
HAL Id: hal-00745847
https://hal.science/hal-00745847

Submitted on 26 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Oriented Autonomic Multimodal Interaction in
a Pervasive Environment

Pierre-Alain Avouac, Philippe Lalanda, Laurence Nigay

To cite this version:
Pierre-Alain Avouac, Philippe Lalanda, Laurence Nigay. Service-Oriented Autonomic Multimodal In-
teraction in a Pervasive Environment. ICMI 2011 - International Conference on Multimodal Interfaces,
Nov 2011, Alicante, Spain. pp.369-376, �10.1145/2070481.2070552�. �hal-00745847�

https://hal.science/hal-00745847
https://hal.archives-ouvertes.fr

Service-Oriented Autonomic Multimodal Interaction

in a Pervasive Environment

Pierre-Alain Avouac, Philippe Lalanda and Laurence Nigay
Université Joseph Fourier Grenoble 1

Laboratoire d’Informatique de Grenoble LIG UMR 5217, Grenoble, F-38041, France

{Pierre-Alain.Avouac, Philippe.Lalanda, Laurence.Nigay}@imag.fr

ABSTRACT

Heterogeneity and dynamicity of pervasive environments require
the construction of flexible multimodal interfaces at run time. In
this paper, we present how we use an autonomic approach to build
and maintain adaptable input multimodal interfaces in smart
building environments. We have developed an autonomic solution
relying on partial interaction models specified by interaction
designers and developers. The role of the autonomic manager is to
build complete interaction techniques based on runtime conditions
and in conformity with the predicted models. The sole purpose
here is to combine and complete partial models in order to obtain
an appropriate multimodal interface. We illustrate our autonomic
solution by considering a running example based on an existing
application and several input devices.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces

General Terms
Algorithms

Keywords

Multimodal interaction, service-oriented components, autonomic
computing, model-based engineering.

1. INTRODUCTION
The pervasive computing area has recently gained major
importance from both industry and academia and is changing the
way we interact with our environment [20, 16]. This computing
domain emphasizes the use of small, intelligent and
communicating everyday life objects to interact with the
computing infrastructure. These devices tend to blend in their
environment. This is especially true in homes and buildings where
new electronic devices such as photo frames aim to be decorative
as well as powerful in terms of interaction. This new equipment
has the ability to communicate with other devices, to configure
itself, and perform context-based cognitive and physical actions.
The vision of coordinated or cooperating devices teaming up
transparently to provide human beings with services of all sorts is
actually getting closer and closer. However, the main part of the
research effort has focused so far on providing hardware that can
actually enable such interactions and on developing ad-hoc
software solutions for predefined devices (e.g., controlling the
home’s lighting or the TV with a mobile phone). Consequently,

plenty of electronic devices providing these kinds of features are
already commercialized, whereas very few interesting
applications take full advantage of this new infrastructure. Indeed,
the complexity of building software that can actually benefit from
these devices is often underestimated. Usual software engineering
techniques and tools are not suitable. Indeed several software
engineering challenges remain to be solved before fulfilling the
vision of a true pervasive world. Notably the high degree of
dynamism, distribution, heterogeneity and autonomy of the
electronic devices involved raises important challenges. The
envisioned environment is open to dynamic connections: devices
may enter and leave the network spontaneously, providing
context-dependent features (e.g. according to user’s activity). It is
also open to heterogeneous devices: protocols and devices’ types
differ according to application domains and service providers.

It is envisioned that, in the mid-term, devices and applications will
disappear from the users’ awareness. Users will then reason in
terms of services and no longer in terms of concrete computing
elements. At the same time, it is foreseeable that unimodal, well-
identified interfaces will also disappear. Users will simply express
their needs or desires with any available interaction modalities
and the environment and its objects/devices will react
accordingly. As defined by Oviatt [13]:

“Multimodal interfaces process two or more combined
user input modes in a coordinated manner with
multimedia system output. They are a new class of
interfaces that aim to recognize naturally occurring
forms of human language and behavior, …”

Multimodal interfaces fit well in the pervasive landscape. They
offer a more natural/efficient way for users to interact with
device-stuffed environments by means of speech, gestures or
other interaction modalities. They also leave the ability for
humans to use a variety of modalities to interact with an
application, depending on the context (e.g. availability and
reliability of interaction devices, user’s mood, etc.). Moreover
multimodal interfaces have been demonstrated to offer better
flexibility and reliability than WIMP interfaces (interfaces based
on Windows, Icons, Menus, Pointing device) [14].

The dark side of multimodal interfaces in pervasive environments
is their management complexity. Recent work has proposed
component-based or agent-based frameworks to support the
development of such interfaces [3, 17]. These approaches are
based on the definition of an interaction modality as the coupling
of an interaction device with an interaction language (i.e., a set of
transformations of raw data from input devices). These
approaches allowed a better separation of concerns, clearly
distinguishing functional aspects like data fusion and non-
functional aspects like communication and synchronization. Most
of these approaches are however not flexible enough to deal with
highly dynamic environments where interaction devices,
applications, and the way multimodal interactions take place, are
rapidly evolving. We thus believe that, one of the great challenges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICMI’11, November 14–18, 2011, Alicante, Spain.
Copyright 2011 ACM 978-1-4503-0641-6/11/11...$10.00.

of multimodal interfaces in pervasive environments, is to build
reliable and autonomic processing systems able to analyze and
understand multiple communication means and reconfigure itself
in real-time.

In this paper we present an autonomic framework for the
development and runtime management of input multimodal
interfaces in pervasive environments. Our discussion will
concentrate on input (i.e., from the user to the system) although
our model holds for output as well. Nevertheless we did not test
our approach for output so far. This framework leverages recent
advances in service-oriented components [15, 17] and in model-
based engineering. The paper is organized as follows. First we
recall the key characteristics of pervasive multimodal interfaces.
We then present our framework by describing the execution
machine, the multimodal process and the autonomic manager. The
autonomic manager is driven by partial models to manage
multimodal processes: we present the two types of models that we
defined and in particular the interaction model. We conclude with
a simple example that illustrates how the autonomic manager
works.

2. PERVASIVE MULTIMODALITY
Pervasive computing systems typically consist of multiple devices
and software entities that are capable of interacting with one
another. Various types of software-equipped devices may be
available for various purposes, such as for interaction with the real
environment (i.e., interaction output/input device), providing
display and control services to users, or for exposing data and
application interfaces to other devices. The main challenge of the
pervasive computing domain is to provide coherent pervasive
environments, offering useful applications and services, based on
an entanglement of heterogeneous, distributed and dynamic
devices and software services, communicating via various
technologies and protocols. In this context, several characteristics
specific to pervasive devices make this domain appealing from a
business and customer perspective, while raising difficult
problems for system development, runtime interactions and
management practices. Such device properties include:

• Distribution. Devices are typically scattered across the physical
environment and are accessible via various communication
protocols, generally over a wireless communication support.

• Heterogeneity. A vast range of devices, software technologies
and communication protocols are currently available for the
pervasive computing domain. A common consensus on uniform
and compatible implementations is not presently foreseen: today,
more than fifty candidate protocols, working groups and standard
specifications for home networking already exist for providing
communication and interoperation between access and indoor
networks (e.g., ZigBee, HomePlug).

• Plural authority. Devices present in a pervasive environment
generally belong to different vendors. In addition, applications
deployed and run on such devices may be provided by yet
different vendors and may require cooperation with other services
and/or devices. In this context, it is foreseeable that equipment
vendors and service providers will prefer to maintain a certain
control over their devices and software and may consequently
limit access requests from external entities.

• Dynamism. Availability of devices is by far the most volatile in
pervasive systems with respect to other computing system types.
This is due to several facts, including: i) users may freely and
frequently change their locations and hence the locations of the
devices they carry; ii) users may voluntarily activate and

deactivate devices, or devices may unexpectedly run out of
battery; iii) users and providers may periodically update deployed
software services.

In addition to device and software dynamism, pervasive systems
are constantly confronted with the evolution of their execution
contexts. This may include modifications in the user’s current
behavior, location, mood, or general routine, as well as changes in
other software applications’ availability and behaviors. Another
important characteristic of pervasive environments is the
generally limited resource availability on the physical execution
platforms involved. Typically, in the home context, software
applications will run on a small gateway, with little memory space
and low processing capabilities. Finally, an essential requirement
for any successful pervasive system is the simplicity of operating
and managing the system, by users not necessarily knowledgeable
in the computer science domain. Furthermore, privacy, security
and safety concerns represent major challenges for the pervasive
computing community.

Technically speaking, pervasive computing is today much
influenced by recent advances in service-oriented computing.
Service-oriented Computing (SOC) has recently appeared in the
software engineering landscape. The very purpose of this reuse-
based approach is to build applications through the late
composition of independent software elements, called services.
Many smart devices are today exposed as services. More
precisely, their capabilities are described and dynamically
published by service providers; at runtime they are chosen and
invoked by service consumers. This is achieved within a service-
oriented architecture (SOA), providing the supporting
mechanisms. Service orientation brings major software qualities.
It promotes weak coupling between consumers and providers,
reducing dependencies among composition units. Late binding
and substitutability improve adaptability. Since a service can be
chosen or replaced at runtime, it is possible to optimize the way
requirements are met. A number of implementations have been
proposed in the last years. Web Services (www.w3c.org), for
instance, represent a solution of choice to expose software
applications on the Web. UPnP (www.upnp.org) and DPWS
(Devices Profile for Web Services) are heavily used in order to
implement volatile devices. OSGI (www.osgi.org) and iPOJO
(www.ipojo.org) provide advanced dynamic features that are
exploited to build component-based pervasive applications.

Service orientation brings in solutions to deal with environment
dynamicity. It also allows the development of more flexible
software, regarding the core functions (the functional core
component of the Arch software architectural model [1]) or the
interaction functions (the interaction components of the Arch
model [1]). However, these solutions are still complex, hard to
manage and heterogeneous. Devices and applications still belong
to different authorities and there is no real hope to see reifying
standards in the short term.

The presented characteristics and desired properties of pervasive
environments and applications must be taken into consideration
when building and administering pervasive multimodal interfaces.
Most importantly, the dynamicity property and requirement must
be constantly dealt with by adapting pervasive systems to internal
and external modifications. Such modifications may include
changes in a system’s constituent services and execution platform,
or into its constantly evolving physical and social context (e.g.
availability of resources, or user’s location, habits and
preferences). In the pervasive computing context, system
adaptation should remain largely transparent to users, while

http://www.w3c.org/
http://www.upnp.org/
http://www.osgi.org/
http://www.ipojo.org/

seamlessly coping with resource heterogeneity, distribution and
plural authority. As such, necessary management operations
should require minimum human intervention, while meeting
specific performance and dependability constraints.

Multimodal interfaces should then be designed to adapt easily to
different contexts, user’s profiles and application needs.
Adaptability is always a challenging requirement. It requires first
to prepare adaptation points in the code, which can be at different
levels of abstraction (parameter, function, object, component,
etc.). It also requires the definition of a language to specify the
possible runtime adaptations. Finally, it requires some intelligence
to decide when, how and where in the code to adapt multimodal
interfaces. In pervasive multimodal interfaces, this intelligence
cannot be entirely provided by end-users who are not supposed to
play a heavy administrative role. Adaptations have to be
undertaken by the system itself, in conformance with the users’
current goals. As a consequence, the system has to be able to deal
with a great range of computing elements, being input interaction
devices or applications, with little help from users.

3. APPROACH: DYNAMO
The autonomic computing initiative [9] aims to limit the need for
human intervention in computer management processes by
enriching software applications with self-management
capabilities, such as self-building, self-optimization, self-
configuration, self-repair and self-protection. Conforming to this
approach, autonomic management abilities would enable software
applications to seamlessly and transparently self-adapt to their
changing environments and evolving business goals. Therefore,
autonomic computing seems to provide a viable solution to the
difficult concerns and constraints specific to the pervasive
multimodal interfaces.

Figure 1. Overall approach

In that spirit, we have developed a complete suite for the
development, execution and management of multimodal
processing, called “DynaMo” (Dynamic multimodality). The
management is autonomic in the sense that the whole multimodal
processing system is generated and maintained at runtime by an
autonomous manager. The processing system is modular. It is
made of service-oriented components in interaction.

As illustrated by figure 1, our purpose is to clearly separate the
multimodal processes, the volatile input interaction devices
joining and leaving the environment, and the applications that
may also appear or disappear dynamically. The schema highlights
the main architectural elements of DynaMo, which are:

• The execution machine supporting multimodal processes.
The purpose of this machine is to provide a flexible, context
aware runtime environment. It is based on iPOJO, a dynamic
service-oriented component framework built on top of OSGi.
The goal of this machine is also to monitor the environment in
order to trace any computing evolution.

• The multimodal process itself. Input interaction modalities
are developed and executed with a dedicated component
model. The purpose of this domain-specific component model
is to provide the right level of abstraction for developers and
maintainers of multimodal interfaces. Low-level technical
aspects like synchronization are hidden away by the model.

• An autonomic manager whose purpose is to build and
manage the multimodal interfaces. To make its decisions, it
uses contextual information provided by the execution
machine. It builds multimodal interfaces through the
composition of pre-defined components conforming to the
component model presented above.

These three architectural elements of DynaMo are presented in
detail in the next subsections.

3.1 Execution machine
The purpose of the execution platform is twofold. First, it is a
supporting infrastructure for the execution of dynamic, component
based applications. Then, it also monitors the environment and
integrates the discovered entities seamlessly within the running
applications. In particular, the execution machine captures
services arrival and departure. Services expose both input
interaction devices and applications.

As illustrated by figure 2, the execution machine is built on top of
OSGi and iPOJO, the Apache service-oriented component model,
and ROSE, available on ObjectWeb [2]. ROSE is an OSGi-based
open source middleware dealing with distribution. It includes
communication drivers for different technologies (Web Service,
DPWS, UPnP) and is able to trace the availability of services.
ROSE builds and maintains an advanced service registry. Service
registries play an important role in service-oriented architectures,
allowing late-binding and weak-coupling. It is a means for
providers to publish their services and consumers to be aware of
available services and, possibly, select one of them for execution.
Each service technology has a particular standard for the registry.
Web Services, for instance, are described on WSDL files and
published in UDDI compliant registries. In our architecture, we
have introduced an advanced registry, which supports many
service technologies and a detailed description of services
including functional and non-functional properties. The very
purpose of this advanced registry, of course, is to support the
dynamic selection of services.

Figure 2. Execution machine

Finally, the principle of this advanced registry is to have a global
view of the runtime environment. The registry is updated
regularly by the work engine and ROSE according to the arrival
and/or the departure of the services. More precisely, it is
implemented by a set of registries enhanced with service runtime
properties. A registry contains the information for a particular
technology. This advanced registry is defined in the model-driven
engineering articles as a runtime model [6]. The main advantages
of using a runtime model are 1) to store only the relevant
information required for selection 2) to hide the technological

characteristics of concrete services and 3) to hide the dynamic
context with arrival and departure of services. In addition, since
the runtime model is modular, with a clear separation between
functional and security concerns, it can be extended. In fact, we
could support new non-functional properties such as quality of
service with non-functional runtime extensions linked to the
functional part of the global runtime model.

OSGI, iPOJO, and ROSE are all heavily used and validated in
industrial applications. The execution machine integrating these
technologies is very robust and used by our industrial partners
(Schneider Electric and France Telecom in particular).

3.2 A domain-specific component model
The activity of integrating disparate information sources in a
timely fashion is known under the name of mediation. Mediation
has been historically used to integrate data stored in IT resources
[12]. Recent work has been using mediation to allow
interoperation between applications and services [7]. Service
mediation implements all the operations that are necessary to
enable the actual communication within service-based
applications. The most common functions to be provided are:

• Communication. The primary purpose of mediation is to
enable applications and devices using different
communication protocols to interoperate. This is implemented
by means of protocol transformations as in a network bridge.
This function can also play the role of a broker, hiding for
instance the applications network addresses.

• Synchronization. Time is a major aspect in mediation. Data
shared by different elements have to be time-stamped,
organized, synchronized.

• Syntactic alignment. The purpose of this function is to align
data formats. This can be done between each application or
through an intermediary format. In the latter case, the number
of data transformations to be made is obviously reduced.

• Semantic alignment. The purpose of this function is to align
data semantics. In the absence of recognized and used
standards, applications develop different ontologies to
represent (static and dynamic) knowledge.

• Non-functional properties. The purpose of this function is to
ensure certain quality properties in the application exchanges,
as for instance security or availability.

These functions are obviously at the heart of multimodal
processes. As a matter of fact, developing a multimodal interface
requires dealing with communication, synchronization, alignment
and non-functional aspects.

Encapsulating mediation operations in dedicated software is
clearly a good practice. Indeed mediation software provides a
single point of interface to the different applications implied in the
communication. This reduces the number of connections needed
and facilitates change management. Mediation also provides an
isolation layer from software details and, if appropriately
configurable, permits the quick and cost-effective development of
new applications. The mediator layer improves reusability and
evolution of applications. It also permits the transparent addition
of new QoS properties such as security and reliability.

Modern mediation frameworks are modular, mostly based on
component-based engineering. They however lack flexibility.
Adaptation in the mediation process generally requires stopping
and restarting the process, which is hardly acceptable in pervasive
environments. In order to deal with dynamic mediation as needed

for multimodal processes, we have developed a domain-specific
component model called Cilia. A mediation process in Cilia is a
set of components interacting in a loosely coupled way through,
but not limited to, event-based protocols. As with any component-
based model, Cilia relies on two main models, the specification
model and the composition model. The specification model is
used to define components. The composition model defines the
way components are combined. Components are specified at
development time. They are made of three java classes and an
XML-based specification. More precisely, a component includes
the following Java classes (figure 3):

• A scheduler class. The purpose of this constituent is to
synchronize data reception. It intercepts incoming data, store
them and initiates their processing. The processing decision
can be time-based, content-based or, any other condition in
relation with the mediation context.

• A processor class. The processor performs the mediation
algorithm per se. When notified by the scheduler, it processes
the collected data and passes them to the dispatcher.

• A dispatcher class. The dispatcher receives the processed
data from the processor. This constituent decides on the data
destination and triggers their delivery. The dispatcher choice
is a logical destination because of loosely coupled relations
between mediators.

Figure 3. Component model

Developers of a mediation process concentrate on the processor
class where they express the way data should be processed. The
scheduler and dispatcher can also be entirely specified but are
generally simply reused. Most frequent operations like periodic
consumption are provided. Moreover we defined generic
mediation processes that include fusion algorithms as defined in
multimodal interfaces. Such mediation processes represent high-
level reusable abstractions. They correspond to generic composition
operations, defining elementary temporal fusion operations,
independent from devices, modalities and application tasks. To
define such mediation composition operations we draw on the
CARE properties [19]. The CARE properties were proposed as a
simple way of characterizing and assessing aspects of multimodal
interaction: the Complementarity, Assignment, Redundancy, and
Equivalence that may occur between the interaction modalities
available in a multimodal interface. We define mediation operations
related to Redundancy and Complementarity of CARE.

Mediation components are connected through typed ports.
Bindings are also defined at development time. A binding
specification describes how communication is established.
Binding specifications are independent of mediators logic, thus
mediators could use any binding specification, essentially event-
based and RPC based. Figure 4 provides a simplified example
where three mediation components are used to allow a multimodal
interaction with an embedded application. Each mediation
component is composed of three parts as defined in figure 3. The
middle parts of the mediation components correspond to
alignment and fusion code provided by the interface developers.
Such an example could correspond to the combination of speech
commands with gestures on a tactile surface to control a
multimedia player: one complementary mediation component is

used to combine speech and gesture events processed by two
mediation components.

Figure 4. Example of mediation chain

Figure 5 presents the Cilia stack, detailing the computing
responsibilities of each layer. Cilia has been developed in iPOJO
(more precisely, a component specification is transformed into a
set of iPOJO components). Cilia is fully adaptable: it provides
interfaces allowing us to add, remove, replace, configure a
mediation component at runtime. To do so, the Cilia execution
framework maintains internal states and deals with components
quiescence. This means that, when a component is replaced, the
new component gets the state of the replaced one (i.e., the data to
be processed).

Figure 5. Cilia execution stack

Regarding quiescence, computing threads are controlled at a fine
grain: a component can be changed or replaced only when there is
no running client (proxies are used to intercept calls to a
component to be replaced).

3.3 Autonomic manager
The runtime management of a pervasive application requires the
use of some sort of autonomic capabilities. Obviously, an
application cannot be dynamically updated by a user who is
supposed to be unaware of the surrounding infrastructure.

Autonomic systems are usually structured according to a simple
reference architectural model introduced by IBM [10]. This
reference architecture clearly defines two distinct entities: the
managed artifacts and an autonomic manager. Managed artifacts
are the software entities that are automatically administered in an
autonomic element. The autonomic manager is the module in
charge with the run time administration of the managed artifacts.
Managed artifacts provide specific interfaces, called control points
or touch points, for monitoring and adaptation.

Here the managed artifacts are clearly the mediation chains
realizing the multimodal interactions. The purpose of the
autonomic manager is to create and adapt the multimodal
interactions, using the dynamic capabilities of the underlying
component model (Cilia). It is driven in its decisions by high level
goals set by the users (or by an initial administrator). A user can
choose an interaction policy at runtime. For now, a user can
choose between two predefined interaction policies: simple and
bind-all. If the simple policy is selected, the autonomic manager
tries to connect each task of the application to sensors of the
devices. With the bind-all policy, the autonomic manager tries to
connect all available sensors to tasks of the application. This
policy likely implies that different modalities are defined for a

given task (i.e., equivalence of modalities for a given task as
defined by the CARE properties). The selection of the interaction
policies is made through the DynaMo-settings graphical interface.

The autonomic manager is reactive: when a modification occurs
in the environment, it computes a new mediation chain or adapts
the current one. Similarly, if the user changes the interaction
policy, the mediation chain is changed or adapted. Adaptations
can be done globally, that is at the mediation chain, or at the
component level. Impacts of a modification are actually well
delimited from an architectural point of view. On the one hand,
the multimodal process is decoupled from the autonomic manager
and, on the other hand, devices and applications are simply not
aware of the mere existence of the multimodal processes.

From the users’ point of view, the impacts of modification are
obviously more important. First, the time needed to completely
change an interaction is about 3 seconds (for up to 15 mediation
components). It is less than 1 second when a single component is
removed or replaced. The biggest impact is obviously due to the
change in the way interactions are conducted. A new device is
used or the same device is used differently. Of course, the
adaptation is supposed to better serve the user and her/his
interaction preferences.

Figure 6. Model-driven autonomic management

The autonomic manager contains the domain-specific knowledge
needed to appropriately create and update mediation chains. In
most autonomic systems, this knowledge is encoded in rules and
thus is not really explicit. Recently, several studies have used
explicit models in order to specify the autonomic manager
knowledge or constraints [8]. In particular, architectural models
are used as a basis for system construction and update. The
purpose of the autonomic manager is here to maintain consistency
between a target architectural structure, generally made of
collaborating components, and the actual structure of a running
system. Models make explicit global and local properties. It is
possible to use more generic autonomic managers that are easier
to understand and maintain.

This latter approach is limited to domains where clear reference
architecture can be defined. This is usually not the case for
multimodal interfaces in very dynamic settings: we cannot define
a reference architectural model of the mediation chain for
multimodal process. Based on the architectural work in the Arch
model [1], we have defined an alternative approach where the
autonomic manager manipulates incomplete models, named
interaction models. These interaction models are specific to
devices and applications. The purpose of the autonomic manager
is then, depending on the runtime context, to relate the interaction
models of the devices and applications in order to define the
architecture of the mediation chain. These interaction models are
presented in detail in the following section.

We conclude the presentation of the autonomic manager by
considering the users’ involvement in the whole process. Users

are involved at different stages. First, they select the high level
goals (i.e., interaction policy) driving the autonomic manager.
Users also decide on the applications to be controlled through
multimodal interaction and, somehow, on the available devices
(turning them on or off for instance). Moreover a major aspect of
autonomic computing is the feedback provided by the system to
the administrators or the users. In our case, appearance and
disappearance of a service (i.e., an application or a device) are
notified to the user by a pop-up window. Also, semantic
alignment allows a device dedicated to a task to be bound to that
task, if this task is present in the controlled application. The main
limit so far concerns observability by the user of an interaction
modality. We provide partial observability of the available
modalities by graphically displaying which sensors of the devices
are connected to the tasks of the current active application.
Although this representation is updated each time a change occurs
in the multimodal process, it is only useful for simple cases (e.g.,
a press button of a device to trigger a simple action of the
application). For complex cases with complementary modalities
and equivalent modalities for a given task, the representation is
too partial to be useful. Information from the mediation chain is
accessible and further work must be done to define the way to
present the interaction modalities. We focused so far on designing
and developing our DynaMo framework, but DynaMo clearly
defines a good candidate platform for studying and experimenting
this aspect of dynamic multimodal interfaces.

4. MODELS
As previously indicated, the autonomic manager is driven by
partial models to manage multimodal processes. These models
store and make explicit most of the information necessary to
generate interactions. Two kinds of models are defined: proxy
models and interaction models. This separation has been done in
order to target the two different stakeholders: developers and
interaction designers. Indeed for developing a multimodal
application with DynaMo, developers first create proxies (in Java)
for the applications and the interaction devices as well as their
proxy models. Interaction designers can then define interaction
models for these applications and devices. Interaction models are
expressed in an xml language and we provide a graphical editor to
define such interaction models.

Proxy models defined by developers are attached to applications
and devices. A proxy model contains information about the
process that is used by the discovery manager in the execution
machine (see section 3.1). From this information, the discovery
manager is able to track the corresponding applications or devices
and start its corresponding proxy. The model also contains
information about the protocols and ports to be used to
communicate with other devices and about provided data types.
Based on this information, the autonomic manager can connect
the endpoints of a mediation chain to the proxies. If a data type is
a number (float or integer), an interval has to be provided. An
interval is composed of a lower bound and an upper bound. This
information enables the autonomic manager to adapt intervals at
runtime by inserting an adaptor between incompatible intervals.
For example, if a device provides numbers in the interval [-180,
+180], and a connected application task handles numbers in the
interval [0, +100], the automatically inserted adaptor does a linear
transformation for each value between these two intervals. Figure
7 shows the meta-model of the proxy models.

Interaction designers, now, specify one or several interaction
models for each proxy. Such an interaction model defines the way
an application or a device can be used from an interaction point of

view. Because such a model relates to a single proxy, it only
describes a partial interaction that has to be completed by the
autonomic manager. Interaction models contain information about
data semantics, data processing and data path. Semantics-related
knowledge is important for the autonomic manager in order to go
beyond type alignments. Through data processing, an interaction
designer is able to enhance an interaction by adding tasks to an
application, synchronizing data and so on. For example, if a media
player application proposes a task to control sound volume
through a number, then the interaction designer can add a task that
mutes the volume. A data path is a series of functions that data
will pass through. Figure 7 shows the meta-model of the
interaction models.

Figure 7. Proxy (left) and interaction (right) meta-models

It is to be noted that defining semantics without any guidance
does not really make sense because the autonomic manager needs
to match meanings defined in the different interaction models.
Several interaction classes have been predefined. An interaction
class defines several meanings that make sense together. An
interaction model references one interaction class, so only the
meanings of this class can be attached to data of this model. For
instance in the example of the following section, we use the
interaction class named MediaPlayer that defines meanings
including Pause and Mute (figure 10) and the interaction class
GamePad including the meanings Up and Down.

In order to ease data processing definition, a predefined library of
processing functions is provided. The interaction designer
declares which function has to be used and provides a
configuration for the function. For example, a triggering function
sends an event as soon as it receives a value greater than a
configured maximum value. Moreover generic composition
functions (e.g., temporal fusion) based on the CARE properties
[19] are provided. These functions are specific to the interaction
domain. They have been crafted with reuse concerns in mind. The
functions are implemented by components. Thus, the interaction
designer specifies a partial interaction by declaring which base
components to use, configuring them and binding their ports
together in the graphical editor. At this stage of the specification,
data types can generally be ignored because the autonomic
manager will be able at runtime to infer each port data type. This
inference leads to a completion of the component configuration,
and adds a data type converting component if necessary.

Specifying a partial interaction by assembling and configuring
several domain-specific components facilitates the work of the
interaction designer. This approach maximizes reusability by
providing generic components, decreases technical difficulties by
hiding implementation details. These models are conformed
through instantiation to their corresponding meta-model. The
autonomic manager relies on a general meta-model that integrates
these two meta-models and notably includes relation between
proxies, partial interactions and component library.

5. ILLUSTRATIVE EXAMPLE
The following example shows how the autonomic manager deals
with two devices and two applications. The first application is a
media player software, named VLC (www.videolan.org/vlc). The
second application is a sudoku game (KSudoku,
http://games.kde.org/game.php?game=ksudoku). VLC and
KSudoku can receive commands through an inter-process
communication system, named D-Bus (dbus.freedesktop.org). The
first device is a Blu-ray remote control, namely BD Remote
Control (or BDRC). The second device is a controller for a video
game console, namely Wii Remote (or Wiimote). The two devices
use the Bluetooth protocol to send data. Figure 8 shows an excerpt
of the proxy models of VLC and the two devices.

Figure 8. Excerpt of the proxy models

The example follows this scenario: “Alice has previously used
DynaMo. She wants to watch a movie. She starts VLC and
activates her BDRC. Bob comes and talks to Alice, so she pauses
the movie. Later, when the BDRC runs out of power, she activates
her Wiimote. Finally, she found the movie boring, so when Bob
comes to ask something, she just mutes the sound volume to
answer. She then finally decides to play Sudoku, with the Wiimote

that she is holding”.
From the autonomic manager point of view, it receives a
discovery notification about VLC, hence it downloads the VLC
binary proxy from the repository and starts it. Since no device is
discovered, no mediation chain is generated. Then, it receives a
discovery notification about the BDRC. It starts the BDRC proxy.
Now, a mediation chain can be generated. Amongst the
interaction models of BDRC and VLC, it selects the two that use
the same interaction class, namely the MediaPlayer interaction
class. It instantiates the components declared in the interaction
models, and binds mediators of each interaction if their semantics
match. When Alice pushes the pause button, a data is sent by the
BDRC. The proxy gets the data and passes an event to a mediator.
The event follows a path through the mediation chain and is
received by the pause port of the VLC proxy. The proxy calls the
pause task on VLC. As soon as the autonomic manager is notified
of the Wiimote discovery, it starts the proxy. No interaction class
of VLC and Wiimote interaction models matches each other. The
autonomic manager generates the same mediation chain plus a
part that connects the Wimote proxy to the VLC proxy. This new

part is created only from information about data type, because it
does not have any semantic information. Finally, when the BDRC
runs out of energy, the autonomic manager is notified, and
generates the same mediation chain without the BDRC part.
Finally when Alice starts the KSudoku game, the corresponding
binary proxy is started. Since both KSudoku and Wiimote have an
interaction model of the same class, namely GamePad, the
manager will instantiate the components declared in the
interaction models of the GamePad class. For the Wiimote, the
GamePad interaction model declares in particular that the
accelerometer coupled with a gesture recognition has the
meanings up and down of the GamePad class. Alice can then
perfom vertical movements with the Wiimote to change the
selected cell in the Sudoku.

Figure 9 presents excerpts of partial interaction models for VLC
and BDRC. The matching interaction class is MediaPlayer. Its
meaning set contains pause and mute. Since only components can
be declared in the interaction models, attaching a meaning is done
by declaring an identity component and by attaching a meaning to
a port of the component. Since same meanings are employed in
each model, the autonomic manager can directly bind these ports.
The same approach is applied for KSudoku and Wiimote: the
matching interaction class is GamePad and its meaning set
contains up and down.

Figure 9. Excerpt of the partial interaction models

Figure 10. Excerpt of the generated mediation chain

The generated mediation chain for VLC is shown in figure 10. The
identity components declared in the interaction models are not
apparent in the mediation chain, since the identity component does
not modify data that pass through it. They are removed at the end
of the generation process. The Wiimote proxy model does not
have an interaction model that uses the MediaPlayer interaction
class. This lack of information results in random bindings between
Wiimote proxy ports and VLC ports. Of course, the autonomic
manager verifies the data type compatibility. Moreover, since the
interaction policy is set to simple, it distributes the bindings
between application tasks to prevent that a single task is bound to

all sensors. With a policy set to bind-all, all the Wiimote sensors
would be bound to the tasks: for instance two buttons could
command the same task.

6. CONCLUSION
Pervasive computing implies dynamic and heterogeneous
environments. Multimodal interfaces fit well in this pervasive
landscape. In particular dynamic multimodality allows the users to
use whatever devices to engage an interaction, depending on the
context. In this paper we presented the autonomic DynaMo
framework for the development and runtime management of
pervasive multimodal interfaces. Our contribution is dedicated to
software engineering of dynamic multimodal interfaces by
providing a robust and extensible framework based on service-
oriented and autonomic computing. Indeed the DynaMo
architecture relies on three main parts: a domain-specific
component model, an autonomic manager, and an execution
machine. The component model enables developers and
interaction designers to express their knowledge. The autonomic
manager used these models to generate and maintain a multimodal
interaction. The multimodal interaction data-flow from input
devices to an interactive application is managed by a generated
mediation chain. The execution machine is able to effectively
realize the interaction provided by the autonomic manager.

DynaMo adopts a global approach for developing multimodal
interfaces: On the one hand, DynaMo supports the cases where
multimodal adaptable interaction is completely defined at design
time as with the existing toolkits and platforms HephaisTK [4]
ICARE [3], OpenInterface [17] and Squidy [11]. In these cases,
the interaction models are complete and the autonomic manager
does not have to complete partial interaction models. For instance
using DynaMo we have developed the multimodal map navigator
described in [18] for illustrating OpenInterface. On the other
hand, DynaMo also defines an autonomic solution when partial
models are defined and multimodal interaction is not fully defined
at design time. The role of the autonomic manager is to build
complete input multimodal interfaces based on runtime conditions
and in conformance with the predicted partial interaction models.

The DynaMo framework being fully operational, as further work,
we will first perform experimental evaluations with users. Such
experiments will enable us to enrich the autonomic manager by
identifying new policies. For example, the adaptation is currently
realized without learning from the users’ inputs. However, several
cases would obviously leverage the learning. For example, if a
button is never used by a user, DynaMo could propose to bind this
button to another function. The usage of an autonomic
architecture will ease the machine learning process because
sensing and actuating are already done. Moreover based on our
framework we will study an important aspect of dynamic
multimodal interfaces that is how to make observable by the users
the performed changes in multimodal interaction. Our general
research direction is to make the autonomic manager observable
and controllable by the users by defining different levels for
tuning the autonomic capacity of the framework and therefore
make the user in control of her/his pervasive environments.

7. REFERENCE
[1] 1992. A metamodel for the runtime architecture of an

interactive system: the UIMS tool developers workshop.
SIGCHI Bull. 24, 1 (Jan. 1992), 32-37.

[2] Bardin, J., Lalanda, P., Escoffier, C. 2010. Towards an
Automatic Integration of Heterogeneous Services and
Devices. Proc. of APSCC'10. IEEE, 171-178.

[3] Bouchet, J., Nigay, L., Ganille, T. 2004. ICARE software
components for rapidly developing multimodal interfaces.
Proc. of ICMI'04. ACM, 251-258.

[4] Dumas, B., Lalanne, D., Ingold R. 2009. HephaisTK: A
Toolkit for Rapid Prototyping of Multimodal Interfaces.
Proc. of ICMI-MLMI 2009. ACM 231-232.

[5] Escoffier, C., Hall, R. S., Lalanda, P. 2007. iPOJO: an
Extensible Service-Oriented Component Framework. Proc.

of SCC’07. IEEE, 474-481.

[6] France, R., Rumpe, B. 2007. Model-driven Development of
Complex Software: A Research Roadmap. Proc. of

FOSE’07. IEEE, 37-54.

[7] Garcia, I., Pedraza, G., Debbabi, B., Lalanda, P., Hamon, C.
2010. Towards a service mediation framework for dynamic
applications. Proc. of APSCC’10. IEEE, 3-10.

[8] Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B.,
Steenkiste, P. 2004. Rainbow: Architecture-Based Self
Adaptation with Reusable Infrastructure. IEEE Computer 37,
10 (Oct. 2004), 46-54.

[9] Huebscher, M. C., McCann, J. A. 2008. A survey of
autonomic computing. ACM Comput. Surv. 40, 3, Article 7
(Aug. 2008).

[10] IBM Corporation. An Architectural Blueprint for Autonomic
Computing. http://www-03.ibm.com/autonomic/pdfs/
AC%20Blueprint%20White%20Paper%20V7.pdf

[11] König, W. A., Rädle, R., Reiterer, H. 2009. Squidy: a
zoomable design environment for natural user interfaces.
Proc. of CHI EA'09. ACM, 4561-4566.

[12] Lalanda, P., Bellissard, L., Balter, R. 2006. Asynchronous
Mediation for Integrating Business and Operational
Processes. IEEE Internet Computing 10, 1 (Jan. 2006), 56-
64.

[13] Oviatt, S. 2003. Advances in Robust Multimodal Interface
Design. IEEE Comput. Graph. Appl. 23, 5 (Sept. 2003), 62-
68.

[14] Oviatt, S. 2007. Multimodal interfaces. Human-Computer

Interaction Handbook: Fundamentals, Evolving

Technologies, and Emerging Applications, 2nd edition. L.
Erlbaum Assoc. Inc., Chap. 14, 286-304.

[15] Papazoglou, M. P., Georgakopoulos, D. 2003. Service-
Oriented Computing: Introduction. Commun. ACM 46, 10
(Oct. 2003), 24-28.

[16] Satyanarayanan, M. 2001. Pervasive computing: vision and
challenges. IEEE Personal Communications, 8, 4 (Aug.
2001), 10-17.

[17] Serrano, M., et al.. 2008. The openinterface framework: a
tool for multimodal interaction. Proc. of CHI EA'08. ACM,
3501-3506. www.oi-project.org

[18] Serrano, M., Juras, D., Nigay, L. 2008. A three-dimensional
characterization space of software components for rapidly
developing multimodal interfaces. Proc.of ICMI'08. ACM,
149-156.

[19] Serrano, M., Nigay, L. 2009. Temporal aspects of CARE-
based multimodal fusion. Proc. of ICMI-MLMI'09. ACM,
177-184.

[20] Weiser, M. 1991. The computer for the 21st century.
Scientific American, 265, 3 (Sept. 1991), 66-75.

