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This paper investigates the lag length selection problem of a Vector Error Correction Model (VECM) by using a convergent information criterion and tools based on the Box-Pierce methodology recently proposed in the literature. The performances of these approaches for selecting of the optimal lag length are compared via Monte Carlo experiments. The effects of misspecified deterministic trend or cointegrating rank on the lag length selection is studied. Noting that processes often exhibit nonlinearities, the cases of iid and conditionally heteroscedastic errors will be considered. Strategies which can avoid misleading situations are proposed.

Introduction

The Vector Error Correction Models (VECM) are often used in the statistical analysis of nonstationary variables since they allow to describe several features. In particular the cointegration analysis of equilibrium relationships between variables is much considered in theoretical research. The dominant test for determining the number of equilibrium relationships, the cointegrating rank, is the Likelihood Ratio (LR) test developed by [START_REF] Johansen | Statistical analysis of cointegration vectors[END_REF][START_REF] Johansen | Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models[END_REF]. Noting that this test depend on the specification of the deterministic part of the VECM, [START_REF] Johansen | The role of the constant and linear terms in cointegration analysis of non-stationary variables[END_REF] proposed LR tests based on his likelihood procedure for testing restrictions on the deterministic parameters. However it is well known that the likelihood inference proposed by Johansen for the analysis of the long run relationships and the deterministic terms strongly depend on the choice of the lag length. Indeed if the short run dynamics are over specified this can entail a loss of efficiency in our multivariate framework since a large number of parameters are introduced in this case. Some authors found that the LR test for the cointegrating may suffer from a substantial loss of power in such a case (see e.g. [START_REF] Boswijk | Dynamic specification and cointegration[END_REF]). If the short run dynamics are under specified the residuals become autocorrelated and the asymptotic theory underlying the Johansen's procedure breaks down [START_REF] Johansen | Likelihood-Based Inference in Cointegrated Vector Autoregressive Models[END_REF], Theorem B.13 p 251). Hence the LR test for the cointegrating rank is not valid even asymptotically in this case. One can expect the similar effects on the LR tests for deterministic parameter restrictions when the autoregressive order is misspecified. Therefore it clearly appears that the choice of the lag length of a VECM is crucial.

When a cointegration analysis is conducted the autoregressive order is usually chosen by considering an information criterion. For instance [START_REF] Cavaliere | Testing for co-integration in vector autoregressions with non-stationary volatility[END_REF] studied long run relationships between interest rates and used the Bayesian Information Criterion (BIC) to fit an autoregressive order to the data. Several papers have been devoted to the study of the performances of information criteria to find the optimal lag length of a VECM. Reference can be made to Ho and Sorensen (1996), [START_REF] Gonzalo | Specification via selection in vector error correction models[END_REF] or [START_REF] Hacker | Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH[END_REF]. These simulation investigations highlight the difficulty of choosing the autoregressive order of a VECM although the trend parameters are not taken into account in these studies. Numerous information criteria are available for the choice of the autoregressive order of VECM, as for instance the asymptotically efficient Akaike Information Criterion (AIC) or the consistent BIC. A consistent information criterion is such that the selected lag length converge to the true autoregressive order while efficiency relies on the optimal prediction error. Since in our case the main objective is to find the optimal lag length for the VECM, we restrict our attention to the commonly used BIC. Note that considering other consistent information criteria would lead to similar general conclusions.

On the other hand tests based on the autocorrelations of the residuals for checking the adequacy of the lag length in the framework of cointegrated variables have been recently proposed in the literature by [START_REF] Duchesne | Testing for serial correlation of unknown form in cointegrated time series models[END_REF], Brüggemann, [START_REF] Brüggeman | Residual autocorrelation testing for error correction models[END_REF] and [START_REF] Raïssi | Autocorrelation based tests for vector error correction models with uncorrelated but nonindependent errors[END_REF]. Some of these tests are implemented in the software JMulTi. In this paper we compare the lag length selection properties of an consistent information criterion and of the Box-Pierce methodology with possibly misspecified cointegrating rank or the deterministic terms. We focus on the portmanteau tests since the Box-Pierce methodology is routinely used for checking the adequacy of fitted models to time series. Using the properties of each of the methods for specifying the short run dynamics of a VECM, strategies which can reduce misleading choices for the lag length are presented. These strategies are proposed taking into account of possibly misspecified long run relations or deterministic terms, and also the possible presence of nonlinearities.

The remainder of the paper is organized as follows. Section 2 outlines the framework of our study and introduces the deterministic parameters restrictions. The estimation procedure for the VECM is described in Section 3. The tools used for model selection in the Monte Carlo experiments are also presented. In Section 4 the framework of our simulation experiments is given and the results are discussed. Strategies exploiting the properties of the Box-Pierce methodology and of information criteria lag length selection procedures are presented.

The following general notation is used throughout the paper. Considering a d × r dimensional matrix A, we define the orthogonal complement A ⊥ , which is a full column rank d × (dr) matrix such that A ′ A ⊥ = 0. For a given random variable a t we define a t q = (E a t q ) 1/q , where . denotes the Euclidean norm. The trace of a square matrix is denoted by Tr and the determinant by | . |.

Characterization of the model

Let us consider the following VECM

∆x t = µ 0 + µ 1 t + αβ ′ x t-1 + p0-1 i=1 Γ i ∆x t-i + ǫ t , (2.1)
where the process (x t ) is d-dimensional and ∆x t := x tx t-1 . The parameters α and β are of full column rank and of dimension d×r 0 . The Γ i 's are d×d short run parameters, and when p 0 = 1 the sum in (2.1) vanishes. The error process (ǫ t ) is commonly assumed iid Gaussian with positive definite covariance matrix Σ ǫ and such that Eǫ t = 0. However the standard assumption of iid Gaussian errors cannot take into account of nonlinear dynamics which often arise in practice. This framework is then considered to be not realistic in many situations. For instance [START_REF] Trenkler | The polish exchange rate system: A unit root and cointegration analysis[END_REF], [START_REF] Koutmos | Asymmetric volatility transmission in international stock markets[END_REF] or [START_REF] Hiemstra | Testing for linear and nonlinear Granger causality in the stock price-volume relation[END_REF] studied financial variables and found a strong evidence of nonlinear dependence in the data. Numerous models in the literature produce processes with conditional heteroscedasticity as for instance hidden Markov models (see e.g. [START_REF] Amendola | Concepts and tools for nonlinear time series modelling[END_REF]) or MGARCH models (see e.g. [START_REF] Bauwens | Multivariate GARCH models: A survey[END_REF]). Taking into account the dependence of the errors is important for testing the adequacy of linear models as pointed out by [START_REF] Francq | Diagnostic checking in ARMA models with uncorrelated errors[END_REF] or [START_REF] Francq | Multivariate portmanteau test for autoregressive models with uncorrelated but nonindependent errors[END_REF]. In addition the study of VECM in nonstandard situations has attracted much attention in the recent years. Therefore we also consider in our simulations the case of dependent but uncorrelated errors which are such that the results of the Granger representation theorem hold (see equation (2.3) below) as in [START_REF] Rahbek | ARCH innovations and their impact on cointegration rank testing[END_REF], [START_REF] Raïssi | Testing the cointegrating rank with uncorrelated but dependent errors[END_REF] or [START_REF] Hacker | Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH[END_REF].

The following restrictions on the deterministic parameters are considered

R l : µ 1 = ατ l Rl : µ 1 = 0 (2.2)
R s : µ 0 = ατ s and µ 1 = 0 Rs : µ 0 = µ 1 = 0.

Note that we do not have necessarily τ l = 0 for R l and τ s = 0 for R s or µ 0 = 0 for R l , Rl and R s , so that we have the relation Rs ⊂ R s ⊂ Rl ⊂ R l . Nested LR tests for the restrictions Rl , R s and Rs are proposed in [START_REF] Johansen | Likelihood-Based Inference in Cointegrated Vector Autoregressive Models[END_REF]. Now we discuss the consequences of the restrictions in (2.2) on the behaviour of (x t ). Suppose that α ′ ⊥ Γβ ⊥ has full rank, where

Γ = I d - p0-1 i=1 Γ i .
We also assume that the autoregressive polynomial

A(z) = (1 -z)I d -αβ ′ z -p0-1 i=1 Γ i (1 -z)z i is such that det A(z) = 0 implies that | z |> 1 or z = 1.
Under these assumptions, it follows from Granger's representation theorem [START_REF] Johansen | Likelihood-Based Inference in Cointegrated Vector Autoregressive Models[END_REF], p 49) that

x t = C t i=1 (ǫ i + µ 0 + µ 1 t) + D(L)(ǫ t + µ 0 + µ 1 t) + A = C t i=1 ǫ i + ρ 1 t + ρ 0 + Y t + A, (2.3) where C = β ⊥ (α ′ ⊥ Γβ ⊥ ) -1 α ′ ⊥
and L is the usual lag operator. The vector A depends on initial values and verifies β ′ A = 0. The process (Y t ) is linear and such that

y t = ∞ i=0 φ i ǫ t-i ,
where the power series

D(z) = ∞ i=0 φ i z i is convergent for | z |≤ 1 + κ for some κ > 0.
The vectors ρ 1 , ρ 0 are functions of the parameters in (2.1). If we suppose that R l hold, we may have ρ 1 = 0 and ρ 0 = 0 and in this case (β ′ x t ) can be composed of a stationary process plus a linear trend. We say in this case that (β ′ x t ) is trend stationary. If Rl hold, again we may have ρ 1 = 0 and ρ 0 = 0, but (β ′ x t ) is stationary. If R s hold we obtain ρ 1 = 0 but we still may have ρ 0 = 0, and in this case it is also allowed to have E(β ′ x t ) = 0. Finally the restriction Rs does not allow for any deterministic component for (β ′ x t ) and (x t ). The number of independent linear combinations β ′ x t which are such that the random walk behaviour is vanished is the cointegrating rank. In particular when r 0 = 0 there is no cointegration between the variables and model (2.1) is a vector autoregressive model for the process (∆x t ). From (2.3) the process (∆x t ) is stationary for all the restrictions, so that (x t ) is I(1). Note that we do not study the unrestricted case which produce nonstationary processes with quadratic trend since it is rarely faced in applied works. Then we see that the deterministic term and the cointegrating rank are important for the data analysis and forecasting purposes. However we will see in the next section that the specification of µ 0 , µ 1 and r 0 strongly depend on the choice of the autoregressive order.

Various tests for the cointegrating rank are available in the literature (see [START_REF] Hubrich | A review of systems cointegration tests[END_REF] for a review of such tests). The most commonly test for the cointegration rank is the LR test introduced by [START_REF] Johansen | Statistical analysis of cointegration vectors[END_REF][START_REF] Johansen | Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models[END_REF], which is shown to be asymptotically valid under quite general assumptions (see [START_REF] Rahbek | ARCH innovations and their impact on cointegration rank testing[END_REF] or [START_REF] Raïssi | Testing the cointegrating rank with uncorrelated but dependent errors[END_REF]). Using the same arguments of [START_REF] Raïssi | Testing the cointegrating rank with uncorrelated but dependent errors[END_REF] and following the proofs of corollary 11.2 and theorem 11.3 of [START_REF] Johansen | Likelihood-Based Inference in Cointegrated Vector Autoregressive Models[END_REF] it can be shown that the LR tests for the deterministic term are also asymptotically valid when the errors are dependent but uncorrelated.

Determining the autoregressive order

We first briefly describe the estimation procedure of the model (2.1). The reader is referred to [START_REF] Johansen | Likelihood-Based Inference in Cointegrated Vector Autoregressive Models[END_REF] for more details on the maximum likelihood estimation of VECM. If the errors are not assumed Gaussian, the quasi maximum likelihood is used. Let us assume that the observations x 1 , . . . , x n are available. Note that α and β are not identified in (2.1), and in case of R l and R s the parameters τ l and τ s are also not identified. In the sequel we suppose that these parameters are normalized in some appropriate way. Let us rewrite (2.1) as follow

∆x t = θξ t-1 + ǫ t , (3.1)
where

ξ t-1 = ((B ′ z t-1 ) ′ , ∆X ′ t-1 , . . . , ∆X ′ t-p0+1 ) ′ . We set B = (β ′ , τ l ) ′ and z t-1 = (x ′ t-1 , t) ′ if we suppose that R l hold but not Rl in (3.1). If Rl is hold but not R s we set B = β and z t-1 = x t-1 . We consider B = (β ′ , τ s ) ′ and z t-1 = (x ′ t-1 , 1) ′ if R s is hold but not Rs . Finally we set B = β and z t-1 = x t-1 if the deterministic
parameters are assumed to be equal to zero. The parameters in B can be estimated using Reduced Rank (RR) regression. The super-consistency of the parameters in B can be obtained under quite general assumptions on the error terms (see e.g. [START_REF] Rahbek | ARCH innovations and their impact on cointegration rank testing[END_REF] or [START_REF] Raïssi | Testing the cointegrating rank with uncorrelated but dependent errors[END_REF]). It is important to note that in the RR estimation method the process (ξ t ) is used so that the resulting estimators strongly depend on the fitted autoregressive order p > 0 which can be such that p = p 0 . As a consequence the computation of the LR tests statistics for the cointegrating rank and the deterministic terms depend on p. Therefore the choice of the autoregressive order is crucial for the cointegration analysis and the specification of the deterministic part of the model. Let

us set θ = [α, Γ 1 , . . . , Γ p0-1 , µ 0 ] if R l hold but not R s and θ = [α, Γ 1 , . . . , Γ p0-1 ] if R s hold.
Once the parameter B is replaced by its estimator in (3.1) we can compute a least squares estimator for θ. However it is clear that the estimator of the short run parameters we obtain depend on the specification of cointegrating rank and of the deterministic parameters. If we suppose that the VECM is well specified, it can be shown that these estimators are asymptotically normally distributed (see Brüggemann, [START_REF] Brüggeman | Residual autocorrelation testing for error correction models[END_REF] in the iid Gaussian case and Raïssi (2010) when the errors are dependent but uncorrelated). Now we introduce the tests used in the Box-Pierce methodology. Let us denote by ǫt the residuals obtained from the estimation stage. We define the residual autocovariances

Γǫ (h) := n -1 n t=h+1 ǫt ǫ′ t-h .
The commonly used portmanteau statistic based on the first m autocovariances is given by

Q = n m h=1 Tr Γǫ (h) ′ Γǫ (0) -1 Γǫ (h) Γǫ (0) -1 . (3.2)
This statistic corresponds to the generalization of the [START_REF] Box | Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[END_REF] portmanteau statistic in the multivariate case proposed by [START_REF] Chitturi | Distribution of residual autocorrelations in multiple autoregressive schemes[END_REF]. One can alternatively use the [START_REF] Ljung | On measure of lack of fit in time series models[END_REF] portmanteau statistic proposed in the multivariate framework by [START_REF] Hosking | The multivariate portmanteau statistic[END_REF] for potential improvements when the errors are Gaussian. Nevertheless the use of the Ljung-Box statistic lead to the same general conclusion for our study, so that we focus on the Box-Pierce (BP hereafter) portmanteau test in the sequel. The tested hypotheses for checking the adequacy of the autoregressive order are given by 

H 0 : E(ǫ t ǫ t-i ) = 0 vs H 1 : ∃ i such that E(ǫ t ǫ t-i ) = 0, i ∈ {. . . ,
(d 2 (m -p 0 + 1) -dr 0 ) distribution when m → ∞ as n → ∞.
Using this result they proposed a portmanteau test in the case of cointegrated variables.

This test will be denoted as BP S in the sequel. If we suppose that the errors are only uncorrelated and ǫ t 4+ν < ∞ for some ν > 0 and under other technical assumptions, it is shown in the framework of Rs in [START_REF] Raïssi | Autocorrelation based tests for vector error correction models with uncorrelated but nonindependent errors[END_REF], that the asymptotic distribution of the test statistic Q is a weighted sum of chi-squares. Starting from this result a portmanteau test which is robust to the possible presence of nonlinearities in the error terms is proposed. The extension to the other restrictions considered in this paper is straightforward and is described in an extended version of Raïssi (2010) available under request. This test will be denoted as BP W . In practice the RR estimators are derived for given 0 ≤ r < d which can be such that r = r 0 . It is clear from the estimation stage that the statistic Q depend on the specified deterministic term and the fitted cointegrating rank. The effects of such possible misspecifications will be studied in the next section.

To determine the number of short run dynamics to include in the model information criteria of the form

IC = log | Γǫ (0) | +(p + 1)c n /n.
are often used for a given specification of the deterministic parameters and cointegrating rank r. [START_REF] Paulsen | Order determination of multivariate autoregressive time series with unit roots[END_REF] showed that the information criterion provide a consistent estimator of p 0 if and only if c n is such that c n → ∞ and c n /n → 0. We have c n = d 2 log n for the BIC and c n = 2d 2 for the AIC, so that the BIC gives a consistent estimator of the lag length on the contrary to the AIC. Then we focus on the BIC in the sequel, noting that any other convergent information criterion will lead to the same general result. The BIC is computed for a set of possible values of p and the lag length which minimizes the BIC is selected. In general the residual empirical variance Γǫ (0) is often used for the computation of information criteria. Then similarly to the portmanteau test statistics, we see that well specifying the cointegrating rank and/or the deterministic term is important. We also note from the BIC expressions that this approach for choosing p is not intended to detect a serial correlation of the residuals or to control any error of first kind. However we can remark that the existence of the fourth moments is not needed to compute these information criteria. In the next section we compare the two approaches for the choice of p.

Monte Carlo experiments

The performances of the BIC and of the tests based on the residual autocorrelations for selecting the autoregressive order is studied. Using these results we propose strategies which combine the use of the BP methodology and information criteria for selecting the lag length, taking into account for possibly misspecified deterministic terms or fitted cointegrating rank. In a first time the framework of the experiments is described. In each of the experiments we simulated N = 1000 independent trajectories of lengths n = 100 and n = 1000 using a Data Generating Process (DGP) inspired by the canonical form of Toda (1994)

x t = ψI r0 0 0 I d-r0 x t-1 + Γ 01 ∆x t-1 + µ 0 + µ 1 t + ǫ t ,
where ψ is a scalar and d = 4. The parameters are taken ψ = 0.5, Γ 01 = -0.3I 4 and the cointegrating rank is r 0 = 2. We set µ 1 = (-0.05, -0.05, 0, 0) ′ and µ 0 = (0.1, 0.1, 0.1, 0.1) ′ if R l is hold but not Rl . The results for the case of simulated processes such that R s is hold but not Rs are not displayed since they are similar to the case µ 0 = µ 1 = 0. In the sake of conciseness the results for the restriction Rl is hold but not R s are not displayed since they lead to similar conclusions to the cases presented here. This kind of DGP is used in numerous studies (e.g. [START_REF] Hubrich | A review of systems cointegration tests[END_REF] or [START_REF] Demetrescu | Testing for the cointegrating rank of a vector autoregressive process with uncertain deterministic trend term[END_REF]). In addition the results concerning the information criteria are corroborated by previous studies. In the experiments the cointegrating rank and the deterministic terms are not necessarily well fitted, so that the consequences of such situations is analyzed. Since the number of parameters is high, a relatively large samples are taken in our experiments. Two cases are considered for the error process in the sequel. In case of iid innovations we take ǫ t ∼ N (0, I d ). To illustrate the case where the errors are dependent, we use the following ARCH model with constant correlation of Jeantheau (1998)

   ǫ 1t . . . ǫ dt    =    σ 1t 0 0 0 . . . 0 0 0 σ dt       η 1t . . . η dt    (4.1)
where

   σ 2 1t . . . σ 2 dt    =    0.1 . . . 0.1    +     0.2 0 0 0.1 0.1 0.2 0 0.1 0.1 0 0.2 0.1 0.1 0 0 0.2        ǫ 2 1t-1 . . . ǫ 2 dt-1    ,
and the process η t = (η 1t , . . . , η dt ) ′ is iid, such that η t ∼ N (0, I d ).

The autoregressive order selection strategy correspond to the case where the practitioner have no prior knowledge on p 0 . More precisely for the portmanteau tests p = 1, 2, . . . are successively tested until the null hypothesis is not rejected. However we assume that when the autoregressive order adequacy is rejected for all p ≤ 5, the model specification is suspected to be not reliable and one stop the procedure. Indeed when p takes large values the number of parameters become high beside the available observations. In such case the analysis of the linear dynamics is not reliable. In our experiments we used the asymptotic nominal level 5% for the different portmanteau tests considered in this paper. In the sequel note that if the portmanteau tests perform well, the selected p = p 0 is often around 95% since this selection procedure is based on the control of the error of first kind. Note that the BP W test is available for fixed m, while for the BP S it is assumed that m → ∞ as T → ∞. Therefore m = 5 is taken for the BP W test for T = 100 and T = 1000, while we take m = 5 when T = 100 and m = 15 when T = 1000 for the BP S test. The autoregressive order which minimize the BIC in the set {1, . . . , 5} is selected. The results are given in Tables 123456789101112.

We first analyze the results for small samples (T = 100) given in Tables 123456. It appears that the performances of the BP W test is rather disappointing. This can be explained by the fact that about 40 parameters are estimated when p = 2 and thus the number of observations is relatively small for the elaborated BP W test. In such situation the more simple BP S test provide satisfactory results. It seems that the results for the portmanteau tests are not much affected when the deterministic terms or the cointegrating are misspecified in small samples. We only remark that when a deterministic trend present in the data is not taken into account by the practitioner (Tables 456), the BP S test tends to select a too large lag length. From Tables 1-6 we see that the BIC selects a too small p. When r < r 0 is taken the BIC is likely to choose a larger autoregressive order. Therefore it seems that the use of the parsimonious BIC when the sample is small can be misleading for the analysis of VECM. Now we consider the results for large samples (T = 1000). It is found from Tables 7-12 that the BP tests perform well when the long run relations and the deterministic terms are well specified. However we note that when r < r 0 is taken, the BP tests tend to select too large autoregressive orders. If r < r 0 the estimators of the short run parameters are biased and the residual autocorrelations may appear too large as the sample increase even if p = p 0 . When r > r 0 is taken we note that the BP tests are not much affected. A possible explanation is that in this case the effect of non stationary components introduced in the model are limited by the fact that the corresponding adjustment parameters are close to zero. It is important to note that overspecified deterministic terms seems not entail a significant loss of efficiency in selecting the autoregressive order using the BP methodology. However from Tables 10-12 we see that the BP tests are clearly likely to select a too large autoregressive order when a deterministic trend is present in the observed process and is not taken into account in the model. Similarly we also found from Tables 10-12 that when deterministic trends are spuriously assumed to not enter the cointegrating relations the BP tests select too large p. When the BP tests are used and in case of doubt, it seems preferable to consider the restriction R l only for fitting the autoregressive order. In such situations the unnecessary parameters introduced in the model are few. Actually we noted no major loss of efficiency and considering such restriction allow to avoid misspecified autoregressive order. Of course as pointed out by several studies (e.g. [START_REF] Johansen | The role of the constant and linear terms in cointegration analysis of non-stationary variables[END_REF]) it is important to remove any misspecification of the deterministic term when determining the cointegrating rank. Finally it emerges that in general the BP W test is not affected by the presence of dependent errors. In some cases the BP S test tends to select too large p when the errors follow an ARCH model. This can be explained by the fact that the BP S is not intended to take into account such situations. In accordance with the theoretical, we found that the BIC choose successfully the optimal lag length when the sample is large in both standard and dependent cases. It also appears that the selected autoregressive orders do not depend much on the specification of the deterministic terms or on the fitted cointegrating rank. Nevertheless it is important to note that the use of information criteria for fitting the lag length can be quite misleading even when the sample is large. For instance we give the autoregressive order selected by the AIC criterion for the case given in Table 10. Despite the VECM is well specified, the AIC select a too large p. Results not reported here show that the AIC almost always choose a lag length p = 5 in many of the situations presented here. This is not surprising since for the AIC the more complicated models are not so penalized. Thereby this confirms that the BIC perform better than the AIC for the lag selection (see e.g. [START_REF] Cheung | Finite-sample sizes of Johansen's likelihood ratio tests for cointegration[END_REF] or Ho and Sorensen (1996)).

Conclusion

In this paper we studied the problem of the fit of the autoregressive order by comparing tools based on the Box-Pierce methodology recently proposed in the literature and information criteria commonly used in practice. Fitting an adequate autoregressive order is important for the analysis of VECM, but this task is carried out using information criteria only in general. It emerges from our study that underspecified deterministic trend or cointegrating rank can be quite misleading when using the Box-Pierce methodology for the choice of the autoregressive order p. We also found that the selection of p using information criteria does not depend much on the specification of the other parts of the model. However the use of these information criteria can be quite misleading in some cases. In general we recommend to use the information criteria together with the portmanteau tests when choosing the lag length of a VECM. When the selected autoregressive orders are close and small, then one should take the p proposed by the portmanteau tests. It is advisable to choose the p selected by the portmanteau tests since they are able to detect residual autocorrelations which can strongly affect the cointegration analysis. If the lag lengths selected by the two approaches presented in this paper are both large, it is important that the chosen information criterion is parsimonious to conclude on the reliability of the selected lag length. If the p retained by an information criterion is much larger than the p retained by the portmanteau tests, then one can suspect that the more complicated model is not penalized enough by the information criterion. On the other hand if the p selected using the portmanteau tests is much larger than the p selected by using an information criterion, one can suspect that the deterministic trend is underspecified or the fitted cointegrating rank is smaller the the true cointegrating rank.

Tables Table 1: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that Rs hold and r0 = 2. BP W 47.1 51.8 0.9 0.1 0.1 53.7 45.6 0.6 0.0 0.1 BP S 2.4 90.9 6.7 0.0 0.0 2.2 89.2 8.6 0.0 0.0 R l but not Rl BIC 98.8 1.2 0.0 0.0 0.0 98.0 2.0 0.0 0.0 0.0 Rl but not R s BIC 97.9 2.1 0.0 0.0 0.0 96.2 3.8 0.0 0.0 0.0 R s but not Rs BIC 98.1 1.9 0.0 0.0 0.0 96.5 3.5 0.0 0.0 0.0 µ 0 = µ 1 = 0 BIC 97.1 2.9 0.0 0.0 0.0 95.8 4.2 0.0 0.0 0.0 

Case

RR

  l but not Rl BIC 96.6 3.4 0.0 0.0 0.0 95.1 4.9 0.0 0.0 0.0 Rl but not R s BIC 96.4 3.6 0.0 0.0 0.0 94.9 5.1 0.0 0.0 0.0 R s but not Rs BIC 97.0 3.0 0.0 0.0 0.0 95.3 4.7 0.0 0.0 0.0 µ 0 = µ 1 = 0 BIC 96.4 3.6 0.0 0.0 0.0 94.9 5.1 0.0 0.0 0.0Table 2: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that Rs hold and r0 = 2. l but not Rl BIC 57.7 43.2 0.0 0.0 0.0 56.6 43.4 0.0 0.0 0.0 Rl but not R s BIC 56.8 43.2 0.0 0.0 0.0 55.2 44.8 0.0 0.0 0.0 R s but not Rs BIC 59.4Table3: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that Rs hold and r0 = 2.

RR

  l but not Rl BIC 48.6 51.4 0.0 0.0 0.0 44.2 55.8 0.0 0.0 0.0 Rl but not R s BIC 45.1 54.9 0.0 0.0 0.0 43.8 56.2 0.0 0.0 0.0 R s but not Rs BIC 55.5 44.5 0.0 0.0 0.0 57.1 42.9 0.0 0.0 0.0 µ 0 = µ 1 = 0 BIC 54.3 45.7 0.0 0.0 0.0 56.9 43.1 0.0 0.0 0.0Table6: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that R l hold but not Rl and r0 = 2. Rl but not R s BIC 71.7 28.3 0.0 0.0 0.0 66.0 34.0 0.0 0.0 0.0 R s but not Rs BIC 73.4 26.6Table7: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 1000, such that Rs hold and r0 = 2. l but not Rl BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 Rl but not R s BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 R s but not Rs BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 µ 0 = µ 1 = 0 BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0

R l but not Rl BIC 0

 0 

  -1, 0, 1, . . . } are commonly considered for the portmanteau tests, although the test statistics are only based on the m first residual autocorrelations. Assuming that the error process is iid Gaussian and such that ǫ t 4 < ∞, Brüggemann,[START_REF] Brüggeman | Residual autocorrelation testing for error correction models[END_REF] showed that the asymptotic distribution of the statistic in (3.2) can be approximated by a χ 2

Table 4 :

 4 Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that R l hold but not Rl and r0 = 2.

		Case			iid errors				ARCH errors		
	r = 2	p	1	2	3	4	5	1	2	3	4	5
	R l but not Rl Rl but not R s	BP W l BP S l BP W l BP S l	0.2 98.5 1.1 0.1 0.1 0.0 94.4 5.6 0.0 0.0 0.2 97.4 1.7 0.2 0.5 0.0 90.9 9.1 0.0 0.0	2.7 94.3 2.1 0.7 0.2 0.0 89.4 10.5 0.1 0.0 2.7 94.6 1.7 0.3 0.7 0.0 87.6 12.3 0.1 0.0
	R s but not Rs	BP W 21.3 76.7 1.6 0.1 0.3 26.3 71.6 1.5 0.3 0.3 BP S 0.5 92.6 6.9 0.0 0.0 0.3 82.6 16.9 0.2 0.0
	µ 0 = µ 1 = 0	BP W 16.6 81.6 1.4 0.2 0.2 21.7 76.4 1.4 0.3 0.2
		BP S	0.4 91.6 7.9 0.1 0.0	0.2 83.5 16.1 0.2 0.0
	R l but not Rl	BIC 89.									

Table 5 :

 5 Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 100, such that R l hold but not Rl and r0 = 2.

		Case			iid errors				ARCH errors		
	r = 1	p	1	2	3	4	5	1	2	3	4	5
	R l but not Rl Rl but	BP W BP S BP W	0.2 97.4 1.8 0.3 0.3 0.0 94.1 5.9 0.0 0.0 0.2 96.8 2.1 0.4 0.5	2.7 95.1 1.8 0.4 0.0 0.0 91.8 8.2 0.0 0.0 2.7 95.0 1.6 0.3 0.4
	not R s											

Table 8 :

 8 Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 1000, such that Rs hold and r0 = 2.

		Case			iid errors				ARCH errors	
	r = 1	p	1	2	3	4	5	1	2	3	4	5
	R l but not Rl Rl but	1.7 0.0 35.8 39.4 18.5 6.3 2.5 3.3 92.5 0.0 BP W 0.0 0.0 32.6 41.7 19.1 6.6 3.7 2.2 3.0 91.1 BP S BP W 0.0 1.9 2.4 3.3 92.4 0.0 3.6 2.3 3.0 91.1
	not R s	BP S	0.0 35.4 39.7 18.5 6.4	0.0 32.5 42.0 19.0 6.5
	R s but not Rs	1.9 0.0 36.0 39.6 17.9 6.5 2.4 3.3 92.4 0.0 BP W 0.0 BP S 0.0 32.7 42.3 18.8 6.2 3.7 2.2 3.0 91.1
	µ 0 = µ 1 = 0	BP W 0.0	1.6	2.6	3.1 92.7 0.0	3.6	2.1	3.2 91.1
		BP S	0.0 35.8 39.7 18.2 6.3	0.0 32.8 42.5 18.2 6.5

Table 9: Frequency (in %) of selected lag length using the portmanteau tests. The simulated processes are of length T = 1000, such that Rs hold and r0 = 2.

Case

iid errors ARCH errors r = 3 p 1 2 3 4 5 1 2 3 4 5 R l but BP W 0.0 95.7 1.4 0.9 2.0 0.0 96.5 1.4 0.7 1.4 not Rl BP S 0.0 94.3 4.6 1.1 0.0 0.0 93.2 5.7 1.0 0.1 Rl but BP W 0.0 95.8 1.4 0.7 2.1 0.0 96.2 1.2 1.0 1.6 not R s BP S 0.0 94.4 4.5 1.0 0.1 0.0 92.7 6.2 1.0 0.1 R s but BP W 0.0 95.8 1.4 0.7 2.1 0.0 96.0 1.5 0.9 1.6 not Rs BP S 0.0 94.4 4.5 1.1 0.0 0.0 92.7 6.2 1.0 0.1 µ 0 = µ 1 = 0 BP W 0.0 95.8 1.4 0.8 2.0 0.0 96.1 1.4 0.8 1.7 BP S 0.0 94.0 5.0 1.0 0.0 0.0 93.0 5.9 1.0 0.1 R l but not Rl BIC 0.0 100.0 0.0 0.0 0.0 0.1 99.9 0.0 0.0 0.0 Rl but not R s BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 R s but not Rs BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 µ 0 = µ 1 = 0 BIC 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0