front-to-back spectral transmittance of

1–16 films printed in inkjet with a halftone of green ink at

50% surface coverage, measured at normal incidence. As N

gets larger, the reflectance increases and asymptotically con-

verges toward the infinite stack reflectance plotted as a

dashed line, which has been obtained from formula (31). This

increase is due to the back-reflection of light at the interfaces.

It is naturally less pronounced in the spectral domains where

the ink is more absorbing. Regarding the transmittance, since

transmission through a film is lowered by both absorption and

back-reflection, transmittance decreases as N increases and

asymptotically tends to zero. These variations as a function

of N are perfectly similar to those extensively detailed in

[7] in the case of colored nonscattering plastic sheets.

Using Eq. (23), one may deduce T from the measurement of

Rk−1, Tk−1, and Tk for a given k:

T � Tk

Tk−1

�1 − Rk−1R
0�: �33�

In the case where scattering of light by the inks is observed,

the scattering effect is more sensible in a stack of k films than

in a single film. The T spectrum deduced from Eq. (33) may

therefore provide better predictions than the one measured

directly on one film.

Table 2. Prediction Accuracy for the Spectral
Transmittance of Stacks of Printed Films

Number of Stacked Films Average ΔE94 95%-Quantile

2 0.55 2.03

3 0.69 1.36

4 0.86 1.36

M. Hébert and J. Machizaud Vol. 29, No. 11 / November 2012 / J. Opt. Soc. Am. A 2503



We tested the model using as previously 3M CG3460 films

printed in inkjet. In order to study the influence of the inks on

the prediction accuracy, we selected four colors generated by

error diffusion halftoning, which will be called “green,” “blue,”

“magenta,” and “yellow” samples. They were produced by

printing cyan, magenta, yellow, and green inks at the respec-

tive surfaces coverages fc;m; y; gg � f0; 0; 0; 0.5g for green,

f0.35; 0.15; 0; 0g for blue, f0; 0.70; 0; 0g for magenta, and

f0.10; 0.10; 0.80; 0g for yellow. For each color, we measured

R, R0, and T on one film, then incremented the number of films

and measured RN , R
0
N , and TN until 16 films (15 film stacks are

therefore measured for each of the three geometries). In this

experiment, we assumed T 0 � γT , where γ is a constant inde-

pendent of wavelength, specified in Table 3 for each type of

film. Lower γ coincides with higher scattering: the yellow ink

is more scattering than the other inks.

Using the same protocol as in previous experiments, pre-

dicted and measured spectra are compared in terms of equiva-

lent color distance expressed by CIELAB ΔE94 values. For

each film color, we predicted front reflectances, back reflec-

tances, and front-to-back transmittances of the 15 stacks. We

tested the alternative calibration based on Eq. (33) for magen-

ta and yellow films with k � 4, respectively k � 5. For each

series of 15 measurements-predictions, the evolutions of

the ΔE94 as a function of N for the different colors and geo-

metries are plotted in Fig. 5, and the average (and maximal in

bracket) ΔE94 values are given in Table 3. First of all, we see

in Fig. 5 that the front reflectances of all films are well pre-

dicted since the ΔE94 values are below 1. The back reflec-

tances are correctly predicted as well, except for the

yellow films beyond eight films. However, for this later case,

calibration of the transmittance T from Eq. (33) with k � 5

improves noticeably the predictions: the average (respectively

maximal) ΔE94 value become 0.78 (respectively 0.96) instead

of 0.97 (respectively 1.17). In transmittance, predictions are

good for the green and blue films, but not for the magenta

and yellow films beyond five films. In the case of the yellow

films, the error seems to grow proportionally to the number of

films. Nevertheless, the improvement due to the calibration of

T from Eq. (33) is appreciable: for the magenta films, with

k � 4, we get an average ΔE94 value of 0.45 and a maximum

of 0.90 instead of 1.21, respectively 1.68; for the yellow films,

with k � 5, we get an average ΔE94 value of 0.74 and a max-

imum of 1.25 instead of 2.41, respectively 3.94.

It is not surprising to observe a lower prediction accuracy

for yellow films since the yellow ink is the more scattering.

This can be easily verified by looking at far objects through

different films: blurring is more pronounced with films where

yellow ink is in high quantity. We can imagine more scattering

inks, such as color toner in electrophotography printing

for example, for which the model may be in failure even

with these corrections. Empirical improvements may be

found for specific cases by introducing fittable parameters;
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Fig. 4. Spectral front reflectances (top graph) and front-to-back
transmittances (bottom graph) of single green film (dashed curves)
and of stacks of 2–16 green films (solid curves) measured at normal
incidence. The numbers of films in the stack appear as circled. Infinite
stack reflectance denoted by symbol ∞ is predicted according to
formula (31).

Table 3. Average (max) ΔE94 Values Obtained for
the Different Films and Geometries

Film Color γ value RN R0
N TN

Green 0.994 0.12 (0.23) 0.45 (0.64) 0.49 (0.96)

Blue 0.993 0.24 (0.30) 0.50 (0.63) 0.35 (0.74)

Magenta 0.993 0.39 (0.43) 0.20 (0.24) 1.21 (1.68)

Yellow 0.990 0.55 (0.68) 0.97 (1.17) 2.41 (3.94)

Transmittances

2

1

4

3

∆E94
Front reflectances∆E94
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1

∆E94

5 10 15 N22 5 10 15 N 5 10 15 N2

Back reflectances
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Fig. 5. (Color online) Variation of theΔE94 value as a function of the number of films for the front reflectance, the back reflectance, and the front-
to-back transmittance of green (g), blue (b), magenta (m), and yellow (y) films when the single film transmittance T is measured (solid curves) or
deduced from Eq. (33) (dotted curves). Horizontal dashed lines indicate the visibility threshold of color differences (ΔE94 � 1).
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nevertheless, a physical scattering model based on a multiflux

approach [21,22] or on the radiative transfer theory [23,24]

would be more satisfying.

6. STACKS OF FILMS IN FRONT OF A
SPECULAR REFLECTOR

We go one step further by placing the stacks of films in front of

a specular reflector. Samples are still observed in the specular

direction. In the general case, the reflectance of a stack with

front reflectance Rp…1, back reflectance R0
p…1, front-to-back

transmittance Tp…1, and back-to-front transmittance T 0
p…1

in front of a specular backing with reflectance P0 is given by

Pp…1 � Rp…1 �
Tp…1T

0
p…1P0

1 − P0R
0
p…1

: �34�

We are especially interested in the case where the films are

identical, i.e., Rp…1 � RN , R0
p…1 � R0

N Tp…1 � TN , and

T 0
p…1 � T 0

N , given respectively by Eqs. (24), (28), and (25).

We denote by PN the reflectance of N films with backing.

When placing an additional film, the reflectance becomes,

for N ≥ 0,

PN�1 � R� TT 0PN

1 − PNR
0: �35�

The variation of PN as a function of N is shown in Fig. 6 for

the blue and green films presented in Section 5 respectively

placed in front of a red reflector (copper mirror covered by

a film coated with red ink) and a magenta reflector (achro-

matic mirror covered by a film coated with magenta ink).

In both cases, the number of films was incremented from 1

to 13. For the sake of readability, only the measured spectra

are plotted in the figure. Using previously computed reflec-

tances and transmittances of stacks (see Table 3), the predic-

tions given by Eq. (35) satisfyingly match the measurements:

the averageΔE94 value assessing the deviations between pre-

dicted and measured spectra was 0.42 (maximum 0.66) for the

green films on magenta background, and 0.64 (maximum 0.75)

for the blue films on red background.

Through these examples, one observes that as the number

of films in front of the backing increases, the spectral reflec-

tance of the samples varies differently according to the wave-

length, or more precisely according to the relative values of

the backing reflectance and the infinite stack reflectance.

Hence, PN either increases or decreases and may even be con-

stant for wavelengths where the spectral reflectances of back-

ground and infinite stack meet.

The intersection of all PN�λ� at a given (set of) wavelength

(s) has a theoretical justification that may be shown through

the study of the variation of sequence PN as a function of N .

After some calculation using terms a and b defined by Eqs. (26)

and (27), one obtains

PN�1 − PN � R0

1 − PNR
0

�

PN −
R

R0 �α − β�
�

·

�

PN −
R

R0 �α� β�
�

:

�36�

According to Eqs. (31) and (32), Eq. (36) is also written

PN�1 − PN � R0

1 − PNR
0 �PN − R∞��PN − 1∕R0

∞�: �37�

The fraction in Eq. (37) is positive. Reflectances PN and R0
∞

being less than 1, the term PN − 1∕R0
∞ is negative. PN�1 − PN

has therefore an opposite sign to PN − R∞. Hence, if PN ≤ R∞ in

a given spectral domain, then SN ≤ SN�1 and we have

R� TT 0

1
PN

− R0 ≤ R� TT 0

1
R∞

− R0;

therefore, according to Eqs. (30) and (35), PN�1 ≤ R∞. We con-

clude that sequence PN is increasing. Stacks without backing

are a special case of this configuration with P0 � 0 for all wa-

velengths: we retrieve in Fig. 4 the fact that the reflectance of

stacks of green films increases as N increases.

By a similar reasoning line, PN decreases if PN ≥ R∞. We

finally see that the reflectance of the stack with backing varies

in a monotonic manner as the number N of films increases

(but not necessarily in the same direction in each waveband)

from the backing reflectance P0 when N � 0, to the infinite

stack reflectance R∞ whenN → ∞. If both backing and infinite

stack of films have same reflectance at a given angle θ and in a
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Fig. 6. (Color online) Evolution of the spectral reflectance of (a) blue
films in front of a red reflector and (b) green films in front of a ma-
genta reflector. The circled numbers denote numbers of films and line
colors roughly reproduce the colors associated to the plotted spectra.
Spectral reflectances of the backing alone and of an infinite stack of
films are in dotted and dashed curves, respectively.
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given waveband around wavelength λ, i.e., if R∞�θ; λ� �
P0�θ; λ�, then PN �θ; λ� is equal to P0�θ; λ� for every N .

In [7], we observed a similar intersection phenomenon with

nonscattering colored plastic films placed in front of a diffus-

ing background. In this case, perfect intersection of the

spectral reflectances is more difficult to prove mathematically

because the reflectance equations contain integrals (the angu-

lar reflectance and transmittance of the stacks are integrated

over the hemisphere because the light exiting the diffusing

background is Lambertian). Nevertheless, good intersection

was experimentally observed. A much similar observation

can be done with yellow printed films in front of a red paper

background whose spectral reflectances are plotted in Fig. 7:

all spectra meet in a same point, except the one of the red

paper (dashed line in the figure), which is slightly higher

because of the small amount of light scattered by its rough

surface that is added to the light reflected from the red paper

bulk. This fraction of light is not captured when films are

added since they have a smooth surface.

7. CONNECTION WITH THE
KUBELKA–MUNK MODEL

We have mentioned in Section 5 the analogy between the mod-

el for stacks of nonscattering films and Kubelka’s model for

stacks of diffusing layers, even though collimated light is con-

sidered in the first one and diffuse light in the second one. This

analogy may be pursued between stacks of identical films and

stacks of identical diffusing layers, i.e., uniform diffusing layer

with varying thickness: there exists indeed a mathematical

connection between the formulas introduced in Section 6

and the Kubelka–Munk formulas.

The Kubelka–Munk theory models the propagation of dif-

fuse flux in a homogenous diffusing layer (thickness h) by de-

scribing the flux attenuations through infinitesimal sublayers

due to scattering and absorption. According to this model, de-

noting dz the thickness of the sublayer, a fraction Sdz of flux

is back-reflected by it and a fractionKdz is absorbed. The sub-

layer’s reflectance is therefore Sdz (similar at front and back

sides) and its transmittance is 1 − �K � S�dz. In order to put

into evidence the analogy with our model for stacks, we

propose to divide the layer into N sublayers of equal

thickness h∕N in a similar manner as in [25], where a matrix

approach was used. As N tends to infinity, sublayers have

infinitesimal thickness and their reflectance may be written

R � R0 � Sh∕N , and their transmittance T � T 0 � 1−

�K � S�h∕N . Inserting these expressions for R and T into

Eq. (26), we retrieve a usual expression for a in the

Kubelka–Munk theory:

α � lim
N→∞

1� �Sh∕N�2 − �1 − �K � S�h∕N �2
2Sh∕N

� K � S

S
� a:

Since R � R0, β is

β �
�������������

α2 − 1
p

� b:

The equality in this case between the parameters a and b of

the Kubelka–Munk model and the parameters α, respectively

β, of our model explains why both models similarly express

the reflectance of an infinitely thick sample [1]: R∞ �
a − b � 1∕�a� b�.

For finite thickness, we make N tend to infinity in order to

have an infinitesimal sublayer and insert R, R0, T , T 0, a, and b

as defined above into Eq. (24). Using a classical result for the

exponential function [27],

lim
N→∞

�

1 −
x

N

�

N

� e−x; �38�

we easily retrieve the well-known Kubelka–Munk reflectance

expression [1]:

Rkm�h� � lim
N→∞

RN � 1

a − b
�

1 − 2
1−e−2bSh

	

� sinh�bSh�
a sinh�bSh� � b cosh�bSh� : (39)

By a similar reasoning for the transmittance, taking into

account T � 1 − aSh∕N , we retrieve from Eq. (25) the

Kubelka–Munk transmittance formula:

Tkm�h� � lim
n→∞

TN � 2be−aSh

�a� b�e−�a−b�Sh − �a − b�e−�a�b�Sh

� 2b

a sinh�bSh� � b cosh�bSh� : (40)

If the diffusing layer is on top of a background, the resulting

reflectance is still given by Eq. (34), where S0 is the reflec-

tance of the background.

The similarity between the two models implies that K and S

coefficients could be attributed to nonscattering films (for a

given incidence angle θ), the S coefficient representing in this

case back-reflection instead of scattering. This approach has

first of all a pedagogical interest, since the reflection and ab-

sorption of light by individual film is easily seen or measured,

and the influence of thickness can be easily observed by

superposing films. Moreover, since back-reflection occurs

at the surface of the films and absorption occurs inside, both

phenomena are distinguishable. If the films are water-resistant

(which is not the case of films printed in ink-jet but is true for

colored polymer sheets or UV-dried offset prints), fluids with

various refractive indices may used to modify the surface

reflectance of films, thereby S, without changing K . Water

(index 1.33) and oil (index 1.5) were used in the study of

[7] for that purpose. Conversely, the use of films made of
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Fig. 7. Variation of the spectral reflectance of a red paper back-
ground covered by yellow films; the numbers attached to the spectra
indicate the number of added films.
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the same medium with different colors enables the variation

of K without the need to change S. Changing K only or S only

in the case of scattering media is more difficult since it gen-

erally means introducing a substance that is generally absorb-

ing and scattering at the same time. Stacks of films therefore

appear to be a good learning support to study experimentally

the variation of reflectance and transmittance according to

the K and S values and the thickness.

8. CONCLUSION

We have demonstrated the possibility to accurately predict

the spectral reflectance and transmittance of stacks of films

printed in halftone, provided the halftones are generated by

the stochastic or error diffusion algorithm in order to avoid

moirés and the inks are not too much scattering. Since the

printed films have slightly different reflectances and transmit-

tances on their two sides, these latters are represented by dis-

tinct parameters in the equations. This is original compared to

most previous applications of the two-flux model. When all the

stacked films are identical, their reflectance and transmit-

tance are given by closed-form formulas that have never been

presented yet, as far as we know, in the literature of the color

reproduction domain. The Kubelka–Munk formulas can be re-

trieved from these formulas, with which they have strong con-

nection. The experimental testing shows the good prediction

accuracy of the model.

For industrial domains using printed films, in particular the

packaging industry, the capacity to predict the color rendering

of printed films in superposition with other ones may be help-

ful for design and color reproduction issues. Even more inter-

esting effects could be obtained by superposing multicolor

films so as to show a color image by reflection and a uniform

color by transmission [10].

APPENDIX A: REFLECTANCE AND
TRANSMITTANCE OF STACKS OF
IDENTICAL FILMS

We have mentioned in Section 5 a stack of N films having all

same angular reflectance R and transmittance T for a given

incident angle that is not explicit here. We propose to derive

the expressions for stacks’ front reflectance RN , back reflec-

tance R0
N , front-to-back transmittance TN , and back-to-front

transmittance TN , respectively given by Eqs. (24), (25), (28),

and (29). The demonstration, similar to the one presented in

[25] in the context of the Kubelka–Munk model, relies on

continuous fractions.

According to Eq. (20), the front reflectances of stacks

containing N and N − 1 films (N ≥ 2) are related by

RN � R� TT 0

−R0 � 1
RN−1

: �A1�

Using N − 1 times recursion (A1) until R1 � R, one obtains

a continued fraction expressing the front reflectance RN as a

function of R, R0, T , and T 0. Every finite continued fraction

v0 �
u1

v1 � u2

v2� . .
. uk

vk

�A2�

is known to be reducible to a simple fraction, called the kth

convergent of the continued fraction, whose numerator U and

denominator V are given by the following matrix identity [26]:

�

… U

… V

�

�
�

1 v0
0 1

�

·

�

0 u1

1 v1

�

·

�

0 u2

1 v2

�

…

�

0 uk

1 vk

�

:

�A3�

The convergent numerator and denominator of the

continued fraction expressing RN are given by

�

… U

… V

�

�
�

1 R

0 1

�

·

��

0 TT 0

1 −R0

�

·

�

0 1

1 R

��

N−1

(A4)

or equivalently by

�

… U

… V

�

�
�

0 1

1 0

�

·

�

1 −R0

R TT 0
− RR0

�

N−1

·

�

0 1

1 R

�

:

�A5�

Let us denote by M the matrix raised to the power N − 1 in

Eq. (A5). It has two distinct eigenvalues, e1 � 1 − �α� β�R and

e2 � 1 − �α − β�R, where α and β are respectively defined by

Eqs. (26) and (27). Through matrix diagonalization, M may

be decomposed as

M � E ·

�

e1 0

0 e2

�

· E−1 (A6)

with

E �
�

α − β α� β

1 1

�

: �A7�

Using a classical result for diagonalizable matrices [27], we

have

M
N−1 � E ·

�

eN−1
1 0

0 eN−1
2

�

· E−1: �A8�

With this expression for MN−1, Eq. (A5) becomes

�

… U

… V

�

� 1

−2b

�

… eN1 − eN2
… �α − β�eN1 − �α� β�eN2

�

: �A9�

We deduce the following front reflectance expression:

RN � eN1 − eN2
�α − β�eN1 − �α� β�eN2

; �A10�

which becomes, after some rearrangement

RN � 1

α − β

�

1 − 2
1−�e1∕e2�N

� : �A11�

By a similar reasoning, one gets the back reflectance R0
N by

considering R0 in place of R and reciprocally. A formula simi-

lar to (A11) is obtained, where α, β, e1, and e2 are respectively

replaced with

α0 � 1 − RR0 � TT 0

2R0 � α
R

R0; �A12�

β0 �
����������������

α02 −
R

R0

r

� β
R

R0; �A13�
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and

e01;2 � 1 − �α0 � β0�R0 � e1;2: �A14�

This finally yields the reflectance formula (28).

Let us now show how to obtain the front-to-back transmit-

tance formula. The transmittance of stacks with N and N − 1

films are related according to Eq. (23):

TN

TN−1

� T

1 − RN−1R
0 : �A15�

RN−1 may be replaced with its expanded expression (A10),

where N is replaced with N − 1. By noting that �α − β�e1 � α −

β − R0 and �α� β�e1 � α� β − R0, one easily transforms

Eq. (A15) into

TN

TN−1

� T
uN−1

uN

; �A16�

where uk is defined for every integer k as

uk � �α − β�ek1 − �α� β�ek2: �A17�

Noting that u1 � −2b, we may thus write TN as the follow-

ing product where the brackets contain N − 1 fractions whose

numerators and denominators mutually cancel except u1 and

uN :

TN�T

�

TN

TN−1

·
TN−1

TN−2

…
T2

T

�

�TN

�

uN−1

uN

·
uN−2

uN−1

…
u1

u2

�

�TN

�

−2b

uN

�

;

�A18�

which finally yields

TN � 2bTN

�α� β�eN2 − �α − β�eN1
: �A19�

The back-to-front transmittance formula is obtained in the

same way by replacing T with T 0, which yields T 0N in place of

TN at the numerator of the fraction in Eq. (A19).
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