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We consider zero-sum repeated games with incomplete information on both sides, where the states privately observed by each player follow independent Markov chains. It generalizes the model, introduced by Aumann and Maschler in the sixties and solved by Mertens and Zamir in the seventies, where the private states of the players were fixed. It also includes the model introduced in Renault [20], of Markov chain repeated games with lack of information on one side, where only one player privately observes the sequence of states. We prove here that the limit value exists, and we obtain a characterization via the Mertens-Zamir system, where the "non revealing value function" plugged in the system is now defined as the limit value of an auxiliary "non revealing" dynamic game. This non revealing game is defined by restricting the players not to reveal any information on the limit behavior of their own Markov chain, as in Renault 2006. There are two key technical difficulties in the proof: 1) proving regularity, in the sense of equicontinuity, of the T -stage non revealing value functions, and 2) constructing strategies by blocks in order to link the values of the non revealing games with the original values.

Introduction

The pioneering work of Aumann and Maschler in the 1960s introducing Repeated games with incomplete information (see [START_REF] Aumann | Repeated games with incomplete information, with the collaboration of R. Stearns[END_REF] for a re-edition of their work) was widely studied and extended. One of their most famous results concerns the model of two-player zero-sum repeated game with lack of information on one side and perfect observation: At the beginning of the game, a state variable k is chosen at random in a finite set K using some probability p, and announced to Player 1 only. A finite zero-sum game G k depending on the state variable is then played repeatedly and after each stage the actions played are observed by both players. The famous cavu theorem of Aumann and Maschler then reads as follows: the value of the infinitely repeated game exists and is characterized as the concave hull of the value of an auxiliary game called the non-revealing game. In a previous work of Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], this model was extended in the following direction: instead of being fixed once for all at the beginning of the game, the state variable was assumed to evolve according to a Markov chain of initial probability p and transition matrix M over K. Renault proved that in this model, called Markov chain game with incomplete information on one side, the value of the infinitely repeated game exists and gave a characterization for it, very close to the one of Aumann and Maschler. The main difference was in the definition of the non-revealing game: it was defined in Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF] as a dynamic game with infinite length where Player 1 was constrained not to reveal any information on the asymptotic behavior of the Markov chain rather than on the current state variable itself. The model of Markov chain game with incomplete information on one side was also studied by Neyman [START_REF] Neyman | Existence of optimal strategies in Markov games with incomplete information[END_REF] who proved the existence of an optimal strategy for Player 1 and also proved a generalization of the existence of the value in case of imperfect observation of actions.

A more involved model also introduced in [START_REF] Aumann | Repeated games with incomplete information, with the collaboration of R. Stearns[END_REF] is the model of two-player zero-sum repeated game with lack of information on both sides and perfect observation: At the beginning of the game, two states of nature k and l are chosen independently in some finite sets K and L, according to some probabilities p and q. The state k is announced to Player 1 only, and the state l is announced to Player 2 only. These states of nature determine a finite zero-sum game G k,l which is then played repeatedly; after each stage the actions played are observed by both players. Aumann and Maschler showed that the infinitely repeated game may have no value. Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF], showed the existence of the limit value (i.e. the existence of a limit for the sequence of values of finitely repeated games when the number of repetitions goes to infinity) in this model and gave a characterization for it (see the system (1) later) based on a system of functional equations acting on the value of the non-revealing game.

The results of Aumann and Maschler and of Mertens and Zamir led to a great number of works dedicated to generalizations of this model, or close extensions of it. Let us cite for games with incomplete information on one side, Kohlberg [START_REF] Kohlberg | Optimal strategies in repeated games with incomplete information[END_REF] for an explicit construction of an optimal strategy for Player 2, De Meyer and Rosenberg [START_REF] Meyer | Cav u" and the Dual Game[END_REF] and Laraki [START_REF] Laraki | Repeated games with lack of information on one side: the dual differential approach[END_REF] for alternative proofs of existence of the limit value based on duality, Gensbittel [START_REF] Gensbittel | Extensions of the Cav(u) theorem for repeated games with one-sided information[END_REF] for the extension to infinite action spaces, or Sorin [START_REF] Sorin | Some results on the existence of Nash equilibria for non-zero sum games with incomplete information[END_REF], Hart [START_REF] Hart | Nonzero-sum two-person repeated games with incomplete information[END_REF], Simon et al. [START_REF] Simon | The existence of equilibria in certain games, separation for families of convex functions and a theorem of Borsuk-Ulam type[END_REF], Renault [START_REF] Renault | 2-player repeated games with lack of information on one side and state independent signalling[END_REF] [START_REF] Renault | 3-player repeated games with lack of information on one side[END_REF] for the nonzero-sum case.

Concerning incomplete information on both sides, let us mention the proof of existence of asymptotically optimal strategies by Heuer [START_REF] Heuer | Asymptotically optimal strategies in repeated games with incomplete information[END_REF], the extension of the Mertens-Zamir system by Sorin [START_REF] Sorin | On a pair of simultaneous functional equations[END_REF], the study of an abstract game called the splitting game related to the system of functional equations by Laraki [START_REF] Laraki | The splitting game and applications[END_REF], alternative proofs of existence of the limit value based on the so-called operator approach by Rosenberg and Sorin [START_REF] Rosenberg | An operator approach to zero-sum repeated games[END_REF], or more recently on continuoustime approach by Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A Continuous Time Approach for the Asymptotic Value in Two-Person Zero-Sum Repeated Games[END_REF].

We only consider here two-player zero-sum games and generalize the model of repeated game with lack of information on both sides to the case where the states of nature (k, l) are no longer fixed at the beginning of the game, but evolve according to given independent Markov chains (k t ) t≥1 and (l t ) t≥1 . At the beginning of each stage, k t is observed by Player 1 only, and l t is observed by Player 2 only. We call such games Markov chain games with lack of information on both sides. Note that this model admits as a special case the model of repeated game with incomplete information on both sides, in which the value of the infinitely repeated game may not exist. In this paper, we generalize both the proofs of Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF] and Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] and show the existence of the limit value for Markov chain games with lack of information on both sides. We also give a characterization for this limit value based on a system of functional equations, similar to the one introduced by Mertens and Zamir, and on the generalized notion of non-revealing games as introduced by Renault. However, as already mentioned in these two works, our expression of the value cannot be easily computed from the basic data of the game. It was already noticed in [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF], where several examples of computations are given, underlying that the limit value may be outside of the class of semi-algebraic functions, which contrasts with properties of the limit value for stochastic games (with complete information and finite state and action spaces). Moreover, the problem of computation of the value of non-revealing games for Markov chain games with incomplete information on one side was already mentioned by Renault who gave an example which appeared to be very difficult to compute, except for very particular values of the transition matrix as shown in the work of Hörner et al. [START_REF] Horner | On a Markov Games with One-Sided Information[END_REF].

Section 2 of this paper contains the model. Section 3 contains preliminary results and notations. A few important examples, and the main ideas of the proof, are presented in section 4. In section 5, we define and study a notion of nonrevealing strategies via projection matrices that will be used to quantify a notion of relevant information for both players. We introduce the auxiliary games called nonrevealing games, where both players are restricted to play a nonrevealing strategy, and prove that they have a limit value. In section 6, we study some properties of the system of functional equations introduced by Mertens and Zamir associated to the limit value of the non-revealing game. Our main result theorem 2.2 will imply that the limit value is the unique solution of this system. Section 7 contains a list of open questions related to the possible extensions of the model. Section 8 is an appendix containing the main proofs and some technical results.

Model

Given a finite set S, ∆(S) denotes the set of probabilities over S and the cardinal of S is, with a slight abuse of notations, also denoted by S. The set of positive integers is denoted

IN * .
We consider a zero-sum game between 2 players with action sets I and J, sets of states K and L, where I, J, K, L are disjoint finite non empty sets, and payoff function

g : K × L × I × J -→ [-1, 1].
M and N are given Markov matrices on K and L respectively, i.e. M = (M k,k ′ ) k,k ′ ∈K is a K × K matrix with non-negative entries and such that for all k ∈ K, k ′ ∈K M k,k ′ = 1, and similarly for N . The letters p ∈ ∆(K) and q ∈ ∆(L) denote initial probabilities.

The game is played by stages in discrete time. We are given two independent Markov chains: (k t ) t≥1 with initial distribution p and transition matrix M , and (l t ) t≥1 with initial distribution q and transition matrix N . At the beginning of every stage t ≥ 1, Player 1 observes k t and Player 2 observes l t . Then both players simultaneously select an action in their action set, if (i t , j t ) in I × J is played then Player 1's payoff for stage t is g(k t , l t , i t , j t ). Then (i t , j t ) is publicly observed and the play goes to stage t + 1. Notice that the payoff g(k t , l t , i t , j t ) is not directly observed and may not be deduced by the players at the end of stage t.

We denote by Σ and T the sets of behavior strategies of the players. Formally, for t ≥ 1, let H t = (I × J) t denote the set of histories of actions of length t, with the convention H 0 = {∅}. A strategy σ ∈ Σ is a sequence (σ t ) t≥1 , where σ t is a map from H t-1 × K t to ∆(I). For T ∈ IN * , the set Σ T denotes the set of T -stage strategies for Player 1, that is of finite sequences (σ 1 , .., σ T ) induced by elements of Σ. T and T T are defined similarly.

The value of the T -stage game is denoted v T (p, q), i.e.

v T (p, q) = max σ∈Σ min τ ∈T γ p,q T (σ, τ ) = min τ ∈T max σ∈Σ γ p,q T (σ, τ ),
where

γ p,q T (σ, τ ) = IE p,q,σ,τ [ 1 T T t=1 g(k t , l t , i t , j t )]
, the expectation being taken with respect to the probability IP p,q,σ,τ induced by (p, q, σ, τ ) on the set of plays Ω = (K × L × I × J) ∞ . Elements of ∆(K) are seen as row vectors, so that if p ′ in ∆(K) is the law of the state k T of stage T , then p ′ M is the law of the following state k T +1 (similarly elements of ∆(L) are seen as row vectors). We have the standard recursive formula, for all T ≥ 0:

(T + 1)v T +1 (p, q) = max x∈∆(I) K min y∈∆(J) L   G(p, q, x, y) + T i∈I,j∈J x(p)(i)y(q)(j)v T ( p(x, i)M, q(y, j)N )   = min y∈∆(J) L max x∈∆(I) K   G(p, q, x, y) + T i∈I,j∈J x(p)(i)y(q)(j)v T ( p(x, i)M, q(y, j)N )   .
where G(p, q, x, y) = k,l,i,j p k q l x k (i)y l (j)g(k, l, i, j),

∀i ∈ I, x(p)(i) = k p k x k (i), and p(x, i) = p k x k (i) x(p)(i) k∈K ∈ ∆(K) if x(p)(i) > 0,
∀j ∈ J, y(q)(j) = l q l y l (j), and q(y, j) = q l y l (j) y(q)(j) l∈L ∈ ∆(L) if y(q)(j) > 0, and p(x, i) (resp. q(y, j)) is defined arbitrarily if x(p)(i) = 0 (resp. y(q)(j) = 0). If at some stage t the belief of Player 2 on the current state k t in K is represented by p, and if Player 1 plays the mixed action x k if his current state is k, then x(p)(i) will be the probability that a given action i in I is played at this stage. After observing i, p(x, i) represents the new belief of Player 2 on k t , and p(x, i)M is the belief of Player 2 on k t+1 .

We will extensively use the following definitions. If f is a real function on ∆(K) × ∆(L), we say that f is I-concave, resp. II-convex, if it is concave in the first variable, resp. convex in the second variable. cav I f and vex II f denote respectively the smallest I-concave function above f and the largest II-convex function below f . Definition 2.1. C denotes the set of continuous functions from

∆(K) × ∆(L) to [-1, 1]. For each f in C, we introduce: C + (f ) = {w ∈ C, w is I-concave and ∀(p, q) ∈ ∆(K) × ∆(L), w(p, q) ≥ vex II Max(w, f )(p, q)} , C -(f ) = {w ∈ C, w is II-convex and ∀(p, q) ∈ ∆(K) × ∆(L), w(p, q) ≤ cav I Min(w, f )(p, q)} .
The main result of the paper is the following. Theorem 2.2. v(p, q) = lim T →∞ v T (p, q) exists.

Moreover, if the Markov chains on K and L are recurrent and aperiodic, we will define a "nonrevealing limit value" function v (see Proposition 5.16), and will prove that v is the unique solution of the Mertens-Zamir system associated to v, that is:

∀(p, q) ∈ ∆(K) × ∆(L), w(p, q) = vex II Max(w, v)(p, q) w(p, q) = cav I Min(w, v)(p, q) , (1) 
or, equivalently, that

v = inf{w ∈ C + (v)} = sup{w ∈ C -(v)}.
Note that this characterization is helpful only when one of the chains has several recurrence classes, i.e. when there is incomplete information on the asymptotic behavior of the chains. Indeed, in the case of irreducible chains, our definition of v implies that v(p, q) = v(p, q) and it is easy to show that these functions do not depend on (p, q) (see example C in the next section), so that the above system do not bring any information.

Preliminaries

In all the paper the sets ∆(K), ∆(L) and ∆(K) × ∆(L) are endowed with the L 1 -norm. The following properties of the value functions are standard. For each T ≥ 1, v T is I-concave, II-convex and 1-Lipschitz. And for all (p, q) ∈ ∆(K)×∆(L), we have:

|v T +1 (p, q)-v T (p, q)| ≤ 2 T , |v T +1 (p, q) -v T (pM, qN )| ≤ 2 T , and consequently |v T (p, q) -v T (pM, qN )| ≤ 4 T .
If some state k is transient, then for each ε there exists T 0 such that IP (∀T ≥ T 0 , k T = k) ≥ 1ε. Both players can wait until stage T 0 and enter a game where state k has disappeared with high probability, so to prove theorem 2.2 we can assume w.l.o.g. that there is no transient state. In the sequel, we assume that all states in K and L are recurrent.

We now take care of periodicity. Some states may a priori be periodic, let T 0 be a common multiple of all periods in the chains induced by M and N . From the above properties, we have lim sup T v T T 0 (p, q) = lim sup T v T (p, q), and lim inf T v T T 0 (p, q) = lim inf T v T (p, q), so to study lim T v T we can consider plays by blocks of T 0 stages (so that one stage now corresponds to T 0 original stages). The Markov chains with transitions matrices M T 0 and N T 0 are aperiodic, and this consideration is without loss of generality.

Summing up, from now on 1 we assume w.l.o.g. that both Markov chains are recurrent and aperiodic. We still use the letters M and N to denote the (now recurrent aperiodic) transitions matrices. We have the convergence of M t to a stochastic matrix B such that B 2 = B = BM = M B. The state space K can be partitioned into recurrence classes K(1), ..., K(r M ), where r M is the number of recurrence classes associated to M . Each class K(r) has a unique invariant measure p * (r), and the k-th row of B corresponds to p * (r) where K(r) 1 except in the example E of the next section and in Remark 6.2 is the class containing k. Invariant measures for B and M coincide, the set of those measures is the convex hull of {p * (1), ..., p * (r M )} denoted by P * . Although B is not invertible if there are less recurrence classes than states, for p * in P * we write B -1 (p * ) = {p ∈ ∆(K), pB = p * }.

Regarding the Markov chain associated to the states in L, we proceed similarly and use the following notations. There is convergence of N t to a stochastic matrix C. The state space L is partitioned into recurrence classes L(1), ..., L(r L ). Each class L(r) has a unique invariant measure q * (r), and the l-th row of C corresponds to q * (r) where L(r) is the class containing l. Invariant measures for C and N coincide, the set of those measures is the convex hull of {q * (1), ..., q * (r L )} denoted by Q * . For q * in Q * , we write C -1 (q * ) = {q ∈ ∆(K), qC = q * }. We now provide an example to illustrate some of our notations. We will use the following notion in the proofs.

Definition 3.1. f is balanced if for all (p, q) ∈ ∆(K) × ∆(L), f (p, q) = f (pM, qN ).
Since the Markov chains are recurrent aperiodic, f is balanced if and only if f is constant on the recurrence classes of the chains. evolve across stages according to the transition matrix M . Precisely, under this assumption, the belief of Player 2 on the current state k t+1 at stage t + 1 (i.e., the conditional law of k t+1 given the actions played up to stage t) is simply the law of k t+1 , which is pM t . Symmetrically, if Player 2 does not use his information on the states (l t ) t≥1 , then the belief of Player 1 on l t+1 at stage t + 1 is qN t .

Example B: A Markov chain without memory. If both Markov chains are i.i.d. sequences, then the problem reduces to a classical repeated game, by replacing the payoff function in pure strategies by its expectation with respect to (k t , l t ). The value of the infinitely repeated game exists and equals the value of this auxiliary one-stage game.

Example C: Irreducible aperiodic Markov chains. Assume that both chains are irreducible and aperiodic, say K = L = {a, b}, M = . This Markov chain has a unique recurrence class, so r M = r N = 1 and K = K(1) = L = L(1). Unique invariant probabilities are p * = ( 1 2 , 1 2 ) and q * = ( 4 5 , 1 5 ). M t and N t respectively converge to:

B = 1 2 1 2 1 2 1 2
and C = . In this case, the limit value exists, and we even have the stronger result that the (uniform) value of the infinitely repeated game exists. At first, if Player 1 plays independently of the states, the beliefs of Player 2 converge to p * . On the other hand, after any sufficiently long number of stages, he can always forget the past actions of Player 2 and act as if his beliefs were very close to q * . Choose now some integer T 0 such that M T 0 and N T 0 are respectively close to B and C, and then T 1 much larger than T 0 . Let us construct a strategy of Player 1 as follows: (1) play any strategy independent of the states during T 0 stages, then (2) play an optimal strategy in the game Γ T 1 (p * , q * ), and (3) come back to [START_REF] Aumann | Repeated games with incomplete information, with the collaboration of R. Stearns[END_REF]. Such a strategy guarantees to Player 1 v T 1 (p * , q * ) up to some arbitrarily small error, hence by choosing T 1 large enough Player 1 guarantees limsup T v T (p * , q * ) in the infinitely repeated game. Inverting the role of the players implies that the value of the infinitely repeated game exists and equals lim T v T (p * , q * ). In particular it does not depend on the initial probabilities (p, q). Notice that this proof can be generalized to the case of any irreducible aperiodic Markov chain.

Example D: M and L are the identity matrix. In this case, the problem is a repeated game with incomplete information on both sides as studied by Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] since the initial state is selected at the beginning of the game and remains constant. In terms of Markov chains, the states2 can be here identified with the recurrence classes, and therefore any information on the states is an information on the asymptotic behavior of the corresponding chain.

Let us at first define the non-revealing game: it denotes the game where none of the players is allowed to use his information on the state variable (i.e. players are restricted to use strategies which do not depend on the selected states). For each pair (p, q) of initial probabilities, this game can be analyzed as the repetition of the average matrix game k,l p k q l g(k, l, ., .). Consequently, its value is just the value u(p, q) = max x∈∆(I) min y∈∆(J) k,l p k q l g(k, l, x(i), y(j)) of the one-stage average game.

Theorem 4.1 ([16]

). For each f in C, there exists a unique solution in C to the system:

∀(p, q) ∈ ∆(K) × ∆(L), w = vex II Max(w, f ) w = cav I Min(w, f ) , ( 2 
)
This solution is denoted M Z(f ) and M Z(f ) = sup{w|w ∈ C -(f )} = inf{w|w ∈ C + (f )}.
Back to games, Mertens and Zamir proved that in the case of example D, the limit value v exists and is M Z(u). Assuming the equality sup{w|w ∈ C -(u)} = inf{w|w ∈ C + (u)}, their proof of convergence of (v T ) can be sketched as follows. The main point is to show that for any function w in C -(u), Player 1 can defend in the game of length T with initial probabilities p and q, the quantity w(p, q) up to an error going to zero with T uniformly with respect to (p, q) and the chosen strategy of Player 2. This can be done as follows. The strategy of Player 2 being known, Player 1 can compute after each stage t the current pair of beliefs (p t , q t ) of both players: p t denotes the conditional law of k t+1 given past actions and q t denotes the conditional law of l t+1 given past actions. Then, either u(p t , q t ) ≥ w(p t , q t ) and he plays an optimal strategy in the non-revealing game at (p t , q t ), or u(p t , q t ) < w(p t , q t ) and he can split his information (think of Player 1 sending a, possibly random, message to Player 2) in order to drive Player 2's beliefs at some points pt such that u(p t , q t ) ≥ w(p t , q t ). The existence of such a splitting is ensured by: 1) the property w ∈ C -(u) and 2) the splitting Lemma (see e.g. the Lemmas 8.12 and 8.13 in the present work). This strategy would defend w(p t , q t ) at stage t + 1 if Player 2 was not using his information on the state at stage t + 1. This is almost the case since the error can be bounded by the expected L 1 -variation of the beliefs q t+1q t . Recall that the sequence of beliefs (q t ) is a martingale and a classical bound on its L 1 variation allows to bound uniformly the average error by a quantity vanishing with T . Moreover using the properties of w and the construction of the strategy of Player 1, the expected value of w(p t , q t ) is always greater or equal than w(p, q). All this implies that liminf n v n (p, q) ≥ w(p, q), so we obtain liminf n v n ≥ sup{w|w ∈ C -(u)}. Inverting the role of the players, we also have limsup n v n ≤ inf{w|w ∈ C + (u)} which concludes the proof.

Example E: A periodic chain Let K be {a, b}, and M be 0 1 1 0 .

This Markov chain has a unique recurrence class, which is periodic with period 2. The relevant information for Player 2 is not the recurrence class, but the initial state which determines whether the sequence of states (k t ) t≥1 will be {a, b, a, b, ...} or {b, a, b, a, ...}. By considering the auxiliary game in which stages are blocks of length 2 of the initial game, then the new transition matrix is M 2 , hence the identity, and each initial state becomes now a recurrence class. The problem can be reduced to that of Example D. As explained in section 3, this idea of playing stages by blocks of fixed length can be used in the general case to assume without loss of generality that the chain is aperiodic.

Back to Example A, the existence of the limit value in this case appears to be more difficult, and we do not know how to proceed without following the general proof presented in this paper. Following the general scheme of Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], we will consider two kinds of information: long-term information (corresponding to the recurrence classes of the two chains, as in the Mertens-Zamir case), and short-term information (corresponding to the state variable itself within some recurrence class).

We now come back to the general case, assuming the Markov chains are recurrent and aperiodic, and describe the different steps of our proof.

Overview of the Proof

By analogy with the proof in Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], we define a non-revealing game, where Players are restricted to strategies that do not reveal information on the recurrence classes of the chains. Precisely, the strategy of Player 1 has to be such that, after each history of actions of length t, the conditional probability that k t+1 belongs to any recurrence class K(r) remains unchanged (see Definition 5.3).

This conceptual definition has to be compared with the non-revealing strategies introduced by Aumann and Maschler in case each player observes after each stage a signal which is a function of the actions played, and which requires that the beliefs of Player 2 on the state k remains unchanged.

The main difference here is that the study of the non-revealing game can not be reduced to that of a finite matrix game. Following the scheme of the proof of example C, with appropriate modifications, we show that the limit value v of this non-revealing game exists and that it depends only on the limit distributions of the two Markov chains (pB, qC). This proof requires however a precise analysis of the T -stage non-revealing games, for which we prove the existence of the value vT and an appropriate recursive formula. The crucial point of the analysis of the non revealing values is to establish that the family (v T ) T ≥1 is uniformly equi-continuous (this is the aim of the whole section 8.1), which implies uniform convergence of these values to their limit.

The second main technical difficulty is to link the values of the non revealing games with those of the original game, i.e. to adapt the proof of Mertens and Zamir illustrated in example D. We use the uniform convergence mentioned above, in particular for sufficiently large T 0 , vT 0 is ε-close to v. We prove that for any n ∈ IN * , and for any balanced function w ∈ C -(v), Player 1 can defend w(p, q) in Γ nT 0 (p, q) up to some error going to zero with n uniformly with respect to (p, q) and the chosen strategy of Player 2. The construction of the strategy of Player 1 is the same as explained in example D, except that stages are replaced by blocks of T 0 stages: Player 1 can compute after each block the current pair of beliefs (p nT 0 , q nT 0 ) of both players and either (1) v(p nT 0 , q nT 0 ) ≥ w(p nT 0 , q nT 0 ) and he plays an optimal strategy in the non-revealing game of length T 0 at (p nT 0 , q nT 0 ), or (2) v(p nT 0 , q nT 0 ) < w(p nT 0 , q nT 0 ), and he can send a random message to Player 2 in order to drive his beliefs at some points pnT 0 such that v(p nT 0 , q nT 0 ) ≥ w(p nT 0 , q nT 0 ) and there he plays as in case (1). This strategy would defend w(p nT 0 , q nT 0 ) up to an error of ε on the n-th block of size T 0 if Player 2 was not using his information on the recurrence classes of the chain (l t ) t on this block. In order to bound the error due to this approximation, we have to replace the error term based on the L 1 -variation of the process (q t ) t≥1 (which is no more a martingale here) by the L 1 -variation of an auxiliary martingale representing the beliefs of Player 1 over the recurrence classes of the Markov chain (l t ) t≥1 (note however that we obtain a less precise bound since the method developed for games with incomplete information does not apply here). Then, we prove that the expected value of w(p nT 0 , q nT 0 ) is always greater or equal to w(p, q) using similar tools as in [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] and also that w is balanced. We obtain liminf n v n ≥ sup{w|w ∈ C -(v), balanced}, and by symmetry limsup n v n ≤ inf{w|w ∈ C + (v), balanced}.

Then it remains to show the equality

sup{w|w ∈ C -(v), balanced} = inf{w|w ∈ C + (v), balanced},
by reducing the problem to the equality showed by Mertens and Zamir. The convergence of (v n ) n follows, and it is not difficult to see that the limit is M Z(v).

Non revealing games

Let σ in Σ be a strategy of Player 1, i.e. σ = (σ T ) T ≥1 , with σ T :

(K × I × J) T -1 × K -→ ∆(I)
for all T . For each finite history h T in (I × J) T , we say that h T is compatible with (p, σ) if for some τ and q we have IP p,q,σ,τ (h T ) > 0. In this case we define p T (p, σ)(h T ) in ∆(K) as the law of the state k T +1 knowing that: the initial state k 1 is selected according to p, Player 1 uses σ and h T has been played at the first T stages. It does not depend on the last move of Player 2 in h T , and for all k in K, q in ∆(L) and strategy τ of Player 2 such that IP p,q,σ,τ (h T ) > 0, we have:

p k T (p, σ)(h T ) = IP p,q,σ,τ (k T +1 = k|h T ). If h T is not compatible with (p, σ), we define p T (p, σ)(h T ) arbitrarily in ∆(K). For T = 0, p 0 (p, σ) = p is the law of the first state k 1 .
Definition 5.1. We define pT (p, σ)(h T ) = p T (p, σ)(h T )B, and we call pT (p, σ)(h T ) the relevant information of Player 2 after h T has been played. pT (p, σ)(h T ) indicates the belief on the asymptotic distribution of the Markov chain (k t ) after h T has been played, if the initial probability is p and player 1 uses σ.

For each T , we denote by H T the σ-algebra on the set of plays Ω generated by the projection on (I × J) T giving the first T moves. Lemma 5.2. For any strategy pair (σ, τ ) in Σ × T , the process (p T (p, σ)) T ≥0 is a (H T ) T ≥0martingale with respect to IP p,q,σ,τ .

Proof: Assume (σ, τ ) is played, the initial probabilities on ∆(K) and ∆(L) being p and q. Fix T ≥ 0 and h T = (i 1 , j 1 , ..., i T , j T ) ∈ (I × J) T . Given (i T +1 , j T +1 ) in I × J, we write h T +1 = (i 1 , ..., j T , i T +1 , j T +1 ) and denote by r T (p, σ)(h T +1 ) the conditional probability on the state k T +1 given that h T +1 has been played at the first T + 1 stages. We have

r T (p, σ)(h T +1 )M = p T +1 (p, σ)(h T +1 ), and IE p,q,σ,τ (r T (p, σ)|h T ) = p T (p, σ)(h T ). Now, IE p,q,σ,τ (p T +1 (p, σ)|h T ) = IE p,q,σ,τ (p T +1 (p, σ)B|h T ) = IE p,q,σ,τ (r T (p, σ)M B|h T ) = IE p,q,σ,τ (r T (p, σ)B|h T ) = p T (p, σ)(h T )B = pT (p, σ)(h T ).
Definition 5.3. A strategy σ in Σ is called non revealing at p if for all τ and q, the martingale (p T (p, σ)) T ≥0 is IP p,q,σ,τ -almost surely constant. The set of NR strategies of Player 1 at p is denoted Σ(p).

We will give an alternative definition of non revealing strategies.

Definition 5.4. N R(p) = {x ∈ ∆(I) K , ∀i ∈ I s.t. x(p)(i) > 0, p(x, i)B = pB} = {x ∈ ∆(I) K , ∀i ∈ I, (p k x k (i)) k∈K B = x(p)(i) pB}.
Given σ in Σ and an history h T ∈ (I × J) T which is compatible with (p, σ), for each i in I and k in K, we denote by x k (p, σ)(h T )(i) the probability IP p,q,σ,τ (i T +1 = i|k T +1 = k, h T ) that Player 1 plays i after h T if the next state is k. This probability does not depend on (q, τ ). The vector x(p, σ)(h T ) = (x k (p, σ)(h T )(i)) k,i is viewed as en element of ∆(I) K . The proof of the next lemma is similar to the proof of Proposition 6.5 in [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF] and is omitted here. Lemma 5.5. A strategy σ in Σ is non revealing at p if and only if for all T ≥ 0 and history

h T ∈ (I × J) T compatible with (p, σ), the vector x(p, σ)(h T ) belongs to N R(p T (p, σ)(h T )).
We also have a splitting lemma with non revealing strategies. Lemma 5.6. Consider a convex combination p = s∈S α s p s in ∆(K) having the property that p s B = pB for all s. Consider for each s a non revealing strategy σ s in Σ(p s ). There exists σ in Σ(p) such that: ∀q ∈ ∆(L), ∀τ ∈ T , IP p,q,σ,τ = s∈S α s IP ps,q,σs,τ .

The proof is similar to the proof of Lemma 6.6 in [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], with σ being defined via the splitting procedure: observe the first state k 1 in K, then choose s according to the probability α s p k 1 s /p k 1 , and play according to σ s . Non revealing strategies of Player 2 at q are defined similarly, the set of such strategies is denoted T (q). Definition 5.7. The T -stage non revealing game at (p, q) is the T -stage game where the strategy sets are restricted to Σ(p) and T (q). It is denoted by ΓT (p, q). Define ΣT (p) as the set of T -stage non revealing strategies of Player 1 at p. Formally, ΣT (p) is the projection of Σ(p) over the (compact) set of T -stage strategies of Player 1. Similarly, TT (q) denotes the set of T -stage non revealing strategies of Player 2 at q. The game ΓT (p, q) can equivalently be seen as the zero-sum game ( ΣT (p), TT (q), γ p,q T ). The proof of the next proposition is standard and similar to the proofs of proposition 7.3 and 7.4 in [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF].

Proposition 5.8. For all T ≥ 1, the T -stage non revealing game at (p, q) has a value denoted by vT (p, q). For each q in ∆(L) and p * in P * , (p → vT (p, q)) is concave on B -1 (p * ), and similarly for each p in ∆(K) and q * in Q * , (q → vT (p, q)) is convex on C -1 (q * ). Moreover, for all T ≥ 0 we have the recursive formula:

(T + 1)v T +1 (p, q) = max x∈N R(p) min y∈N R(q)   G(p, q, x, y) + T i∈I,j∈J x(p)(i)y(q)(j)v T ( p(x, i)M, q(y, j)N )   = min y∈N R(q) max x∈N R(p)   G(p, q, x, y) + T i∈I,j∈J x(p)(i)y(q)(j)v T ( p(x, i)M, q(y, j)N )   .
We now show that to play optimally, Player 2 does not need to remember the whole sequence of states (l 1 , ..., l t , ...). This will allow us to consider a smaller set of strategies. Definition 5.9. Let T denote the subset of strategies of Player 2 which for all T ≥ 0, depend at stage T + 1 only on the past history h T ∈ (I × J) T and on the current state l T +1 . Define Σ similarly.

Proposition 5.10. For all (p, q) ∈ ∆(K) × ∆(L), for all τ ∈ T , there exists a strategy τ ∈ T such that for all T ≥ 1 and σ ∈ Σ, γ p,q T (σ, τ ) = γ p,q T (σ, τ ). Moreover, if τ is non-revealing at q, then τ is also non-revealing at q. As a corollary, in Γ T (p, q) and in the non revealing game ΓT (p, q) the players have optimal strategies in Σ and T .

Proof: The strategy τ proceeds as follows: for t ≥ 0, at stage t + 1, Player 2 does not remind the past states (l 1 , .., l t ), but using the history h t , he can generate a virtual sequence (l 1 , .., l t ) using the conditional law of (l 1 , .., l t ) given (h t , l t+1 ) under IP p,q,σ,τ (which does not depend on σ). He selects then at stage t + 1 an action j t+1 with the probability τ (h t , l 1 , .., l t , l t+1 ). Formally, we have τ (h t )(l t+1 ) = IE p,q,σ,τ [τ (h t , l 1 , ..., l t , l t+1 )|h t , l t+1 ].

We will prove that for all t ≥ 1, (h t , l t , k t ) has the same distribution under IP p,q,σ,τ and under IP p,q,σ,τ , i.e. for all h ∈ H t , for all (k, l) ∈ K × L,

IP p,q,σ,τ (h t = h, l t = l, k t = k) = IP p,q,σ,τ (h t = h, l t = l, k t = k). (3) 
Let us proceed by induction on t. The property is obvious for t = 1, assume it is true for some t ≥ 1. At first, the conditional distribution of l t+1 given (h t , k t , l t ) is M (l t , .) under IP p,q,σ,τ and under IP p,q,σ,τ . We deduce that the law of (h t , l t+1 ) is the same under both probabilities. By construction the conditional law of j t+1 given (h t , l t+1 ) is the same under IP p,q,σ,τ and under IP p,q,σ,τ , which implies that the conditional law of (l t+1 , j t+1 ) given h t is also the same.

Using that (k t+1 , i t+1 ) and (l t+1 , j t+1 ) are conditionally independent given h t (under both distributions) and that the conditional law of (k t+1 , i t+1 ) given h t does not depend on τ , the conditional distribution of (k t+1 , l t+1, , i t+1 , j t+1 ) given h t is the same under IP p,q,σ,τ and under IP p,q,σ,τ . We deduce that the law of (h t+1 , k t+1 , l t+1 ) is the same under both probability distributions which concludes the proof of (3). Going back to the main proof, we obtain

γ p,q T (σ, τ ) = T -1 t=0 IE p,q,σ,τ [IE p,q,σ,τ [g(k t+1 , l t+1 , i t+1 , j t+1 )|h t ]] = T -1 t=0 IE p,q,σ,τ [IE p,q,σ,τ [g(k t+1 , l t+1 , i t+1 , j t+1 )|h t ]] = γ p,q T (σ, τ )
Moreover, since we proved that the law of (h t , l t+1 ) is the same under IP p,q,σ,τ and under IP p,q,σ,τ , this implies that q t (q, τ ) and q t (q, τ ) also have the same law, which proves the last assertion.

Remark 5.11. Note that in the above construction, the laws IP p,q,σ,τ and IP p,q,σ,τ do not coincide on the whole set Ω but generate the same payoffs. The reader may convince himself by considering the following example:

L = {1, 2}, N = 1 3 2 3 2 3 1 3 , q = ( 1 2 , 1 2 
), J = {1, 2}, and τ is defined by: play 1 at stage 1 and then at stage t ≥ 2, play 1 if l t = l t-1 and 2 otherwise. A direct computation leads to

IP p,q,σ,τ (l 1 = l 2 = 1, j 2 = 1) = 1 6 , IP p,q,σ,τ (l 1 = l 2 = 1, j 2 = 1) = 1 18 .
The next proposition is a major point of our proof.

Proposition 5.12. For all T ≥ 1, vT is 3-Lipschitz on ∆(K) × ∆(L).

The proof of Proposition 5.12 is postponed to the Appendix. The crucial consequence is to obtain uniform equi-continuity of the family of functions (v T ) T ≥1 . In Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], the functions (v T ) T ≥1 were only proved to be u.s.c. and this property would not have been sufficient here, since the proof of our main Theorem 2.2 relies on uniform convergence of the (v T ) T ≥1 to their limit. The main point is to introduce a function S(p, p ′ ) (see Definition 8.2) which will play the role of a metric and with respect to which all the functions (v T ) T ≥1 are "non expansive".

Before proving that the non revealing values vT converge when T goes to infinity, we now present a definition and a lemma, allowing to concatenate non revealing strategies defined on blocks. Definition 5.13. Given T 0 , T 1 ≥ 1 and a strategy σ ∈ Σ such that for all 1 ≤ t ≤ T 1 , σ T 0 +t does not depend on (k 1 , ..., k T 0 ), we define for all h T 0 ∈ H T 0 a T 1 -stage strategy σ(h T 0 ). This strategy σ(h T 0 ) plays, after a history

(h ′ t-1 , k ′ 1 , ..., k ′ t ), what σ plays at stage T 0 + t after ((h 0 , h ′ t-1 ), k ′ 1 , ..., k ′ t ). Formally, σ(h T 0 ) t (h ′ t-1 , k ′ 1 , ..., k ′ t ) = σ T 0 +t ((h T 0 , h ′ t-1 ), k ′ 1 , ..., k ′ t ), ∀1 ≤ t ≤ T 1 , ∀h ′ t ∈ H t-1 , ∀(k ′ 1 , .., k ′ t ) ∈ K t .
Lemma 5.14. Consider T 0 , T 1 ∈ IN * and strategies (σ, τ ) ∈ Σ×T such that for all 1 ≤ t ≤ T 1 , σ T 0 +t and τ T 0 +t do not depend on, respectively, (k 1 , ..., k T 0 ) and (l 1 , .., l T 0 ). The conditional law of (k T 0 +t , l T 0 +t , i T 0 +t , j T 0 +t ) t=1,..,T 1 given h T 0 under IP p,q,σ,τ is precisely IP p T 0 ,q T 0 ,σ(h T 0 ),τ (h T 0 ) .

The proof follows easily from a direct computation.

Remark 5.15. Note that if τ ∈ T , then the above condition on τ holds for all T 0 , T 1 . We will use the following consequences in the sequel, at first

IE p,q,σ,τ [ T 1 t=1 g(k T 0 +t , l T 0 +t , i T 0 +t , j T 0 +t )] = IE p,q,σ,τ [γ p T 0 ,q T 0 T 1 (σ(h T 0 ), τ (h T 0 ))],
and for all t = 1, ..., T 1 and any continuous function f defined on ∆(K) × ∆(L), for all h T 0 in (I × J) T 0 , IE p,q,σ,τ [f (p T 0 +t , q T 0 +t )|h T 0 ]=IE p T 0 ,q T 0 ,σ(h T 0 ),τ (h T 0 ) [f (p t , q t )], where p T 0 = p T 0 (p, σ)(h T 0 ) and q T 0 = q T 0 (q, τ )(h T 0 ).

Proposition 5.16. v = lim T →∞ vT exists, is continuous on ∆(K) × ∆(L) and is balanced.

Proof: Let (p, q) ∈ ∆(K) × ∆(L), p * = pB, q * = qC and ε > 0. Choose T 0 , T 1 ∈ IN * such that M T 0 -B ≤ ε, N T 0 -C ≤ ε, T 0 T 1 ≤ ε,
and vT 1 (p * , q * ) ≥ limsup T vT (p * , q * )ε. Given N ∈ IN * and an optimal strategy τ ∈ T of Player 2 in the game ΓN(T 0 +T 1 ) (p, q), let us construct the strategy σ as follows. For n = 0 to N -1, during stages t = n(T 0 + T 1 ) + 1 to t = n(T 0 + T 1 ) + T 0 , play a fixed action i 0 ∈ I. During the next T 1 stages, play an optimal strategy in the game ΓT 1 (p n(T 0 +T 1 )+T 0 (p, σ), q n(T 0 +T 1 )+T 0 (q, τ )). The payoff can be written as (g m being the payoff of stage m):

N (T 0 + T 1 )γ p,q N (T 0 +T 1 ) (σ, τ ) = N -1 n=0   n(T 0 +T 1 )+T 0 m=n(T 0 +T 1 )+1 IE p,q,σ,τ [g m ] + (n+1)(T 0 +T 1 ) m=n(T 0 +T 1 )+T 0 +1 IE p,q,σ,τ [g m ]   ≥ N -1 n=0 -T 0 + T 1 IE p,q,σ,τ [v T 1 (p n(T 0 +T 1 )+T 0 (p, σ), q n(T 0 +T 1 )+T 0 (q, τ ))] ≥ N -1 n=0 -T 0 + T 1 IE p,q,σ,τ [v T 1 (p n(T 0 +T 1 ) (p, σ)M T 0 , q n(T 0 +T 1 ) (q, τ )N T 0 )] ≥ N -1 n=0 (-T 0 + T 1 (v T 1 (p * , q * ) -6ε)) .
The first inequality follows from Lemma 5.14 and the definition of σ. The second inequality is obtained by taking conditional expectation with respect to h n(T 0 +T 1 ) and using that vT 1 is convex with respect to the second variable on C -1 (q * ). The last inequality follows directly from the properties of T 0 and the fact that vT 1 is 3-Lipschitz. We deduce that for all

N ∈ IN * vN(T 0 +T 1 ) (p, q) ≥ -T 0 + T 1 (v T 1 (p * , q * ) -6ε) (T 0 + T 1 ) ≥ vT 1 (p * , q * ) -8ε ≥ limsup T vT (p * , q * ) -9ε. It follows that liminf N vN(T 0 +T 1 ) (p, q) ≥ limsup T vT (p * , q * ) -9ε. Using that vT -vT +T ′ ∞ ≤ 2T ′
T , this implies liminf T vT (p, q) ≥ limsup T vT (p * , q * ). Inverting the role of K and L leads to limsup T vT (p, q) ≤ liminf T vT (p * , q * ), and we conclude that v(p, q) = lim T →∞ vT (p, q) = lim T vT (p * , q * ) exists and is a balanced function. It is continuous because proposition 5.12 implies the uniform convergence of vT .

6 The Mertens-Zamir system associated to the nonrevealing value

We prove here an alternative formulation for M Z(v) that we will use in the proof of theorem 2.2 outlined in section 4. Recall that we have assumed that the Markov chains on K and L are recurrent and aperiodic. We use here the notion of balanced function.

Proposition 6.1. M Z(v) = v = v where v = inf w ∈ C + (v), w balanced , v = sup w ∈ C -(v), w balanced .
Proof: Consider first any balanced function w in C. One may identify w with its restriction w * to the product of simplices P * × Q * . I-concavity and II-convexity on ∆(K) × ∆(L) of w is equivalent to I-concavity and II-convexity of w * on P * × Q * . We will prove that cav I (w) is balanced and that (cav I w) * = cav I (w * ).

Fix (p, q) in ∆(K) × ∆(L), and define p * = pB and q * = qB. Recall that cav

I w(p, q) = sup{ N m=1 α m w(p m , q) | N ≥ 1, ∀m = 1, .., N, α m ≥ 0, N m=1 α m = 1, N m=1 α m p m = p}.
Given (α m , p m ) m=1,..,N as above, for all m, w(p m , q) = w(p m B, q * ), and N m=1 α m p m B = p * , which implies N m=1 α m w(p m , q) ≤ cav I (w * )(p * , q * ), and therefore cav I w(p, q) ≤ cav I (w * )(p * , q * ).

Define now the affine map f from P * to ∆(K) by:

∀p ′ ∈ P * , ∀r = 1, .., r M , ∀k ∈ K(r), f (p ′ ) k = ( s∈K(r) p ′s ) p k s∈K(r) p s if s∈K(r) p s > 0 ( s∈K(r) p ′s ) p * (r) k if s∈K(r) p s = 0 .
We have f (p * ) = p. Moreover, for any recurrence class K(r), we have k∈K(r) f (p ′ ) k = s∈K(r) p ′s . This implies that for all p ′ ∈ P * , f (p ′ )B = p ′ . Consider now (α m , p * m ) m=1,..,N such that ∀m = 1, ..., N, α m ≥ 0, p * m ∈ P * ,

N m=1 α m = 1, N m=1 α m p * m = p * . We have by construction N m=1 α m f (p * m ) = p and w(p * m , q * ) = w(f (p * m ), q) which implies N m=1 α m w(p * m , q * ) = N m=1 α m w(f (p * m ), q) ≤ cav I w(p, q),
and therefore cav I (w * )(p * , q * ) ≤ cav I w(p, q). We conclude that: ∀(p, q) ∈ ∆(K)×∆(L), cav I w(p, q) = cav I (w * )(p * , q * ). Consequently, cav I (w) is balanced and (cav I w) * = cav I (w * ).

The functions v and v are clearly balanced, and we will consider v * and v * . Since v is also balanced, we deduce that:

v * = sup w : P * × Q * -→ [-1, 1], w continuous II-convex and ∀(p * , q * ) ∈ P * × Q * , w(p * , q * ) ≤ cav I Min(w, v * )(p * , q * ) ,
and a similar property for v * . The equality v * = v * follows from Theorem 2.1 in [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] and implies v = v. Moreover, the function v * = v * is a solution of the Mertens-Zamir system on

P * × Q * : ∀(p ′ , q ′ ) ∈ P * × Q * , w(p ′ , q ′ ) = vex II Max(w, v * )(p ′ , q ′ ) w(p ′ , q ′ ) = cav I Min(w, v * )(p ′ , q ′ ) , For (p, q) in ∆(K) × ∆(L) and v = v = v , we have: v(p, q) = v * (p * , q * ) = cav I Min(v * , v * )(p * , q * ) = (cav I Min(v, v)) * (p * , q * ) = cav I Min(v, v)(p, q)
Finally, v is solution of the Mertens-Zamir system associated to v.

Remark 6.2. The above proof relies heavily on the fact that B is associated to a recurrent Markov chain, that is no state is transient. Consider for example the case where: for p 0 = (0, 0, 1). This was already pointed out in Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], where general Markov matrices were considered. Our reduction of the problem to the study of aperiodic recurrent Markov chains allows therefore for useful technical simplifications. For example, in case L is reduced to a single point, our characterization becomes v(p) = cav(v)(p). Using aperiodic but possibly not recurrent Markov chains, the characterization given in [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF] reduces to v(p) = cav(v)(pB) where v and B are defined similarly. One deduces from the above proof that these two expressions coincide for recurrent Markov chains.

K = {a
Remark 6.3. Note that one may add the condition that w is also I-concave in the supremum defining v, because if w fulfills the required assumptions, then cav I w also and cav I w ≥ w. A similar result holds for v.

We are now in a position to prove theorem 2.2, that is to show that lim T v T exists and is

M Z(v) = inf{w ∈ C + (v)} = sup{w ∈ C -(v)}.
The proof is in the Appendix.

Open Questions

Note that the Lipschitz constant of 3 for the non revealing values is essentially used to obtain the uniform convergence of the non revealing value functions vT . We do not know how to prove this uniform convergence in a simpler way, neither if one can obtain a better Lipschitz constant for the non revealing values.

The Maxmin of the infinitely repeated game with incomplete information on both sides was proved in [START_REF] Aumann | Repeated games with incomplete information, with the collaboration of R. Stearns[END_REF] to be equal to cav I vex II u. In the present model, it may be asked if the Maxmin is equal to cav I vex II v. One may hope to prove that Player 2 can defend this quantity by combining the methods developed in the present work and the proof in [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF]. It should be more complex to determine what can be guaranteed by Player 1. Even if one proves that Player 1 can guarantee the limit v(p, q) in the non revealing game (and consequently that the non revealing game has a uniform value), this does not imply a priori that Player 1 can guarantee vex II v in the original game. An other idea would be to consider the "semirevealing" game where only Player 1 is restricted to play a non revealing strategy, then to prove that this semi-revealing game has a limit value v ′ (p, q) that can be guaranteed by Player 1, but then there is still little hope to be able to link cav I v ′ with vex II v.

The results of Aumann and Maschler, and of Mertens and Zamir were extended to the case of imperfect observation of the actions. In the same way, our model can be extended to the case where instead of observing the past actions played, each player observes a stochastic signal depending only on the past actions (state independent signalling). The notion of nonrevealing strategies still makes sense, so conceptually one may hope to use the same ideas to prove the convergence of the value functions in this case. Note that a difficulty in this model is that even if we fix the strategy of a player, say Player 1, this player is not able to compute along the play the belief of Player 2 about the current state in K. And when introducing signals, it is often the case that one has to construct strategies by blocks sufficiently long to allow for statistical tests. How these blocks would interfer with the blocks where non revealing strategies are used as in point ( 5) of the proof of Theorem 2.2 is unclear, and this seems a highly technical problem.

In the Mertens Zamir setup, as well for splitting games, the existence of the limit value has been extended to the case of general evaluations of the stream of payoffs ( [START_REF] Cardaliaguet | A Continuous Time Approach for the Asymptotic Value in Two-Person Zero-Sum Repeated Games[END_REF]), including the discounted approach. It seems natural to hope for the same kind of generalization here, however it is not clear how our proof could be extended to do so, and in particular to prove the convergence of the discounted values to the same limit v.

An important extension of repeated games with incomplete information on both sides is the case of general, possibly correlated, probabilities for the initial pair of states (k, l). The results of Mertens and Zamir [START_REF] Mertens | The value of two-person zero-sum repeated games with lack of information on both sides[END_REF] were actually stated within this more general framework. This suggests the following generalization of our model: we are given an initial probability π ∈ ∆(K × L) and a Markov chain z t = (k t , l t ) with values in K × L. At each stage, Player 1 observes k t and Player 2 observes l t . It is still possible to define the appropriate notion of convex and concave hull as done by Mertens and Zamir. However, the definition of a nonrevealing strategy should be adapted. Indeed, even if Player 1 does not use his information on the state, the beliefs of Player 2 on the recurrence classes of the chain z t may evolve. This is left for future research.

Let us finally mention the recent work [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], where a model of Markov Games with incomplete information is introduced, with transitions depending on a stage length parameter. The asymptotic analysis is of different nature and leads to the existence of a continuous-time limit value as the players play more and more frequently. This value is different of the longtime limit value considered here and the study of possible relationships between these two approaches is an interesting direction of research which is beyond the scope of this paper. P * = conv{p * (1), ..., p * (M )} is the set of invariant measures for M , as well as for B = lim t M t . In the following we denote by ∆(r M ) the set of probabilities over the recurrence classes of M , i.e. over the finite set {1, ..., r M }. Notation 8.1. Let p be in ∆(K). For each r, we denote by λ(p) r = k∈K(r) p k the probability of the recurrence class r under p. And we define the probability λ(p) ∈ ∆(r M ) by λ(p) = (λ(p) r ) r=1,...,r M . And for each r = 1, .., r M , we denote the conditional law, under p, of k given r as the vector p |r ∈ ∆(K) such that:

p k |r =      p k λ(p) r if λ(p) r > 0 , k ∈ K(r), p * (r) k if λ(p) r = 0, k ∈ K(r), 0 if k / ∈ K(r).
It follows that for all p ∈ ∆(K), p = r M r=1 λ(p) r p |r . Since p k |r = 0 for k / ∈ K(r), p |r will be often assimilated to a vector in ∆(K(r)).

Definition 8.2. The map S : ∆(K) × ∆(K) → IR + is defined by:

∀p, p ′ ∈ ∆(K), S(p, p ′ ) = λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0 λ(p ′ ) r p |r -p ′ |r .
The asymmetric map S will play an important role in the sequel, and will be used as a (quasi, semi-) metric. S is clearly not a metric, but separates points (we have S(p, p ′ ) = 0 if and only if p = p ′ ) and enjoys the following useful properties. Lemma 8.3. For all p, p ′ ∈ ∆(K),

p -p ′ ≤ S(p, p ′ ) ≤ 3 p -p ′ , S(pM, p ′ M ) ≤ S(p, p ′ ), S(pB, p ′ B) = pB -p ′ B = λ(p) -λ(p ′ ) , and S(p, p ′ ) = p -p ′ if pB = p ′ B.
Before proving the lemma, we will present the roadmap of the proof.

Definition 8.4. 1) For α ∈ [0, 1], define the operator Φ α on C by Φ α (f )(p, q) = max x∈N R(p) min y∈N R(q)   α G(p, q, x, y) + (1 -α) i∈I,j∈J x(p)(i)y(q)(j)f ( p(x, i)M, q(y, j)N )   .
2) Let F be the subset of functions f in C satisfying:

• ∀p, p ′ ∈ ∆(K), ∀q ∈ ∆(L), f (p, q) -f (p ′ , q) ≤ S(p, p ′ ), • ∀p ∈ ∆(K), ∀q, q ′ ∈ ∆(L), f (p, q) -f (p, q ′ ) ≤ S(q ′ , q), • ∀p * , q * ∈ P * × Q * , f is I-concave and II-convex on B -1 (p * ) × C -1 (q * ).
We now present our strategy for the proof of Proposition 5.12. We have vt+1 = Φ 1 t+1 (v t ) for t ≥ 0 (with the convention v0 = 0), and all the functions in F are 3-Lipschitz using Lemma 8.3. As a consequence, to show that vt is 3-Lipschitz for each t, it is sufficient to show that for all α, F is stable by Φ α .

To do so, the main point is the following: given p and p ′ in ∆(K) and x in N R(p), one need to find x ′ in N R(p ′ ) such that (p ′ , x ′ ) is not too far from (p, x). If p and p ′ belong to the same set B -1 (p * ), i.e. if p and p ′ assigns the same weight to each recurrence class, this can be efficiently done using, within each simplex ∆(K(r)), a lemma by Laraki ([12] and [START_REF] Laraki | Jeux répétés à information incomplète: approche variationnelle[END_REF], see here the Appendix at the end). If pB = p ′ B, there exists a simple affine map to transfer probabilities in B -1 (pB) to probabilities in B -1 (p ′ B) (Lemma 8.9). In the general case, we need to combine both aspects, applying first the affine transformation then the Laraki splitting (see Lemma 8.11). In the computations, the expression S(p, p ′ ) appears and allows to control the expressions.

After the proof of Lemma 8.3, all the rest of this section is devoted to the proof that:

∀α ∈ [0, 1], Φ α (F) ⊂ F. Proof of Lemma 8.3. p -p ′ = r : λ(p) r λ(p ′ ) r >0 k∈K(r) |λ(p) r p k |r -λ(p ′ ) r p ′k |r | + r : λ(p) r =0 , λ(p ′ ) r >0 λ(p ′ ) r + r : λ(p) r >0 , λ(p ′ ) r =0 λ(p) r ≤ r : λ(p) r λ(p ′ ) r >0 k∈K(r) |λ(p) r p k |r -λ(p ′ ) r p k |r | + |λ(p ′ ) r p k |r -λ(p ′ ) r p ′k |r | + r : λ(p) r =0 , λ(p ′ ) r >0 λ(p ′ ) r + r : λ(p) r >0 , λ(p ′ ) r =0 λ(p) r = r M r=1 |λ(p) r -λ(p ′ ) r | + r : λ(p) r λ(p ′ ) r >0 λ(p ′ ) r k∈K(r) |p k |r -p ′k |r | = S(p, p ′ ).
On the other hand,

S(p, p ′ ) = λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0 λ(p ′ ) r p |r -p ′ |r ≤ λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0 k∈K(r) |λ(p ′ ) r p k |r -p k | + |p k -p ′k | = λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0   |λ(p ′ ) r -λ(p) r | + k∈K(r) |p k -p ′k |   ≤ 2 λ(p) -λ(p ′ ) + p -p ′ ≤ 3 p -p ′ .
For the next inequality, note that λ(pM ) = λ(p) and (pM ) |r = p |r M , so that using that

p → pM is non-expansive S(pM, p ′ M ) = λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0 λ(p ′ ) (p |r -p ′ |r )M ≤ λ(p) -λ(p ′ ) + r : λ(p) r λ(p ′ ) r >0 λ(p ′ ) (p |r -p ′ |r ) = S(p, p ′ ).
Finally, the equalities are easily proved by direct computation.

Fix p in ∆(K) and q in ∆(L), and let p * = pB and q * = qC. To any x ∈ ∆(I) K , we associate z ∈ ∆(K × I) defined by z(k, i) = p k x k (i), and will use a more abstract way to denote non revealing strategies and conditional probabilities. Let ∆ f (∆(K)) denote the set of probabilities µ with finite support on ∆(K). Such a probability can be written as

µ = N n=1 α n δ pn , with (α n , p n ) n=1,..,N ∈ ([0, 1] × ∆(K)) N such that N n=1 α n = 1 and p = n=1,.
.,N α n p n . The mean m(µ) is defined as ∆(K) pdµ(p). This set is endowed with the usual weak * topology which is in particular metrized by the Wasserstein (Kantorovich-Rubinstein) distance induced by the norm . and denoted d W . Recall the standard duality formula:

∀µ, ν ∈ ∆ f (∆(K)), d W (µ, ν) = max{ φdµ-φdν | φ ∈ Lip 1 } = min{ p,p ′ ∈∆(K) p-p ′ dπ(p, p ′ ) | π ∈ P (µ, ν)},
where Lip 1 denotes the set of 1-Lipschitz functions on ∆(K), and P (µ, ν) the set of probability distributions on ∆(K) × ∆(K) having µ, ν for marginals. ∆ f (∆(K)) is endowed with the convex order ≤ defined by µ ≤ ν ⇐⇒ φdµ ≤ φdν for all l.s.c. convex φ : ∆(K) → IR ∪ {+∞}.

For instance, given p and p ′ in ∆(K) the Dirac measure δ (p+p ′ )/2 is smaller than the average 1/2 δ p + 1/2 δ p ′ . µ ≤ ν implies m(µ) = m(ν). And for all µ, ν with finite support U and V , then µ ≤ ν if and only if there exists F : U → ∆(V ) such that: ∀u ∈ U, v∈V vF (u)(v) = u and u∈U µ(u)F (u) = ν. This last condition ("martingale decomposition") can be seen as follows: µ is the law of some random variable X 1 with values in ∆(K), ν is the law of some random variable X 2 with values in ∆(K), and we have the martingale condition: IE(X 2 |X 1 ) = X 1 (see [START_REF] Blackwell | Equivalent comparisons of experiments[END_REF]). Definition 8.5. Let Ψ : ∆(K × I) → ∆ f (∆(K)) be the disintegration mapping defined by

Ψ(z) = i∈I : z(i)>0 z(i)δ p(z,i) with z(i) = k∈K z(k, i) and p(z, i) k = z(k,i) z(i) for i such that z(i) > 0.
Imagine (k, i) is selected according to z and only i is observed, then for each i one can compute the conditional p(z, i) on K. Ψ(z) gives the law of this posterior on K. It is standard that Ψ is continuous and convex (see e.g. [START_REF] Renault | The value of repeated games with an informed controller[END_REF] Lemmas 4.16 and 4.17). Using the z variable and the desintegration Ψ, the definition of N R(p) now reads as follows:

x ∈ N R(p) ⇐⇒ ∀k ∈ K, i∈I z(k, i) = p k and Ψ(z) ∈ ∆ f (B -1 (p * )), ⇐⇒ δ p ≤ Ψ(z) and Ψ(z) ∈ ∆ f (B -1 (p * )).
Definition 8.6. We define the set-valued maps:

H : ∆(K) ⇉ ∆ f (∆(K)) p ∈ ∆(K) → H(p) = {µ ∈ ∆ f (B -1 (pB))| m(µ) = p}, R : ∆ f (∆(K)) ⇉ ∆(K × I) µ ∈ ∆ f (∆(K)) → R(µ) = {z ∈ ∆(K × I) : Ψ(z) ≤ µ}.
We define similarly H : ∆(L) ⇉ ∆ f (∆(L)) and R : ∆ f (∆(L) ⇉ ∆(L × J) (keeping the same letters H and R for simplicity). H(p) is the set of probabilities µ over B -1 (pB) with mean p, equivalently it is the set of probabilities µ over B -1 (pB) such that δ p ≤ µ. Hence H(p) is the set of splittings at p such that all posterior keep the same weight on each recurrence class. The set R(µ) can be seen the set of "strategies" z with disintegration no more informative than µ. It is easy to show that:

∀µ ∈ H(p), ∀z ∈ R(µ), Ψ(z) ∈ H(p).
For all α ∈ [0, 1] and f , Φ α (f ) can now be written as follows:

Φ α (f )(p, q) = sup z s.t.Ψ(z)∈H(p) inf w s.t.Ψ(w)∈H(q)
αG(z, w) + (1α)

∆(K)×∆(L) f (pM, qN )dΨ(z) ⊗ Ψ(w)(p, q) = sup µ∈H(p) sup z∈R(µ) inf ν∈H(q) inf w∈R(ν) αG(z, w) + (1 -α) ∆(K)×∆(L) f (pM, qN )dΨ(z) ⊗ Ψ(w)(p, q) ,
where G(z, w) = (k,l,i,j)∈K×L×I×J z(k, i)w(l, j)g(k, l, i, j).

We now simplify the above expression.

Proposition 8.7. Define V (µ, ν) = sup z∈R(µ) inf w∈R(ν) G(z, w). Then V is 1-Lipschitz for d W and is I-concave and II-convex on ∆ f (∆(K)) × ∆ f (∆(L)). Moreover:

Φ α (f )(p, q) = sup µ∈H(p) inf ν∈H(q) αV (µ, ν) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ⊗ ν(p, q) .
Proof of Proposition 8.7: Using that f is II-convex on B -1 (p * ) × C -1 (q * ) and that C -1 (q * ) is invariant by N , we have for all w ∈ R(ν)

∆(K)×∆(L) f (pM, qN )dΨ(z) ⊗ Ψ(w)(p, q) ≤ ∆(K)×∆(L)
f (pM, qN )dΨ(z) ⊗ ν(p, q), which implies the following equality inf ν∈H(q) inf w∈R(ν) αG(z, w) + (1α) ∆(K)×∆(L) f (pM, qN )dΨ(z) ⊗ Ψ(w)(p, q) = inf ν∈H(q) inf w∈R(ν) αG(z, w) + (1α) ∆(K)×∆(L) f (pM, qN )dΨ(z) ⊗ ν(p, q) since one can always choose ν = Ψ(w) in the right-hand side. A similar equality holds for Ψ(z) and µ. This implies that for the moment we have proved that for all α ∈ [0, 1], f continuous and (p, q) ∈ ∆(K),

Φ α (f )(p, q) = sup µ∈H(p) sup z∈R(µ) inf ν∈H(q) inf w∈R(ν) αG(z, w) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ⊗ ν(p, q) .
Let us now study the properties of the set-valued map R.

Claim 8.8. The set-valued map R :

µ → R(µ) is non expansive from (∆ f (∆(K)), d W ) to (∆(K × I), .
). Moreover, for all β ∈ [0, 1], and µ, µ ′ ∈ ∆ f (∆(K)), we have βR(µ)

+ (1 - β)R(µ ′ ) ⊂ R(βµ + (1 -β)µ ′ ). Similar properties hold for R : ν → R(ν) from ∆ f (∆(L)) to ∆(L × J).
Proof of the claim: We first prove the non expansive property. Fix µ and µ ′ ∈ ∆ f (∆(K)), and z ∈ R(µ), we have to find z ′ in R(µ ′ ) such that zz ′ ≤ d W (µ, µ ′ ). The idea is to link Ψ(z) to µ via the martingale decomposition, then to link µ and µ ′ via Kantorovich duality formula, and finally to define z ′ using both links.

Since Ψ(z) ≤ µ, there exists a map F : ∆(K) → ∆ f (∆(K)) such that for all x ∈ ∆(K), F (x) is centered in x and µ = i∈I z(i)F ( p(z, i)). Let U, V denote respectively the supports of µ and µ ′ , and consider by Kantorovich duality a probability π on U × V with marginals (µ, µ ′ ) such that (u,v)∈U ×V uv π(u, v) = d W (µ, µ ′ ). For u ∈ U , let π(u) = ( π(u,v) µ(u) ) v∈V denote the conditional law on V given u induced by π. Because the second marginal of π is µ ′ , we have u∈U µ(u) π(u) = µ ′ . We define, for all i in I:

p ′ (i) = v∈V v m ′ (i)(v) ∈ ∆(K) with m ′ (i) = u∈U F ( p(z, i))(u) π(u) ∈ ∆(V ), and z ′ ∈ ∆(K × I) by z ′ (k, i) = z(i) p ′ (i) k ∀k ∈ K, ∀i ∈ I.
We have i∈I z(i)m ′ (i) = µ ′ , and for each i the probability m ′ (i) is centered in p ′ (i). By construction Ψ(z ′ ) = i∈I z(i)δ p ′ (i) . Using the martingale decomposition, this implies that Ψ(z ′ ) ≤ µ ′ . Using Jensen's inequality, we have

z -z ′ = i∈I z(i) p(z, i) -p ′ (i) = i∈I z(i) u∈U uF ( p(z, i))(u) - (u,v)∈U ×V vF ( p(z, i))(u) π(u)(v) ≤ i∈I z(i) u∈U F ( p(z, i))(u) u - v∈V v π(u)(v) ≤ i∈I z(i) u∈U F ( p(z, i))(u) v∈V π(u)(v) u -v = u∈U v∈V ( i∈I z(i)F ( p(z, i))(u)) π(u)(v) u -v = u∈U v∈V µ(u) π(u)(v) u -v = d W (µ, µ ′ )
The second assertion is due to the convexity of Ψ. This ends the proof of the claim, and we now conclude the proof of Proposition 8.7.

The law µ being fixed, let us consider the map

(z, ν) ∈ R(µ) × H(q) → inf w∈R(ν) αG(z, w) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ⊗ ν(p, q) .
As an infimum of linear continuous functions, it is concave and upper semi-continuous with respect to z on the compact convex set R(µ). On the other hand, the map ν → ∆(K)×∆(L) f (pM, qN )dµ ⊗ ν(p, q) is linear and using the second point in the above claim, the map ν → inf w∈R(ν) G(z, w) is convex with respect to ν. It allows to apply Sion's Minmax Theorem (see [START_REF] Sion | On general minimax theorems[END_REF]) to conclude that

Φ α (f )(p, q) = sup µ∈H(p) inf ν∈H(q) sup z∈R(µ) inf w∈R(ν) αG(z, w) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ⊗ ν(p, q) .
Using the claim about R and that z → G(z, w) is 1-Lipschitz, the function V is 1-Lipschitz for d W . Moreover, using the same proof as above, V is I-concave and II-convex on ∆ f (∆(K)) × ∆ f (∆(L)). The preceding expression becomes

Φ α (f )(p, q) = sup µ∈H(p) inf ν∈H(q) αV (µ, ν) + (1 -α) ∆(K)×∆(L)
f (pM, qN )dµ ⊗ ν(p, q) , and this concludes the proof of Proposition 8.7.

It remains now to study the properties of the set-valued map H. Let us start with the following lemma which proves a kind of "triangle equality" for the map S. Lemma 8.10. (Laraki [START_REF] Laraki | On the Regularity of the Convexification Operator on a Compact Set[END_REF]) K being a finite set, consider the simplex ∆(K) = {(p k ) k∈K ∈ IR K + , k∈K p k = 1} endowed with the L 1 -norm pp ′ = k∈K |p kp ′k |. Consider a convex combination p = s∈S λ s p s in ∆(K), with S finite, λ s ≥ 0 and s∈S λ s = 1. Then for every p ′ in ∆(K) there exists (p ′ s ) s∈S in ∆(K) S such that:

p ′ = s∈S λ s p ′ s and s∈S λ s p s -p ′ s = p -p ′ .
Using the lemmas 8.9 and 8.10, we now prove that H is "non expansive with respect to S".

Lemma 8.11. For all p and p ′ in ∆(K) and for all µ = N n=1 α n δ pn ∈ H(p), there exists

ν = N n=1 α n δ p ′ n ∈ H(p ′ ) such that: N n=1 α n S(p n , p ′ n ) = S(p, p ′ ).
In particular p → H(pB) is 1-Lipschitz from (∆(K), . ) to (∆(∆(K)), d W ).

Proof: Let µ = N n=1 α n δ pn ∈ H(p) and p ′ ∈ ∆(K). Let us denote p * = pB and p ′ * = p ′ B. Note that p |r = N n=1 α n p n|r since for all n = 1, .., N , λ(p n ) = λ(p). Let L = L p * ,p ′ * be the affine map given by Lemma 8.9. Define pn = L(p n ) for n = 1, .., N , so that L(p) = n=1,..,N α n pn . From Lemma 8.9, for all p ′′ ∈ B -1 (p ′ * ), we have S(p n , p ′′ ) = S(p n , pn ) + S(p n , p ′′ ).

For r = 1, .., r M , using Lemma 8. 

n ) = N n=1 α n r : λ(p ′ ) r >0 λ(p ′ ) r pn|r -p ′ n|r = N n=1 α n r : λ(p ′ ) r >0 λ(p ′ ) r pn|r -b r,n = r : λ(p ′ ) r >0 λ(p ′ ) r p |r -p ′ |r = S(L(p), p ′ ). It follows that N n=1 α n S(p n , p ′ n ) = N n=1 α n (S(p n , pn ) + S(p n , p ′ n )) = S(p, L(p)) + S(L(p), p ′ ) = S(p, p ′ ).
We now conclude the general proof of Proposition 5.12. Let ε > 0, p ′ ∈ ∆(K) and

µ * ∈ H(p) such that inf ν∈H(q) αV (µ * , ν) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ * ⊗ ν(p, q) ≥ Φ α (f )(p, q) -ε. If µ * = N n=1 α n δ pn , using Lemma 8.11, there exists µ ′ = N n=1 α n δ p ′ n ∈ H(p ′ ) such that N n=1 α n S(p n , p ′ n ) = S(p, p ′ ). Let ν * ∈ H(q) such that αV (µ ′ , ν * ) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ′ ⊗ ν * (p, q) ≤ inf ν∈H(q) αV (µ ′ , ν) + (1 -α) ∆(K)×∆(L) f (pM, qN )dµ ′ ⊗ ν(p, q) + ε ≤ Φ α (f )(p ′ , q) + ε.
We have for all p, p ′ , f (pM, q)f (p ′ M, q) ≤ S(pM, p ′ M ) ≤ S(p, p ′ ), and

d W (µ * , µ ′ ) ≤ n α n p n -p ′ n ≤ N α n S(p n , p ′ n ) = S(p, p ′ ). Consequently, we have Φ α (f )(p, q) -Φ α (f )(p ′ , q) ≤ α(V (µ * , ν * ) -V (µ ′ , ν * )) + (1 -α) f (pM, qN )d(µ * -µ ′ ) ⊗ ν * (p, q) + 2ε ≤ αd W (µ * , µ ′ ) + (1 -α) ∆(L) N n=1 α n (f (p n M, qN ) -f (p ′ n M, qN ))dν * (q) + 2ε ≤ αS(p, p ′ ) + (1 -α) N n=1 α n S(p n , p ′ n ) + 2ε = S(p, p ′ ) + 2ε.
We conclude that Φ α (f )(p, q)-Φ α (f )(p ′ , q) ≤ S(p, p ′ ). The symmetric property follows by the same method. In order to conclude the proof, it remains to prove that Φ α (f ) is I-concave and II-convex on B -1 (p * ) × C -1 (q * ), but this follows directly from the fact that for all β ∈ [0, 1] and p, p

′ ∈ ∆(K), βH(p) + (1 -β)H(p ′ ) ⊂ H(βp + (1 -β)p ′ )
, and the similar property for q, q ′ ∈ ∆(L).

Proof of Theorem 2.2

The proof of our main theorem 2.2, making formal the description given in the end of section 4 will use the two next lemmas. Lemma 8.12. Let w ∈ C be such that ∀(p, q) ∈ ∆(K) × ∆(L), w(p, q) ≤ cav I Min(w, v)(p, q). For all (p, q), there exists a convex combination (α m , p m ) m=1,..,K in

[0, 1] × ∆(K) such that K m=1 α m = 1, p = K m=1 α m p m , ∀m = 1, .., K, w(p m , q) ≤ v(p m , q), and K m=1 α m w(p m , q) ≥ w(p, q).
The proof of lemma 8.12 is standard: there exists a convex combination p = K m=1 α m p m satisfying K m=1 α m Min(w, v)(p m , q) = cav I Min(w, v)(p, q). This implies that for all m = 1, .., K, Min(w, v)(p m , q) = cav I Min(w, v)(p m , q) ≥ w(p m , q, so that w(p m , q) ≤ v(p m , q). To conclude, note that K m=1 α m w(p m , q) = cav I Min(w, v)(p, q) ≥ w(p, q). Lemma 8.13. Consider a convex combination p = s∈S α s p s in ∆(K). Consider for each s ∈ S a non revealing strategy σ s in Σ(p s ). There exists σ in Σ(p) such that:

∀q ∈ ∆(L), ∀τ ∈ T , IP p,q,σ,τ = s∈S α s IP ps,q,σs,τ .

As a consequence we have for all T ∈ IN * , q in ∆(L) and τ ∈ T ,

IE p,q,σ,τ [ T -1 t=0 qt+1 (q, τ ) -qt (q, τ ) ] = s∈S α s IE ps,q,σs,τ [ T -1 t=0 qt+1 (q, τ ) -qt (q, τ ) ].
Moreover, for any function w ∈ C which is I-concave, II-convex and all t ≥ 1, we have IE p,q,σ,τ [w(p t , qt )] ≥ s∈S α s w(p s B, qC).

Proof: Let us define σ as in Lemma 5.6 via the splitting procedure: observe the first state k 1 in K, then choose a variable s in S according to the probability α s p k 1 s /p k 1 , and play according to σ s . It defines a probability IP on Ω × S and using Kuhn's Theorem, there exists σ such that the induced probability on Ω is equal to IP p,q,σ,τ . Moreover, for any event A in Ω, we have IP (A|s) = IP ps,q,σs,τ (A) almost surely, which implies the equality IP p,q,σ,τ = s∈S α s IP ps,q,σs,τ .

Recall that whenever h t is compatible with (q, τ ), q t (q, τ )(h t ) does not depend on (p, σ). Fix q and τ , for simplicity we write q t for q t (q, τ ), qt for qt (q, τ ) etc... Since qt = q t C, the preceding equality implies that

IE p,q,σ,τ [ T -1 t=0 qt+1 -qt ] = s∈S α s IE ps,q,σs,τ [ T -1 t=0 qt+1 -qt ].
Let us now work with the probability IP . Since σ s is non-revealing at p s , we have for all stage t, s in S and history h t : (IP (k t+1 = k|h t , s)) k∈K B = p t (p s , σ s )(h t )B = p s B. Denote by IE the expectation under IP , and by s the random variable with values in S of the first choice of Player 1. The above implies:

IE[p sB|h t ] = IE[(IP (k t+1 = k|h t , s)) k∈K |h t ]B = p t (p, σ)(h t )B = pt (p, σ)(h t ).
Using that w is I-concave and Jensen's inequality, we deduce that

IE[w(p sB, qt )|h t ] ≤ IE[w(p t (p, σ), qt )|h t ].
Using again that qt does not depend on (p, σ), we obtain

IE[w(p sB, qt )] = IE[IE[w(p sB, qt )|s]] = s∈S α s IE ps,q,σs,τ [w(p s B, qt ].
To conclude, w being II-convex, and by Jensen's inequality again, we get: ∀s ∈ S, IE ps,q,σs,τ [w(p s B, qt ] ≥ w(p s B, qC).

Let us turn to the main proof of Theorem 2.2. It is divided into 6 parts.

(1) Fixing norms. Recall that if x = (x s ) s∈S is an element of an euclidean space IR S , x = s∈S |x s |. For T ∈ IN * , the set of strategies Σ T is the set of maps from ∪ T -1 t=0 (K × I × J) t-1 × K to ∆(I) which is seen as a subset of IR I . Σ T can be seen as a compact subset of (IR I ) ∪ T -1 t=0 (K×I×J) t-1 ×K endowed with the corresponding norm. Note at first that for all T ∈ IN * , for all (p, q) ∈ ∆(K) × ∆(L), and for all σ ∈ Σ T and τ, τ ′ ∈ T T , |γ p,q T (σ, τ )γ p,q T (σ, τ ′ )| ≤ ττ ′ .

In the following points (2), ( 3), (4), the variables T ≥ 1 and ε ∈ (0, 1 I ) are fixed.

(2) Here we show that we can approximate strategies with low variations of the martingales pt and qt by non revealing strategies. Define Σ ε T as the set of strategies σ ∈ Σ T such that at any stage and for any history of the game, all the pure actions in I are played with probability at least ε.

Define the map F from ∆(K) × ∆(L) × Σ T × T T to IR T by F (p, q, σ, τ ) = (IP p,q,σ,τ (h t+1 )(q t+1 (q, τ )(h t+1 )qt (q, τ )(h t ))) t=0,..,T -1 , h t+1 ∈(I×J) t+1 ,

where for h t+1 = (i 1 , j 1 , .., i t , j t , i t+1 , j t+1 ), h t is defined here as (i 1 , j 1 , .., i t-1 , j t-1 , i t , j t ), and T is the large but finite integer T = L T -1 t=0 (I × J) t+1 . Note that F is continuous and by construction F (p, q, σ, τ ) = T -1 t=0 IE p,q,σ,τ [ qt+1 (q, τ )qt (q, τ ) ]. Define the compact sets R ε = ∆(K) × ∆(L) × Σ ε T × T T and Rε = F -1 ({0}) ∩ R ε , Rε is the subset of R ε consisting of elements (p, q, σ, τ ) such that τ is non-revealing at q. Claim 8.14. For all δ > 0, there exists C 1 = C 1 (T, ε, δ) such that ∀(p, q, σ, τ ) ∈ R ε , ∃(p, q, σ, τ ) ∈ Rε , (p, q, σ, τ ) -(p, q, σ, τ ) ≤ δ + C 1 F (p, q, σ, τ ) .

Proof: Assume by contradiction that for all n ∈ IN * , there exists (p n , q n , σ n , τ n ) ∈ R ε such that for all (p, q, σ, τ ) ∈ Rε , (p n , q n , σ n , τ n ) -(p, q, σ, τ ) > δ + n F (p n , q n , σ n , τ n ) . By compactness, we can extract a convergent subsequence with limit (p * , q * , σ * , τ * ) such that F (p * , q * , σ * , τ * ) = 0 and (p * , q * , σ * , τ * ) -(p, q, σ, τ ) ≥ δ. which is a contradiction.

(3) Here we show that an optimal strategy of Player 1 in a non revealing game ΓT (p, q) is good against strategies of Player 2 that are non revealing at q ′ , where q ′ is close to q. Claim 8.15. There exists C 2 = C 2 (T, ε) such that for all (p, q) ∈ ∆(K) × ∆(L), for all σ ∈ ΣT (p) which is optimal in ΓT (p, q), for all q ′ ∈ ∆(L), and for all τ ′ ∈ T (q ′ ), γ p,q T (σ, τ ′ ) ≥ -ε -C 2 qq ′ + vT (p, q).

Proof: Assume by contradiction that for all n ∈ IN * , there exists (p n , q n ) ∈ ∆(K)×∆(L), σ n ∈ ΣT (p n ) which is optimal in ΓT (p n , q n ), q ′ n ∈ ∆(L), and τ ′ n ∈ T (q ′ n ) such that γ pn,qn T (σ n , τ ′ n ) ≤ -εn q nq ′ n + vT (p n , q n ). By compactness, there exists a convergent subsequence with limit (p * , q * , σ * , q ′ * , τ ′ * ). Since the left hand-side of the above inequality is bounded below by -1, we have q * = q ′ * . Moreover, the non-revealing graph being closed, σ * is non-revealing at p * and τ ′ * is non-revealing at q * . Using step (1), we have for all n, vT (p n , q n )τ ′ *τ ′ n ≤ γ pn,qn T (σ n , τ ′ * )τ ′ *τ ′ n ≤ γ pn,qn T (σ n , τ ′ n ).

It follows that vT (p * , q * ) ≤ -ε + vT (p * , q * ), a contradiction.

(4) Here we control the error while perturbing an optimal strategy in Γ(p, q) by a non revealing completely mixed strategy. Let σ * T denote the strategy in Σ T which plays an uniform distribution over I at all stages independently of the history of the game, notice that σ * T is non-revealing at all points in ∆(K). For all (p, q) ∈ ∆(K) × ∆(L), let σ T (p, q) denote an optimal strategy of Player 1 in Γ(p, q). Denote by σ T,ε (p, q) the strategy which plays: σ * T with probability ε, and σ T (p, q) with probability 1-ε. The strategy σ T,ε (p, q) is non revealing at p, and we have for all τ ∈ T T , IP p,q,σ T,ε ,τ = εIP p,q,σ * T ,τ + (1ε)IP p,q,σ T (p,q),τ . We choose δ > 0 such that δ(1 + C 2 (T, ε)) ≤ ε and put C 1 = C 1 (T, ε, δ). Using step [START_REF] Blackwell | Equivalent comparisons of experiments[END_REF], for all (p, q) ∈ ∆(K) × ∆(L), and all τ ∈ T T , ∃(p, q, σ, τ ) ∈ Rε , (p, q, σ T,ε (p, q), τ ) -(p, q, σ, τ ) ≤ δ + C 1 F (p, q, σ T,ε (p, q), τ ) .

Using then (1) and (3), γ p,q T (σ T,ε (p, q), τ ) = εγ p,q T (σ * T , τ ) + (1ε)γ p,q T (σ T (p, q), τ ) ≥ -2εττ + γ p,q T (σ T (p, q), τ ) ≥ -2εττε -C 2 qq + vT (p, q) ≥ vT (p, q) -3ε -(1 + C 2 )(δ + C 1 F (p, q, σ T,ε (p, q), τ ) ≥ vT (p, q) -4ε -(1 + C 2 )C 1 F (p, q, σ T,ε (p, q), τ .

(5) Here we prove that: liminf T v T ≥ v.

Let w ∈ C be a balanced I-concave, II-convex function such that ∀(p, q) ∈ ∆(K) × ∆(L), w(p, q) ≤ cav I Min(w, v)(p, q). Fix (p, q) ∈ ∆(K) × ∆(L), we have to show that liminf T v T (p, q) ≥ w(p, q) (recall Remark 6.3 and Proposition 6.1 for the definition of v).

Fix ε ∈ (0, 1 I ) and choose T 0 ∈ IN * such that vT 0v ∞ ≤ ε. For simplicity, we will write p t for p t (p, σ), q t for q t (q, τ ) and define C 1 , C 2 for C 1 (T 0 , ε, δ), C 2 (T 0 , ε) constructed in the previous points (2), ( 3) and (4). Given N ∈ IN * and an optimal strategy τ ∈ T of Player 2 in Γ N T 0 (p, q), we define a strategy σ as follows.

The set of stages is divided into consecutive blocks of length T 0 . For n ≥ 0, at the beginning of block n, i.e. at the beginning of stage nT 0 + 1, Player 1 determines his strategy for the block according to the random variables p nT 0 and q nT 0 . Two cases may occur.

If v(p nT 0 , q nT 0 ) ≥ w(p nT 0 , q nT 0 ), then σ play during the next T 0 stages the non revealing strategy σ T 0 ,ε (p nT 0 , q nT 0 ).

If v(p nT 0 , q nT 0 ) < w(p nT 0 , q nT 0 ), using Lemma 8.12, there exists a convex combination p nT 0 = K m=1 α n,m p n,m which depends on (p nT 0 , q nT 0 ), such that ∀m = 1, .., K, w(p n,m , q nT 0 ) ≤ v(p n,m , q nT 0 ) and K m=1 α n,m w(p n,m , q nT 0 ) ≥ w(p nT 0 , q nT 0 ). In this case Player 1 plays at block n the strategy σ T 0 ,ε (p nT 0 , q nT 0 ) ∈ Σ T 0 given by Lemma 8.13 and such that for all τ ′ ∈ T T 0 , IP p nT 0 ,q nT 0 ,σ T 0 ,ε (p nT 0 ,q nT 0 ),τ ′ = K m=1 α n,m IP pn,m,q nT 0 ,σ T,ε (pn,m,q nT 0 ),τ ′ . This ends the definition of σ.

We have to show that the payoff γ N T 0 (σ, τ ) is large. It can be written as IE p,q,σ,τ [γ p nT 0 ,q nT 0 T 0 (σ(h nT 0 ), τ (h nT 0 ))]

  Example A: K = L = {a, b, c}, and M = N = There are two recurrence classes K(1) = {a, b} and K(2) = {c}. The associated invariant measures are p * (1) = (12 , 1 2 , 0) and p * (2) = (0, 0, 1), and the limit projection matrix is B =

  , b, c}, and M = The matrix B = lim t M t would be here the following: In this case, the function f (p) = (p b -1/3) + (where + denotes the positive part) is such that cavf (p 0 ) = 0 and cav(f * )(p 0 B) = 2/9

  10 in the simplex ∆(K(r)), there exists (b r,n ) n=1,..N ∈ ∆(K(r)) such that n=1,..,N α n b r,n = p ′ |r and n=1,..,N α n pn|rb n,r = n=1,..,N α n pn|rp ′ |r . If λ(p ′ ) r > 0, then n=1,..,N α n pn|r = n=1,..,N α n p n|r = p |r . Let p ′ n = r=1,..,r M λ(p ′ ) r b r,n , then N n=1 α n p ′ n = p ′ and N n=1 α n S(p n , p ′

  IE p,q,σ,τ [g(k t , l t , i t , j t )|h nT 0 ]]

Examples and overview of the proofLet us at first emphasize that, in contrast with repeated games with incomplete information, if Player 1 does not use his information on the states (k t ) t≥1 , beliefs of Player 2 over states

also called types in games with incomplete information

Appendix 8.1 Proof of Proposition 5.12Let us begin with a few definitions. Recall that K is partitioned into recurrence classes K(1), ..., K(r M ), each recurrent class r having a unique invariant measure p * (r) ∈ ∆(K(r)).

The proof can be deduced from Lemma 8.2 in[START_REF] Laraki | On the Regularity of the Convexification Operator on a Compact Set[END_REF], which deals with general measurable spaces. A simpler proof can be deduced from the version written in R. Laraki's PhD thesis[START_REF] Laraki | Jeux répétés à information incomplète: approche variationnelle[END_REF], proposition 5.12 page 107.
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S(p, L(p)) = L(p)p = p *p ′ * and S(p, L(p)) + S(L(p), p ′ ) = S(p, p ′ ).

Note that using matrices of example A section 4, the map L is just a homothetic transformation as illustrated below. It is easily seen that it defines an affine map with values in B -1 (p ′ * ). Moreover,

For the last equality, note that by construction

We now recall a lemma that will be used within each recurrence class. 3 where τ (h nT 0 ) ∈ T T 0 and σ(h nT 0 ) ∈ Σ T 0 are the continuation strategies defined in Def. 5.13. Claim 8.16. For all n = 0, .., N -1 and h nT 0 occurring with positive probability,

Proof: For the case v(p nT 0 , q nT 0 ) < w(p nT 0 , q nT 0 ), we have σ(h nT 0 ) = σ T 0 ,ε (p nT 0 , q nT 0 ) and

where the last inequality follows from the Lemmas 8.12 and 8.13. The case v(p nT 0 , q nT 0 ) ≥ w(p nT 0 , q nT 0 ) is simpler. Claim 8.17. ∀n = 1, .., N -1, IE p,q,σ,τ [w(p nT 0 , q nT 0 )] ≥ w(p, q). Proof: By induction, it is sufficient to prove that for n = 0, .., N -2,

Let us at first consider the case v(p nT 0 , q nT 0 ) ≥ w(p nT 0 , q nT 0 ). Since σ(h nT 0 ) is non-revealing at p nT 0 , we have p (n+1)T 0 = p nT 0 . Then, using that w is balanced, it is sufficient to prove that

The process qt = q t C being a martingale, the above inequality follows from the fact that w is II-convex and Jensen's inequality. Let us now consider the case v(p nT 0 , q nT 0 ) < w(p nT 0 , q nT 0 ). Using Lemma 8.13, we have IE p,q,σ,τ [w(p (n+1)T 0 B, q (n+1)T 0 C)|h nT 0 ] = IE p nT 0 ,q nT 0 ,σ T,ε (p nT 0 ,q nT 0 ),τ (h nT 0 ) [w(p T 0 (p nT 0 , σ T,ε (p nT 0 , q nT 0 )), qT 0 (q nT 0 , τ (h nT 0 ))]

Summing up, we obtain:

Finally, using Lemma 5.14, and the classical bound on the L 1 -variation of martingales (see for instance Proposition 3.8. in [START_REF] Zamir | Repeated Games of Incomplete Information: Zero-Sum, Handbook of Game Theory with Economic Applications[END_REF]), we obtain:

N -1 n=0 IE p,q,σ,τ [ F (p nT 0 , q nT 0 , σ(h nT 0 ), τ (h nT 0 )) ] =

N -1 n=0 IE p,q,σ,τ [IE p,q,σ,τ [