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COMPARISON OF PROCEDURES FOR FITTING THE
AUTOREGRESSIVE ORDER OF A VECTOR ERROR
CORRECTION MODEL

Hamdi Raissi

EQUIPPE-GREMARS, Université Lille 3
and
IRMAR-INSA

Abstract

This paper investigates the lag length selection problem of a Vector Error
Correction Model (VECM) by using a convergent information criterion and
tools based on the Box-Pierce methodology recently proposed in the literature.
The performances of these approaches for selecting of the optimal lag length
are compared via Monte Carlo experiments. The effects of misspecified
deterministic trend or cointegrating rank on the lag length selection is
studied. Noting that processes often exhibit nonlinearities, the cases of iid
and conditionally heteroscedastic errors will be considered. Strategies which
can avoid misleading situations are proposed.

Keywords: Vector error correction model; Model selection; Cointegration;
Information criteria; Autocorrelation tests.

1. Introduction

The Vector Error Correction Models (VECM) are often used in the statistical
analysis of nonstationary variables since they allow to describe several features. In
particular the cointegration analysis of equilibrium relationships between variables is
much considered in theoretical research. The dominant test for determining the number
of equilibrium relationships, the cointegrating rank, is the Likelihood Ratio (LR) test
developed by Johansen (1988,1991). Noting that this test depend on the specification
of the deterministic part of the VECM, Johansen (1994) proposed LR tests based on his
likelihood procedure for testing restrictions on the deterministic parameters. However
it is well known that the likelihood inference proposed by Johansen for the analysis of
the long run relationships and the deterministic terms strongly depend on the choice
of the lag length. Indeed if the short run dynamics are over specified this can entail
a loss of efficiency in our multivariate framework since a large number of parameters
are introduced in this case. Some authors found that the LR test for the cointegrating
may suffer from a substantial loss of power in such a case (see e.g. Boswijk and
Franses (1992)). If the short run dynamics are under specified the residuals become
autocorrelated and the asymptotic theory underlying the Johansen’s procedure breaks
down (Johansen (1995), Theorem B.13 p 251). Hence the LR test for the cointegrating
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rank is not valid even asymptotically in this case. One can expect the similar effects on
the LR tests for deterministic parameter restrictions when the autoregressive order is
misspecified. Therefore it clearly appears that the choice of the lag length of a VECM
is crucial.

When a cointegration analysis is conducted the autoregressive order is usually chosen
by considering an information criterion. For instance Cavaliere, Rahbek and Taylor
(2010) studied long run relationships between interest rates and used the Bayesian
Information Criterion (BIC) to fit an autoregressive order to the data. Several papers
have been devoted to the study of the performances of information criteria to find
the optimal lag length of a VECM. Reference can be made to Ho and Sorensen
(1996), Gonzalo and Pitarakis (1998) or Hacker and Hatemi (2008). These simulation
investigations highlight the difficulty of choosing the autoregressive order of a VECM
although the trend parameters are not taken into account in these studies. Numerous
information criteria are available for the choice of the autoregressive order of VECM,
as for instance the asymptotically efficient Akaike Information Criterion (AIC) or
the consistent BIC. A consistent information criterion is such that the selected lag
length converge to the true autoregressive order while efficiency relies on the optimal
prediction error. Since in our case the main objective is to find the optimal lag length for
the VECM, we restrict our attention to the commonly used BIC. Note that considering
other consistent information criteria would lead to similar general conclusions.

On the other hand tests based on the autocorrelations of the residuals for checking
the adequacy of the lag length in the framework of cointegrated variables have been
recently proposed in the literature by Duchesne (2005), Briiggemann, Liitkepohl and
Saikkonen (2006) and Raissi (2010). Some of these tests are implemented in the
software JMulTi. In this paper we compare the lag length selection properties of an
consistent information criterion and of the Box-Pierce methodology with possibly mis-
specified cointegrating rank or the deterministic terms. We focus on the portmanteau
tests since the Box-Pierce methodology is routinely used for checking the adequacy of
fitted models to time series. Using the properties of each of the methods for specifying
the short run dynamics of a VECM, strategies which can reduce misleading choices
for the lag length are presented. These strategies are proposed taking into account of
possibly misspecified long run relations or deterministic terms, and also the possible
presence of nonlinearities.

The remainder of the paper is organized as follows. Section 2 outlines the framework
of our study and introduces the deterministic parameters restrictions. The estimation
procedure for the VECM is described in Section 3. The tools used for model selection
in the Monte Carlo experiments are also presented. In Section 4 the framework of our
simulation experiments is given and the results are discussed. Strategies exploiting
the properties of the Box-Pierce methodology and of information criteria lag length
selection procedures are presented.

The following general notation is used throughout the paper. Considering a d x r
dimensional matrix A, we define the orthogonal complement A , which is a full column
rank d x (d — r) matrix such that A’A; = 0. For a given random variable a; we define
lacllq = (E||at|\‘1)1/q, where .|| denotes the Euclidean norm. The trace of a square
matrix is denoted by Tr and the determinant by | . |.
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2. Characterization of the model

Let us consider the following VECM

po—1
A:Z?t = o + ,Ult + aﬁ/xt,1 + Z FiAItfi + €, (21)
i=1

where the process () is d-dimensional and Ax; := 2 —24—1. The parameters « and 3
are of full column rank and of dimension d X rg. The I';’s are d x d short run parameters,
and when py = 1 the sum in (2.1) vanishes. The error process (€;) is commonly assumed
iild Gaussian with positive definite covariance matrix Y. and such that Fe; = 0.
However the standard assumption of iid Gaussian errors cannot take into account of
nonlinear dynamics which often arise in practice. This framework is then considered to
be not realistic in many situations. For instance Trenkler (2003), Koutmos and Booth
(1995) or Hiemstra and Jones (1994) studied financial variables and found a strong
evidence of nonlinear dependence in the data. Numerous models in the literature
produce processes with conditional heteroscedasticity as for instance hidden Markov
models (see e.g. Amendola and Francq (2009)) or MGARCH models (see e.g. Bauwens,
Laurent and Rombouts (2006)). Taking into account the dependence of the errors is
important for testing the adequacy of linear models as pointed out by Francq, Roy
and Zakoian (2005) or Francq and Raissi (2007). In addition the study of VECM in
nonstandard situations has attracted much attention in the recent years. Therefore we
also consider in our simulations the case of dependent but uncorrelated errors which
are such that the results of the Granger representation theorem hold (see equation
(2.3) below) as in Rahbek, Hansen and Dennis (2002), Raissi (2009) or Hacker and
Hatemi (2008).

The following restrictions on the deterministic parameters are considered

Rl Lo = aT
Ri: =0 (2.2)
Rs: po=arsandpu; =0
Rs: po=p =0.
Note that we do not have necessarily 7, # 0 for R; and 75 # 0 for R, or po # 0 for
R;, R; and Ry, so tbat we haveNthe relation Ry C Ry C R; C R;. Nested LR tests
for the restrictions R;, Rs; and Ry are proposed in Johansen (1995). Now we discuss
the consequences of the restrictions in (2.2) on the behaviour of (x;). Suppose that
o/ T8, has full rank, where I' = I;— Zfi;l T';. We also assume that the autoregressive
polynomial A(z) = (1 — 2)I; — af'z — Y77 ' Ti(1 — 2)2% is such that det A(z) = 0
implies that | z |> 1 or z = 1. Under these assumptions, it follows from Granger’s
representation theorem (Johansen (1995), p 49) that
t
v = CY (&+po+pmt) + DL) (e + po + pt) + A
i=1
t
= CY ei+pt+po+Yi+A4, (2.3)
i=1



where C' = 3, (o/,T'81) "o/, and L is the usual lag operator. The vector A depends
on initial values and verifies 3’A = 0. The process (Y) is linear and such that

o0
Y = E Di€t—i,
i—0

where the power series D(z) = Y7~ ¢;2" is convergent for | z |< 1+ & for some x > 0.
The vectors p1, po are functions of the parameters in (2.1). If we suppose that R; hold,
we may have p; # 0 and py # 0 and in this case (8’x¢) can be composed of a stationary
process plus a linear trend. We say in this case that (3'z;) is trend stationary. If R,
hold, again we may have p; # 0 and py # 0, but (8'x;) is stationary. If R, hold
we obtain p; = 0 but we still may have pg # 0, and in this case it is also allowed
to have E(f'z;) # 0. Finally the restriction R, does not allow for any deterministic
component for (#'z;) and (x;). The number of independent linear combinations 'z,
which are such that the random walk behaviour is vanished is the cointegrating rank.
In particular when ry = 0 there is no cointegration between the variables and model
(2.1) is a vector autoregressive model for the process (Axz;). From (2.3) the process
(Az;) is stationary for all the restrictions, so that (a:) is I(1). Note that we do
not study the unrestricted case which produce nonstationary processes with quadratic
trend since it is rarely faced in applied works. Then we see that the deterministic
term and the cointegrating rank are important for the data analysis and forecasting
purposes. However we will see in the next section that the specification of g, u1 and
ro strongly depend on the choice of the autoregressive order.

Various tests for the cointegrating rank are available in the literature (see Hubrich,
Liitkepohl and Saikkonen (2001) for a review of such tests). The most commonly test
for the cointegration rank is the LR test introduced by Johansen (1988,1991), which
is shown to be asymptotically valid under quite general assumptions (see Rahbek et al
(2002) or Raissi (2009)). Using the same arguments of Raissi (2009) and following the
proofs of corollary 11.2 and theorem 11.3 of Johansen (1995) it can be shown that the
LR tests for the deterministic term are also asymptotically valid when the errors are
dependent but uncorrelated.

3. Determining the autoregressive order

We first briefly describe the estimation procedure of the model (2.1). The reader
is referred to Johansen (1995) for more details on the maximum likelihood estimation
of VECM. If the errors are not assumed Gaussian, the quasi maximum likelihood is
used. Let us assume that the observations x1, ..., z, are available. Note that o and 3
are not identified in (2.1), and in case of R; and R, the parameters 7; and 75 are also
not identified. In the sequel we suppose that these parameters are normalized in some
appropriate way. Let us rewrite (2.1) as follow

A.It = 951571 + €t, (31)

where &1 = ((B'z-1),AX{_1,...,AX[ , 1) Weset B = (8',7) and 2 =
(z}_,,t)" if we suppose that R; hold but not R; in (3.1). If R; is hold but not R,
we set B = 8 and 21 = x;—1. We consider B = (§',75)" and 21 = (2}_,,1)" if
R is hold but not RS. Finally we set B = 8 and z;_1 = x4_1 if the deterministic
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parameters are assumed to be equal to zero. The parameters in B can be estimated
using Reduced Rank (RR) regression. The super-consistency of the parameters in B
can be obtained under quite general assumptions on the error terms (see e.g. Rahbek et
al (2002) or Raissi (2009)). It is important to note that in the RR estimation method
the process (&) is used so that the resulting estimators strongly depend on the fitted
autoregressive order p > 0 which can be such that p # py. As a consequence the
computation of the LR tests statistics for the cointegrating rank and the deterministic
terms depend on p. Therefore the choice of the autoregressive order is crucial for the
cointegration analysis and the specification of the deterministic part of the model. Let
us set = [a,T'1,...,Tp,—1, o] if R; hold but not Ry and 6§ = [o,T'1,...,Tp,—1] if
R hold. Once the parameter B is replaced by its estimator in (3.1) we can compute
a least squares estimator for #. However it is clear that the estimator of the short
run parameters we obtain depend on the specification of cointegrating rank and of the
deterministic parameters. If we suppose that the VECM is well specified, it can be
shown that these estimators are asymptotically normally distributed (see Briiggemann,
Liitkepohl and Saikkonen (2006) in the iid Gaussian case and Raissi (2010) when the
errors are dependent but uncorrelated).

Now we introduce the tests used in the Box-Pierce methodology. Let us denote by
€; the residuals obtained from the estimation stage. We define the residual autocovari-
ances

De(h) :=n"" Z €1€5_p-

t=h+1

The commonly used portmanteau statistic based on the first m autocovariances is given
by

Q=nd T (P (n)Te(0) Tu(m)T(0) 7). (3.2)
h=1

This statistic corresponds to the generalization of the Box and Pierce (1970) portman-
teau statistic in the multivariate case proposed by Chitturi (1974). One can alterna-
tively use the Ljung and Box (1978) portmanteau statistic proposed in the multivariate
framework by Hosking (1980) for potential improvements when the errors are Gaussian.
Nevertheless the use of the Ljung-Box statistic lead to the same general conclusion for
our study, so that we focus on the Box-Pierce (BP hereafter) portmanteau test in the
sequel. The tested hypotheses for checking the adequacy of the autoregressive order
are given by

Hy: E(eter—;) =0 vs Hp: Jisuch that E(eer—;) # 0,

ie{...,—1,0,1,...} are commonly considered for the portmanteau tests, although the
test statistics are only based on the m first residual autocorrelations. Assuming that
the error process is iid Gaussian and such that ||e||, < oo, Briiggemann, Liitkepohl and
Saikkonen (2006) showed that the asymptotic distribution of the statistic in (3.2) can
be approximated by a x?(d?(m — pg + 1) — drg) distribution when m — oo as n — oo.
Using this result they proposed a portmanteau test in the case of cointegrated variables.



This test will be denoted as BPs in the sequel. If we suppose that the errors are only
uncorrelated and |||, , < oo for some v > 0 and under other technical assumptions,

it is shown in the framework of R, in Raissi (2010), that the asymptotic distribution
of the test statistic @) is a weighted sum of chi-squares. Starting from this result a
portmanteau test which is robust to the possible presence of nonlinearities in the error
terms is proposed. The extension to the other restrictions considered in this paper is
straightforward and is described in an extended version of Raissi (2010) available under
request. This test will be denoted as BPy. In practice the RR estimators are derived
for given 0 < r < d which can be such that r # rg. It is clear from the estimation
stage that the statistic ) depend on the specified deterministic term and the fitted
cointegrating rank. The effects of such possible misspecifications will be studied in the
next section.

To determine the number of short run dynamics to include in the model information
criteria of the form

IC =1log | Te(0) | +(p+ 1)en/n.

are often used for a given specification of the deterministic parameters and cointegrat-
ing rank r. Paulsen (1984) showed that the information criterion provide a consistent
estimator of pg if and only if ¢, is such that ¢, — oo and ¢,/n — 0. We have
¢, = d?logn for the BIC and c,, = 2d? for the AIC, so that the BIC gives a consistent
estimator of the lag length on the contrary to the AIC. Then we focus on the BIC
in the sequel, noting that any other convergent information criterion will lead to the
same general result. The BIC is computed for a set of possible values of p and the lag
length which minimizes the BIC is selected. In general the residual empirical variance
I'.(0) is often used for the computation of information criteria. Then similarly to the
portmanteau test statistics, we see that well specifying the cointegrating rank and/or
the deterministic term is important. We also note from the BIC expressions that this
approach for choosing p is not intended to detect a serial correlation of the residuals
or to control any error of first kind. However we can remark that the existence of
the fourth moments is not needed to compute these information criteria. In the next
section we compare the two approaches for the choice of p.

4. Monte Carlo experiments

The performances of the BIC and of the tests based on the residual autocorrela-
tions for selecting the autoregressive order is studied. Using these results we propose
strategies which combine the use of the BP methodology and information criteria for
selecting the lag length, taking into account for possibly misspecified deterministic
terms or fitted cointegrating rank. In a first time the framework of the experiments is
described. In each of the experiments we simulated N = 1000 independent trajectories
of lengths n = 100 and n = 1000 using a Data Generating Process (DGP) inspired by
the canonical form of Toda (1994)

I, 0
Ty = ¥l i1+ Lot Axy_q + pro + pit + €,
O Id—’r'()
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where ¢ is a scalar and d = 4. The parameters are taken ¢ = 0.5, I'9y = —0.314
and the cointegrating rank is rg = 2. We set pu; = (—0.05,-0.05,0,0)" and po =
(0.1,0.1,0.1,0.1)" if R; is hold but not R;. The results for the case of simulated processes
such that R, is hold but not R, are not displayed since they are similar to the case
o = p1 = 0. In the sake of conciseness the results for the restriction Rl is hold but
not Ry are not displayed since they lead to similar conclusions to the cases presented
here. This kind of DGP is used in numerous studies (e.g. Hubrich et al (2001) or
Demetrescu et al (2009)). In addition the results concerning the information criteria
are corroborated by previous studies. In the experiments the cointegrating rank and
the deterministic terms are not necessarily well fitted, so that the consequences of
such situations is analyzed. Since the number of parameters is high, a relatively large
samples are taken in our experiments. Two cases are considered for the error process in
the sequel. In case of iid innovations we take e; ~ N(0, ;). To illustrate the case where
the errors are dependent, we use the following ARCH model with constant correlation
of Jeantheau (1998)

€1¢ ot 0 0 Mt
=1 0 . 0 : (4.1)
€dt 0 0 oa Ndt
where
o2 0.1 02 O 0 0.1 €2,
Yl o102 0 oa et
T : 01 0 0.2 0.1 ) )
Tat 0.1 0.1 0 0 0.2 €dt—1

and the process 1, = (114, . . ., na)’ is iid, such that 1, ~ N(0, Iy).

The autoregressive order selection strategy correspond to the case where the prac-
titioner have no prior knowledge on py. More precisely for the portmanteau tests
p=1,2,... are successively tested until the null hypothesis is not rejected. However
we assume that when the autoregressive order adequacy is rejected for all p < 5, the
model specification is suspected to be not reliable and one stop the procedure. Indeed
when p takes large values the number of parameters become high beside the available
observations. In such case the analysis of the linear dynamics is not reliable. In our
experiments we used the asymptotic nominal level 5% for the different portmanteau
tests considered in this paper. In the sequel note that if the portmanteau tests perform
well, the selected p = pg is often around 95% since this selection procedure is based on
the control of the error of first kind. Note that the BPy test is available for fixed m,
while for the BPg it is assumed that m — oo as T — oo. Therefore m = 5 is taken
for the BPy test for T'= 100 and T" = 1000, while we take m = 5 when 7" = 100 and
m = 15 when T" = 1000 for the BPs test. The autoregressive order which minimize
the BIC in the set {1,...,5} is selected. The results are given in Tables 1-12.

We first analyze the results for small samples (T = 100) given in Tables 1-6. It
appears that the performances of the BPy, test is rather disappointing. This can be
explained by the fact that about 40 parameters are estimated when p = 2 and thus
the number of observations is relatively small for the elaborated BPyy test. In such
situation the more simple BPg test provide satisfactory results. It seems that the
results for the portmanteau tests are not much affected when the deterministic terms



or the cointegrating are misspecified in small samples. We only remark that when a
deterministic trend present in the data is not taken into account by the practitioner
(Tables 4-6), the BPg test tends to select a too large lag length. From Tables 1-6 we
see that the BIC selects a too small p. When r < rg is taken the BIC is likely to choose
a larger autoregressive order. Therefore it seems that the use of the parsimonious BIC
when the sample is small can be misleading for the analysis of VECM.

Now we consider the results for large samples (7" = 1000). It is found from Tables
7-12 that the BP tests perform well when the long run relations and the deterministic
terms are well specified. However we note that when r < rg is taken, the BP tests
tend to select too large autoregressive orders. If r < ry the estimators of the short
run parameters are biased and the residual autocorrelations may appear too large as
the sample increase even if p = py. When r > ry is taken we note that the BP
tests are not much affected. A possible explanation is that in this case the effect
of non stationary components introduced in the model are limited by the fact that
the corresponding adjustment parameters are close to zero. It is important to note
that overspecified deterministic terms seems not entail a significant loss of efficiency
in selecting the autoregressive order using the BP methodology. However from Tables
10-12 we see that the BP tests are clearly likely to select a too large autoregressive
order when a deterministic trend is present in the observed process and is not taken
into account in the model. Similarly we also found from Tables 10-12 that when
deterministic trends are spuriously assumed to not enter the cointegrating relations
the BP tests select too large p. When the BP tests are used and in case of doubt,
it seems preferable to consider the restriction R; only for fitting the autoregressive
order. In such situations the unnecessary parameters introduced in the model are
few. Actually we noted no major loss of efficiency and considering such restriction
allow to avoid misspecified autoregressive order. Of course as pointed out by several
studies (e.g. Johansen (1994)) it is important to remove any misspecification of the
deterministic term when determining the cointegrating rank. Finally it emerges that
in general the BPyy test is not affected by the presence of dependent errors. In some
cases the BPg test tends to select too large p when the errors follow an ARCH model.
This can be explained by the fact that the BPs is not intended to take into account
such situations. In accordance with the theoretical, we found that the BIC choose
successfully the optimal lag length when the sample is large in both standard and
dependent cases. It also appears that the selected autoregressive orders do not depend
much on the specification of the deterministic terms or on the fitted cointegrating rank.
Nevertheless it is important to note that the use of information criteria for fitting the
lag length can be quite misleading even when the sample is large. For instance we
give the autoregressive order selected by the AIC criterion for the case given in Table
10. Despite the VECM is well specified, the AIC select a too large p. Results not
reported here show that the AIC almost always choose a lag length p = 5 in many
of the situations presented here. This is not surprising since for the AIC the more
complicated models are not so penalized. Thereby this confirms that the BIC perform
better than the AIC for the lag selection (see e.g. Cheung and Lai (1993) or Ho and
Sorensen (1996)).
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5. Conclusion

In this paper we studied the problem of the fit of the autoregressive order by com-
paring tools based on the Box-Pierce methodology recently proposed in the literature
and information criteria commonly used in practice. Fitting an adequate autoregres-
sive order is important for the analysis of VECM, but this task is carried out using
information criteria only in general. It emerges from our study that underspecified
deterministic trend or cointegrating rank can be quite misleading when using the Box-
Pierce methodology for the choice of the autoregressive order p. We also found that
the selection of p using information criteria does not depend much on the specification
of the other parts of the model. However the use of these information criteria can
be quite misleading in some cases. In general we recommend to use the information
criteria together with the portmanteau tests when choosing the lag length of a VECM.
When the selected autoregressive orders are close and small, then one should take
the p proposed by the portmanteau tests. It is advisable to choose the p selected by
the portmanteau tests since they are able to detect residual autocorrelations which
can strongly affect the cointegration analysis. If the lag lengths selected by the two
approaches presented in this paper are both large, it is important that the chosen
information criterion is parsimonious to conclude on the reliability of the selected lag
length. If the p retained by an information criterion is much larger than the p retained
by the portmanteau tests, then one can suspect that the more complicated model is
not penalized enough by the information criterion. On the other hand if the p selected
using the portmanteau tests is much larger than the p selected by using an information
criterion, one can suspect that the deterministic trend is underspecified or the fitted
cointegrating rank is smaller the the true cointegrating rank.
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Tables

TABLE 1: Frequency (in %) of selected lag length using the portmanteau tests. The simulated

processes are of length 7' = 100, such that R, hold and ro = 2.

Case iid errors ARCH errors
r=2 P 1 2 317475 1 2 3] 475
R, but BPy | 02 [985 | 1.1 |00 |02 1.4 [ 976 |09 | 0.0 | 0.1
not R BPs | 00 | 9722800001 00 |96.1]3.9]0.0] 0.0
R, but BPy | 02 986 10]01 01| 14 [977]06]00]0.3
not Ry BPs | 0.0 | 970300000/ 00 |963]37]0.0]0.0
R, but BPy | 481 (509 | 0.8 | 0.1 | 0.1 |[55.2] 44106 | 0.0 | 0.1
not Ry BPg | 47 1929124100001 53 [91.7]30] 00 0.0
po=p1 =0 | BPy | 45.8 | 53208 [ 0.1 | 0.1 | 528|464 | 0.7 | 0.0 | 0.1
BPs | 37 1936270000/ 40 | 92634 0.0 0.0
Ributnot Ry | BIC 966 | 3.4 100]00]0.01951] 49 [00]00]0.0
Ry butnot R, | BIC | 964 3.6 [ 0.0]00]00(949] 51 [00]0.07]0.0
Rsbutnot R, | BIC [ 97.0] 3.0 [00]0.0]0.0195.3] 47 [00]00]00
Lo=p1=0 | BIC | 964 ] 36 | 0000001949 51 |00 0.0] 0.0

TABLE 2: Frequency (in %) of selected lag length using the portmanteau tests. The simulated

processes are of length 7" = 100, such that R, hold and ro = 2.

Case iid errors ARCH errors
r=1 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 02 {98212 0103 14 1972 (10|00 | 04
not Ry BPs | 00 | 96.0 | 4.0 | 0.0 | 0.0 || 0.0 | 94.1 | 5.9 | 0.0 | 0.0
R; but BPy | 0.2 | 98.0| 15| 0.1 | 0.2 14 197012 |0.11]0.3
not Ry BPs | 00 | 954 | 4.6 | 0.0 | 0.0 00 |935|6.5|0.01|0.0
R, but BPy | 12.7 | 8.1 |08 | 0.1 ] 03] 19.5|79.3 |08 | 0.1 ] 0.3
not Ry BPs | 0.2 | 9601 38| 0.0]0.01 03 ]944 |53 |0.01]0.0
wo=p1 =0 | BPy | 126 | 8.9 | 1.1 |01 |03 19.8|79.2]| 0.6 | 0.1 | 0.3
BPs | 0.2 | 953 |45 |0.01]0.01 03 ]943|541|0.010.0
Ry butnot R; | BIC | 57.7|43.2 | 0.0 | 0.0 | 0.0 || 56.6 | 43.4 | 0.0 | 0.0 | 0.0
R; but not Ry | BIC | 56.8 | 43.2 | 0.0 | 0.0 | 0.0 || 55.2 | 44.8 | 0.0 | 0.0 | 0.0
R, but not R, | BIC | 59.4 | 40.6 | 0.0 | 0.0 | 0.0 || 57.6 | 424 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 58.0|42.0| 0.0 | 0.0 | 0.0 || 55.7 | 44.3 | 0.0 | 0.0 | 0.0
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TABLE 3: Frequency (in %) of selected lag length using the portmanteau tests. The simulated

processes are of length 7" = 100, such that R, hold and ro = 2.

Case iid errors ARCH errors
r=3 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 00 {98709 |01 (03| 00 |98.8| 08| 00|04
not R BPg 0.0 | 946 | 54|00|001 00 930 7.0 0.00.0
R; but BPZW 0.0 | 986|1.1]01]02] 00 [987]0.9]0.0]0.4
not R, BPg 0.0 | 949]51]00|001 00 91981 ] 0.0 0.0
R, but BPy | 51.3 475|109 | 01|02 | 59.2|40.0| 0.6 | 0.0 | 0.2
not R, BPg 35 191.3152]00|001| 40 |88.6 | 7.4 0.0 0.0
o =p1 =0 BPy | 471 | 51.8 | 09| 0.1 | 0.1 || 53.7 | 456 | 0.6 | 0.0 | 0.1
BPg 2.4 1909 |67]00]|00] 22 |89.2]| 86 | 0.0 0.0
R;butnot R; | BIC | 988 | 1.2 | 0.0 | 0.0 | 0.0 | 98.0 | 2.0 | 0.0 | 0.0 | 0.0
R; but not R | BIC | 979 | 2.1 | 0.0 | 0.0 | 0.0 92| 3.8 |00/ 0.0] 0.0
R, butnot R, | BIC [ 98.1| 1.9 | 00|00 | 00| 965 | 3.5 | 0.0 0.0 0.0
o =p1 =0 BIC | 971 | 29 | 0.0 0.0]0.019.8]| 42 |00/ 00]0.0

TABLE 4: Frequency (in %) of selected lag length using the portmanteau tests.

processes are of length 7' = 100, such that R; hold but not Rl and ro = 2.

The simulated

Case iid errors ARCH errors
r=2 P 1 2 3 4 5 1 2 3 4 5
R; but BPZW 0.2 | 985|111 0.1]0.1 2.7 1943 2.1 | 0.7 | 0.2
not R BPlS 0.0 | 944|156 |00]|00] 00 |8.4]10.5]| 0.1]0.0
R; but BPZW 0.2 | 974 | 1710205 27 |946| 1.7 | 0.3 ]| 0.7
not R, BPlS 0.0 {909]91]00]|00] 00 |87.6] 123 0.1 | 0.0
R, but BPy [ 2137671601 |03 263|71.6| 1.5 | 03] 0.3
not R, BPg 0.5 1926|169 |00]|00] 03 |82.61]169] 0.2] 0.0
o =p1 =0 BPy | 166 | 816 | 14|02 |02 | 217|764 | 14 | 03| 0.2
BPg 04 |916|79]01]00] 02 |835]|16.1| 0.2 ] 0.0
R; butnot R; | BIC | 89.0 | 11.0 | 0.0 | 0.0 | 0.0 || 67.1 | 329 | 0.0 | 0.0 | 0.0
R; but not Ry | BIC | 67.0 | 33.0 | 0.0 | 0.0 | 0.0 || 61.3 | 38.7 | 0.0 | 0.0 | 0.0
R, but not R, | BIC | 71.4|28.6 | 00| 0.0 | 0.0 | 52.2 | 47.8 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 65.6 | 344 | 0.0 | 0.0 | 0.0 || 50.8 | 49.2 | 0.0 | 0.0 | 0.0
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TABLE 5: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7' = 100, such that R; hold but not R; and r¢o = 2.

Case iid errors ARCH errors
r=1 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 02 | 974180303 27 [951| 1.8 | 0.4 ] 0.0
not R BPs | 00 | 941 ]59]0.0|0.01 00 |91.8| 82 | 0.0 0.0
R; but BPy | 02 | 96821 |04 05| 27 950 1.6 | 03| 04
not R, BPs | 00 | 93.0] 7.0 0.0 0.0 00 |91.2| 87 | 0.1 | 0.0
R, but BPy | 10.0 | 8.6 | 1101 |02 21.0|770| 1.1 | 04| 0.5
not R, BPs | 0.1 | 959 ] 4.0 0.0|0.01 03 |8&2.81]16.6 | 0.3 ] 0.0
po=p1=0 | BPy | 95 | 8.0 11|02 021201 |778]| 1.3 |04 ] 04
BPs | 0.1 | 957|142 |0.0]001{ 03 |832]16.2] 0.3 | 0.0
R; butnot Ry | BIC | 48.6 | 51.4 | 0.0 | 0.0 | 0.0 || 44.2 | 55.8 | 0.0 | 0.0 | 0.0
R; but not R, | BIC | 45.1 | 54.9 | 0.0 | 0.0 | 0.0 || 43.8 | 56.2 | 0.0 | 0.0 | 0.0
R, but not Ry, | BIC | 55.5 | 44.5 | 0.0 | 0.0 | 0.0 || 57.1 | 429 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 54.3 | 45,71 0.0 | 0.0 | 0.0 || 56.9 | 43.1 | 0.0 | 0.0 | 0.0

TABLE 6: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7' = 100, such that R; hold but not R; and ro = 2.

Case iid errors ARCH errors
r=3 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 0.0 {983 | 1.0 |04 |03 | 55 |91.6| 1.6 | 0.7 | 0.6
not R BPs | 0.0 | 90.0 | 10.0 | 0.0 | 0.0 3.1 | 795|172 0.2 | 0.0
R; but BPy | 00 | 969 20 | 03|08 | 55 [91.3 ] 1.8 |02 | 1.2
not R, BPs | 0.0 | 824|171 (05| 0.0 3.1 | 76.0|205]| 04 | 0.0
R, but BPy | 215|762 | 1.7 | 03|03 | 214|758 | 21 |04 1|0.3
not R, BPs | 0.3 | 826 |17.0] 0.1 0.0 00 | 764|232 0.4 0.0
po=p1=0 | BPy |15.0|823| 21 | 03|03} 19.0| 786 | 1.7 | 0.2 | 0.5
BPs | 0.2 | 80.01] 193] 05| 0.0 0.1 |763 231 0.5 0.0
R;butnot Ry | BIC | 943 | 5.7 | 0.0 | 0.0 | 0.0 || 75.1 | 249 | 0.0 | 0.0 | 0.0
R; but not Ry | BIC | 71.7 | 283 | 0.0 | 0.0 | 0.0 || 66.0 | 34.0 | 0.0 | 0.0 | 0.0
R, but not R, | BIC | 734|266 | 0.0 | 0.0 | 0.0 || 61.6 | 384 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 659 |34.1| 00 | 00| 00| 584|416 | 0.0 | 0.0 | 0.0
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TABLE 7: Frequency (in %) of selected lag length using the portmanteau tests. The simulated

processes are of length 7" = 1000, such that RS hold and rg = 2.

Case iid errors ARCH errors
r=2 P 1 2 3 4 5 1 2 3 4 5
R; but BPZW 00| 958 | 13107221 00| 96.2 | 1.7]06 | 1.5
not R BPlS 00| 954 |39 1]0.7]001 00] 945 | 4.7 | 0.7 | 0.1
R; but BPZW 00| 957 | 1407|221 00| 96.1 | 1.7 08| 1.4
not R, BPlS 0.0 956 | 3509|001 00| 946 | 4.6 | 0.7 | 0.1
R, but BPy | 00| 957 | 1.4 |08 |21 00| 962 |16 | 0.7 |15
not R, BPs | 0.0 | 957 | 3.6 | 0.7 | 0.0 || 0.0 | 94.7 | 45 | 0.7 | 0.1
o =p1 =0 BPy | 00| 958 [ 14 09|19 00| 962 | 16| 0.7 | 1.5
BPs | 0.0 | 957 [ 35 (0.8 ] 0.0 00| 948 | 4.4 | 0.7 | 0.1
R; butnot R; | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
R; but not Ry | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
R, but not R, | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0

TABLE 8: Frequency (in %) of selected lag length using the portmanteau tests. The simulated

processes are of length 7" = 1000, such that RS hold and rg = 2.

Case iid errors ARCH errors

r=1 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 0.0 1.7 2.5 | 33 |925 ] 0.0 | 3.7 2.2 | 3.0 | 91.1
not R BPs | 00| 358 | 39.4| 185 | 6.3 || 0.0 | 326 | 41.7 | 19.1 | 6.6
R; but BPy | 0.0 1.9 24 | 33 |924 1 0.0| 3.6 2.3 | 3.0 | 91.1
not R, BPs | 00 | 354 | 39.7| 185 | 6.4 || 0.0 | 32.5 | 42.0 | 19.0 | 6.5
R, but BPy | 0.0 1.9 2.4 | 3.3 |924 1 00| 3.7 2.2 | 3.0 | 91.1
not R, BPs | 00| 36.0 | 39.6 | 179 | 6.5 || 0.0 | 32.7 | 42.3 | 18.8 | 6.2
po=p1=0 | BPy | 0.0 1.6 2.6 | 3.1 |92.7 ] 0.0 | 3.6 2.1 | 3.2 | 91.1
BPs | 00| 35.8 | 39.7]| 182 | 6.3 || 0.0 | 32.8 | 425 | 182 | 6.5

R; but not R; | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
R; but not R | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
R, but not R, | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
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TABLE 9: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7" = 1000, such that Rs hold and r¢ = 2.

Case iid errors ARCH errors
r=3 P 1 2 3 4 5 1 2 3 4 5
R; but BPy | 00| 957 | 1.4 09 |20 00| 965 |14 |07 |14
not R BPs | 00| 943 | 46 | 1.1 ] 0.0 0.0 932 | 57| 1.0 | 0.1
R; but BPy | 00| 958 | 1.4 |07 |21 00| 962 |12 | 10| 1.6
not R, BPs | 00| 944 | 4510|011 00| 927 | 62| 1.0 | 0.1
R, but BPy | 00| 958 | 1.4 |07 |21 00| 960 |15 |09 | 1.6
not R, BPs | 00| 944 | 45| 1.1]0.01 00| 92.7 | 6.2 | 1.0 | 0.1
po=p1=0 | BPy |00 ] 958 | 14| 0.8 |20 0.0 96.1 | 14| 08| 1.7
BPs | 00| 94.0 | 50| 1.0 | 0.0 || 0.0 | 93.0 | 59 | 1.0 | 0.1
R; but not R; | BIC | 0.0 | 100.0 | 0.0 | 0.0 [ 0.0 | 0.1 | 99.9 | 0.0 | 0.0 | 0.0
R; but not R | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
R, but not Ry, | BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0
o =p1 =0 BIC | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 || 0.0 | 100.0 | 0.0 | 0.0 | 0.0

TABLE 10: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7" = 1000, such that R; hold but not R; and ro = 2.

Case iid errors ARCH errors

r=2 P 1 2 3 4 5 1 2 3 4 5

R; but BPlW 0.0 | 96.0 1.7 | 0.7 1.6 0.0 | 100.0 | 0.0 | 0.0 0.0
not R, BPlS 0.0 950 | 40 | 1.0 0.0 0.0 | 829 | 12.2 | 3.9 1.0
R; but BPlW 0.0 14 1.3 | 1.5 | 95.8 || 0.0 2.1 0.9 1.7 | 95.3
not R BPlS 0.0 | 23.8 |41.0|24.7| 10.5 || 0.0 | 21.4 | 42.7 | 26.0 | 9.9
R, but BPy | 0.3 1.4 14 | 1.9 | 95.0 || 0.5 2.6 1.8 | 2.0 | 93.1
not R BPs | 03| 195 | 40.2 | 274 | 126 || 0.1 | 17.1 | 37.5 | 29.6 | 15.7
wo=p1=0| BPy | 0.0 2.2 3.4 | 5.1 89.3 || 0.1 | 183 | 14.8 | 20.8 | 46.0
BPs | 0.0 | 27.0 | 439 |21.8| 7.3 0.1 | 29.0 | 384|234 | 9.1
R; but AIC | 0.0 0.0 0.0 | 0.0 | 100.0 || 0.0 | 0.0 0.0 | 0.0 | 100.0
not R, BIC | 0.0 | 100.0 | 0.0 | 0.0 0.0 0.0 | 100.0 | 0.0 | 0.0 0.0
R; but AIC | 0.0 0.0 0.0 | 0.0 | 100.0 || 0.0 | 0.0 0.0 | 0.0 | 100.0
not Ry BIC | 00| 99.8 | 0.2 | 0.0 0.0 0.0 | 100.0 | 0.0 | 0.0 0.0
R, but not | AIC | 0.1 0.0 0.0 | 0.0 | 99.9 || 0.7 | 0.1 0.1 0.7 | 98.4
R, BIC | 0.0 | 98.2 1.7 | 0.0 0.0 0.7 1 939 | 45 | 0.7 0.2
wo=p1 =01 AIC | 0.0 0.0 0.0 | 0.0 | 100.0 || 0.1 0.0 0.0 | 0.0 | 99.9
BIC | 00] 999 | 0.1 | 0.0 0.0 0.1 994 | 05 | 0.0 0.0
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TABLE 11: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7" = 1000, such that R; hold but not R; and ro = 2.

Case iid errors ARCH errors
r=1 p 1 2 3 4 ) 1 2 3 4 )
R; but BPy | 0.0 2.0 2.0 2.9 |1 93.1 | 0.0 1.7 0.9 1.9 95.5
not Rl BPs | 0.0 | 35.0 | 38.1|19.8| 7.1 0.0 | 27.1 | 41.2 | 23.8 7.9
R; but BPy | 0.0 0.8 1.0 1.4 | 96.8 || 0.0 1.7 1.0 1.5 95.8
not R BPs | 0.0 | 27.7 | 40.7 | 22.3 | 9.3 0.0 | 249 | 42.3 | 245 8.3
R but BPy | 0.0 | 27.8 | 24.9 | 20.2 | 27.1 || 0.0 0.0 0.0 0.0 | 100.0
not RS BPs | 0.0 | 30.7 | 33.5 | 26.4 | 9.4 0.0 0.0 3.7 | 228 | 73.5
po=p1 =0 BPy | 0.0 | 27.7 | 25.0 | 204 | 26.9 || 0.0 0.0 0.1 0.8 99.1
BPs | 0.0 | 30.5 | 334 | 26.3 | 9.8 0.0 0.2 8.1 | 38.1 | 53.6
R; but not R; | BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 100.0 | 0.0 0.0 0.0
R; but not R, | BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 100.0 | 0.0 0.0 0.0
R, but not R, | BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 98.7 1.3 0.0 0.0
po=p1 =0 BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 99.8 0.2 0.0 0.0
TABLE 12: Frequency (in %) of selected lag length using the portmanteau tests. The simulated
processes are of length 7" = 1000, such that R; hold but not R; and ro = 2.
Case iid errors ARCH errors
r=3 p 1 2 3 4 5 1 2 3 4 5
R; but BPZW 0.0 | 95.8 1.5 0.8 1.9 0.7 | 99.3 0.0 0.0 0.0
not Rl BPZS 0.0 | 94.0 4.6 1.4 0.0 1.2 | 784 | 144 | 49 1.1
R; but BPZW 0.0 1.3 1.1 1.3 | 96.3 || 0.7 2.1 0.7 1.8 | 94.7
not R BPlS 0.0 | 187 | 384|298 | 13.1 | 1.2 | 17.1 | 40.1 | 29.5 | 12.1
R but BPy | 0.1 1.7 2.0 2.7 1935 || 1.1 3.2 1.7 25 | 91.5
not RS BPs | 0.1 174 | 36.8 | 29.8 | 159 || 0.7 | 154 | 36.1 | 30.6 | 17.2
po=p1 =0 BPy | 0.0 2.7 3.6 4.7 1 89.0 | 0.0 | 20.6 | 15.1 | 20.5 | 43.8
BPs | 0.0 | 22.8 | 43.0 | 25.8 | 84 0.0 | 259 | 378|259 | 104
R; but not R; BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 100.0 | 0.0 0.0 0.0
R but not R; | BIC | 0.0 | 100.0 | 0.0 0.0 0.0 0.0 | 99.9 0.1 0.0 0.0
R; but not R, | BIC | 0.0 | 98.7 1.2 0.0 0.1 1.1 | 94.5 3.4 0.8 0.2
po=p1 =0 BIC | 0.0 | 99.6 0.3 0.1 0.0 0.0 | 99.9 0.1 0.0 0.0




