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ABSTRACT 

Heterogeneity and dynamicity of pervasive environments require 
the construction of flexible multimodal interfaces at run time. In 
this paper, we present how we use an autonomic approach to build 
and maintain adaptable input multimodal interfaces in smart 
building environments. We have developed an autonomic solution 
relying on partial interaction models specified by interaction 
designers and developers. The role of the autonomic manager is to 
build complete interaction techniques based on runtime conditions 
and in conformity with the predicted models. The sole purpose 
here is to combine and complete partial models in order to obtain 
an appropriate multimodal interface. We illustrate our autonomic 
solution by considering a running example based on an existing 
application and several input devices. 

Categories and Subject Descriptors  
D.2.2 [Software Engineering]: Design Tools and Techniques – 
User interfaces 

General Terms 
Algorithms 

Keywords 

Multimodal interaction, service-oriented components, autonomic 
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1. INTRODUCTION 
The pervasive computing area has recently gained major 
importance from both industry and academia and is changing the 
way we interact with our environment [20, 16]. This computing 
domain emphasizes the use of small, intelligent and 
communicating everyday life objects to interact with the 
computing infrastructure. These devices tend to blend in their 
environment. This is especially true in homes and buildings where 
new electronic devices such as photo frames aim to be decorative 
as well as powerful in terms of interaction. This new equipment 
has the ability to communicate with other devices, to configure 
itself, and perform context-based cognitive and physical actions. 
The vision of coordinated or cooperating devices teaming up 
transparently to provide human beings with services of all sorts is 
actually getting closer and closer. However, the main part of the 
research effort has focused so far on providing hardware that can 
actually enable such interactions and on developing ad-hoc 
software solutions for predefined devices (e.g., controlling the 
home’s lighting or the TV with a mobile phone). Consequently, 

plenty of electronic devices providing these kinds of features are 
already commercialized, whereas very few interesting 
applications take full advantage of this new infrastructure. Indeed, 
the complexity of building software that can actually benefit from 
these devices is often underestimated. Usual software engineering 
techniques and tools are not suitable. Indeed several software 
engineering challenges remain to be solved before fulfilling the 
vision of a true pervasive world. Notably the high degree of 
dynamism, distribution, heterogeneity and autonomy of the 
electronic devices involved raises important challenges. The 
envisioned environment is open to dynamic connections: devices 
may enter and leave the network spontaneously, providing 
context-dependent features (e.g. according to user’s activity). It is 
also open to heterogeneous devices: protocols and devices’ types 
differ according to application domains and service providers. 

It is envisioned that, in the mid-term, devices and applications will 
disappear from the users’ awareness. Users will then reason in 
terms of services and no longer in terms of concrete computing 
elements. At the same time, it is foreseeable that unimodal, well-
identified interfaces will also disappear. Users will simply express 
their needs or desires with any available interaction modalities 
and the environment and its objects/devices will react 
accordingly. As defined by Oviatt [13]: 

“Multimodal interfaces process two or more combined 
user input modes in a coordinated manner with 
multimedia system output. They are a new class of 
interfaces that aim to recognize naturally occurring 
forms of human language and behavior, …” 

Multimodal interfaces fit well in the pervasive landscape. They 
offer a more natural/efficient way for users to interact with 
device-stuffed environments by means of speech, gestures or 
other interaction modalities. They also leave the ability for 
humans to use a variety of modalities to interact with an 
application, depending on the context (e.g. availability and 
reliability of interaction devices, user’s mood, etc.). Moreover 
multimodal interfaces have been demonstrated to offer better 
flexibility and reliability than WIMP interfaces (interfaces based 
on Windows, Icons, Menus, Pointing device) [14]. 

The dark side of multimodal interfaces in pervasive environments 
is their management complexity. Recent work has proposed 
component-based or agent-based frameworks to support the 
development of such interfaces [3, 17]. These approaches are 
based on the definition of an interaction modality as the coupling 
of an interaction device with an interaction language (i.e., a set of 
transformations of raw data from input devices). These 
approaches allowed a better separation of concerns, clearly 
distinguishing functional aspects like data fusion and non-
functional aspects like communication and synchronization. Most 
of these approaches are however not flexible enough to deal with 
highly dynamic environments where interaction devices, 
applications, and the way multimodal interactions take place, are 
rapidly evolving. We thus believe that, one of the great challenges 
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of multimodal interfaces in pervasive environments, is to build 
reliable and autonomic processing systems able to analyze and 
understand multiple communication means and reconfigure itself 
in real-time. 

In this paper we present an autonomic framework for the 
development and runtime management of input multimodal 
interfaces in pervasive environments. Our discussion will 
concentrate on input (i.e., from the user to the system) although 
our model holds for output as well. Nevertheless we did not test 
our approach for output so far. This framework leverages recent 
advances in service-oriented components [15, 17] and in model-
based engineering. The paper is organized as follows. First we 
recall the key characteristics of pervasive multimodal interfaces. 
We then present our framework by describing the execution 
machine, the multimodal process and the autonomic manager. The 
autonomic manager is driven by partial models to manage 
multimodal processes: we present the two types of models that we 
defined and in particular the interaction model. We conclude with 
a simple example that illustrates how the autonomic manager 
works. 

2. PERVASIVE MULTIMODALITY 
Pervasive computing systems typically consist of multiple devices 
and software entities that are capable of interacting with one 
another. Various types of software-equipped devices may be 
available for various purposes, such as for interaction with the real 
environment (i.e., interaction output/input device), providing 
display and control services to users, or for exposing data and 
application interfaces to other devices. The main challenge of the 
pervasive computing domain is to provide coherent pervasive 
environments, offering useful applications and services, based on 
an entanglement of heterogeneous, distributed and dynamic 
devices and software services, communicating via various 
technologies and protocols. In this context, several characteristics 
specific to pervasive devices make this domain appealing from a 
business and customer perspective, while raising difficult 
problems for system development, runtime interactions and 
management practices. Such device properties include: 

• Distribution. Devices are typically scattered across the physical 
environment and are accessible via various communication 
protocols, generally over a wireless communication support. 

• Heterogeneity. A vast range of devices, software technologies 
and communication protocols are currently available for the 
pervasive computing domain. A common consensus on uniform 
and compatible implementations is not presently foreseen: today, 
more than fifty candidate protocols, working groups and standard 
specifications for home networking already exist for providing 
communication and interoperation between access and indoor 
networks (e.g., ZigBee, HomePlug). 

• Plural authority. Devices present in a pervasive environment 
generally belong to different vendors. In addition, applications 
deployed and run on such devices may be provided by yet 
different vendors and may require cooperation with other services 
and/or devices. In this context, it is foreseeable that equipment 
vendors and service providers will prefer to maintain a certain 
control over their devices and software and may consequently 
limit access requests from external entities. 

• Dynamism. Availability of devices is by far the most volatile in 
pervasive systems with respect to other computing system types. 
This is due to several facts, including: i) users may freely and 
frequently change their locations and hence the locations of the 
devices they carry; ii) users may voluntarily activate and 

deactivate devices, or devices may unexpectedly run out of 
battery; iii) users and providers may periodically update deployed 
software services. 

In addition to device and software dynamism, pervasive systems 
are constantly confronted with the evolution of their execution 
contexts. This may include modifications in the user’s current 
behavior, location, mood, or general routine, as well as changes in 
other software applications’ availability and behaviors. Another 
important characteristic of pervasive environments is the 
generally limited resource availability on the physical execution 
platforms involved. Typically, in the home context, software 
applications will run on a small gateway, with little memory space 
and low processing capabilities. Finally, an essential requirement 
for any successful pervasive system is the simplicity of operating 
and managing the system, by users not necessarily knowledgeable 
in the computer science domain. Furthermore, privacy, security 
and safety concerns represent major challenges for the pervasive 
computing community. 

Technically speaking, pervasive computing is today much 
influenced by recent advances in service-oriented computing. 
Service-oriented Computing (SOC) has recently appeared in the 
software engineering landscape. The very purpose of this reuse-
based approach is to build applications through the late 
composition of independent software elements, called services. 
Many smart devices are today exposed as services. More 
precisely, their capabilities are described and dynamically 
published by service providers; at runtime they are chosen and 
invoked by service consumers. This is achieved within a service-
oriented architecture (SOA), providing the supporting 
mechanisms. Service orientation brings major software qualities. 
It promotes weak coupling between consumers and providers, 
reducing dependencies among composition units. Late binding 
and substitutability improve adaptability. Since a service can be 
chosen or replaced at runtime, it is possible to optimize the way 
requirements are met. A number of implementations have been 
proposed in the last years. Web Services (www.w3c.org), for 
instance, represent a solution of choice to expose software 
applications on the Web. UPnP (www.upnp.org) and DPWS 
(Devices Profile for Web Services) are heavily used in order to 
implement volatile devices. OSGI (www.osgi.org) and iPOJO 
(www.ipojo.org) provide advanced dynamic features that are 
exploited to build component-based pervasive applications. 

Service orientation brings in solutions to deal with environment 
dynamicity. It also allows the development of more flexible 
software, regarding the core functions (the functional core 
component of the Arch software architectural model [1]) or the 
interaction functions (the interaction components of the Arch 
model [1]). However, these solutions are still complex, hard to 
manage and heterogeneous. Devices and applications still belong 
to different authorities and there is no real hope to see reifying 
standards in the short term. 

The presented characteristics and desired properties of pervasive 
environments and applications must be taken into consideration 
when building and administering pervasive multimodal interfaces. 
Most importantly, the dynamicity property and requirement must 
be constantly dealt with by adapting pervasive systems to internal 
and external modifications. Such modifications may include 
changes in a system’s constituent services and execution platform, 
or into its constantly evolving physical and social context (e.g. 
availability of resources, or user’s location, habits and 
preferences). In the pervasive computing context, system 
adaptation should remain largely transparent to users, while 
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seamlessly coping with resource heterogeneity, distribution and 
plural authority. As such, necessary management operations 
should require minimum human intervention, while meeting 
specific performance and dependability constraints. 

Multimodal interfaces should then be designed to adapt easily to 
different contexts, user’s profiles and application needs. 
Adaptability is always a challenging requirement. It requires first 
to prepare adaptation points in the code, which can be at different 
levels of abstraction (parameter, function, object, component, 
etc.). It also requires the definition of a language to specify the 
possible runtime adaptations. Finally, it requires some intelligence 
to decide when, how and where in the code to adapt multimodal 
interfaces. In pervasive multimodal interfaces, this intelligence 
cannot be entirely provided by end-users who are not supposed to 
play a heavy administrative role. Adaptations have to be 
undertaken by the system itself, in conformance with the users’ 
current goals. As a consequence, the system has to be able to deal 
with a great range of computing elements, being input interaction 
devices or applications, with little help from users. 

3. APPROACH: DYNAMO 
The autonomic computing initiative [9] aims to limit the need for 
human intervention in computer management processes by 
enriching software applications with self-management 
capabilities, such as self-building, self-optimization, self-
configuration, self-repair and self-protection. Conforming to this 
approach, autonomic management abilities would enable software 
applications to seamlessly and transparently self-adapt to their 
changing environments and evolving business goals. Therefore, 
autonomic computing seems to provide a viable solution to the 
difficult concerns and constraints specific to the pervasive 
multimodal interfaces. 

 

Figure 1. Overall approach 

In that spirit, we have developed a complete suite for the 
development, execution and management of multimodal 
processing, called “DynaMo” (Dynamic multimodality). The 
management is autonomic in the sense that the whole multimodal 
processing system is generated and maintained at runtime by an 
autonomous manager. The processing system is modular. It is 
made of service-oriented components in interaction. 

As illustrated by figure 1, our purpose is to clearly separate the 
multimodal processes, the volatile input interaction devices 
joining and leaving the environment, and the applications that 
may also appear or disappear dynamically. The schema highlights 
the main architectural elements of DynaMo, which are: 

• The execution machine supporting multimodal processes. 
The purpose of this machine is to provide a flexible, context 
aware runtime environment. It is based on iPOJO, a dynamic 
service-oriented component framework built on top of OSGi. 
The goal of this machine is also to monitor the environment in 
order to trace any computing evolution. 

• The multimodal process itself. Input interaction modalities 
are developed and executed with a dedicated component 
model. The purpose of this domain-specific component model 
is to provide the right level of abstraction for developers and 
maintainers of multimodal interfaces. Low-level technical 
aspects like synchronization are hidden away by the model. 

• An autonomic manager whose purpose is to build and 
manage the multimodal interfaces. To make its decisions, it  
uses contextual information provided by the execution 
machine. It builds multimodal interfaces through the 
composition of pre-defined components conforming to the 
component model presented above. 

These three architectural elements of DynaMo are presented in 
detail in the next subsections. 

3.1 Execution machine 
The purpose of the execution platform is twofold. First, it is a 
supporting infrastructure for the execution of dynamic, component 
based applications. Then, it also monitors the environment and 
integrates the discovered entities seamlessly within the running 
applications. In particular, the execution machine captures 
services arrival and departure. Services expose both input 
interaction devices and applications.  

As illustrated by figure 2, the execution machine is built on top of 
OSGi and iPOJO, the Apache service-oriented component model, 
and ROSE, available on ObjectWeb [2]. ROSE is an OSGi-based 
open source middleware dealing with distribution. It includes 
communication drivers for different technologies (Web Service, 
DPWS, UPnP) and is able to trace the availability of services. 
ROSE builds and maintains an advanced service registry. Service 
registries play an important role in service-oriented architectures, 
allowing late-binding and weak-coupling. It is a means for 
providers to publish their services and consumers to be aware of 
available services and, possibly, select one of them for execution. 
Each service technology has a particular standard for the registry. 
Web Services, for instance, are described on WSDL files and 
published in UDDI compliant registries. In our architecture, we 
have introduced an advanced registry, which supports many 
service technologies and a detailed description of services 
including functional and non-functional properties. The very 
purpose of this advanced registry, of course, is to support the 
dynamic selection of services. 

 

Figure 2. Execution machine 

Finally, the principle of this advanced registry is to have a global 
view of the runtime environment. The registry is updated 
regularly by the work engine and ROSE according to the arrival 
and/or the departure of the services. More precisely, it is 
implemented by a set of registries enhanced with service runtime 
properties. A registry contains the information for a particular 
technology. This advanced registry is defined in the model-driven 
engineering articles as a runtime model [6]. The main advantages 
of using a runtime model are 1) to store only the relevant 
information required for selection 2) to hide the technological 



characteristics of concrete services and 3) to hide the dynamic 
context with arrival and departure of services. In addition, since 
the runtime model is modular, with a clear separation between 
functional and security concerns, it can be extended. In fact, we 
could support new non-functional properties such as quality of 
service with non-functional runtime extensions linked to the 
functional part of the global runtime model. 

OSGI, iPOJO, and ROSE are all heavily used and validated in 
industrial applications. The execution machine integrating these 
technologies is very robust and used by our industrial partners 
(Schneider Electric and France Telecom in particular). 

3.2 A domain-specific component model 
The activity of integrating disparate information sources in a 
timely fashion is known under the name of mediation. Mediation 
has been historically used to integrate data stored in IT resources 
[12]. Recent work has been using mediation to allow 
interoperation between applications and services [7]. Service 
mediation implements all the operations that are necessary to 
enable the actual communication within service-based 
applications. The most common functions to be provided are: 

• Communication. The primary purpose of mediation is to 
enable applications and devices using different 
communication protocols to interoperate. This is implemented 
by means of protocol transformations as in a network bridge. 
This function can also play the role of a broker, hiding for 
instance the applications network addresses. 

• Synchronization. Time is a major aspect in mediation. Data 
shared by different elements have to be time-stamped, 
organized, synchronized. 

• Syntactic alignment. The purpose of this function is to align 
data formats. This can be done between each application or 
through an intermediary format. In the latter case, the number 
of data transformations to be made is obviously reduced. 

• Semantic alignment. The purpose of this function is to align 
data semantics. In the absence of recognized and used 
standards, applications develop different ontologies to 
represent (static and dynamic) knowledge.  

• Non-functional properties. The purpose of this function is to 
ensure certain quality properties in the application exchanges, 
as for instance security or availability. 

These functions are obviously at the heart of multimodal 
processes. As a matter of fact, developing a multimodal interface 
requires dealing with communication, synchronization, alignment 
and non-functional aspects. 

Encapsulating mediation operations in dedicated software is 
clearly a good practice. Indeed mediation software provides a 
single point of interface to the different applications implied in the 
communication. This reduces the number of connections needed 
and facilitates change management. Mediation also provides an 
isolation layer from software details and, if appropriately 
configurable, permits the quick and cost-effective development of 
new applications. The mediator layer improves reusability and 
evolution of applications. It also permits the transparent addition 
of new QoS properties such as security and reliability. 

Modern mediation frameworks are modular, mostly based on 
component-based engineering. They however lack flexibility. 
Adaptation in the mediation process generally requires stopping 
and restarting the process, which is hardly acceptable in pervasive 
environments. In order to deal with dynamic mediation as needed 

for multimodal processes, we have developed a domain-specific 
component model called Cilia. A mediation process in Cilia is a 
set of components interacting in a loosely coupled way through, 
but not limited to, event-based protocols. As with any component-
based model, Cilia relies on two main models, the specification 
model and the composition model. The specification model is 
used to define components. The composition model defines the 
way components are combined. Components are specified at 
development time. They are made of three java classes and an 
XML-based specification. More precisely, a component includes 
the following Java classes (figure 3): 

• A scheduler class. The purpose of this constituent is to 
synchronize data reception. It intercepts incoming data, store 
them and initiates their processing. The processing decision 
can be time-based, content-based or, any other condition in 
relation with the mediation context. 

• A processor class. The processor performs the mediation 
algorithm per se. When notified by the scheduler, it processes 
the collected data and passes them to the dispatcher. 

• A dispatcher class. The dispatcher receives the processed 
data from the processor. This constituent decides on the data 
destination and triggers their delivery. The dispatcher choice 
is a logical destination because of loosely coupled relations 
between mediators. 

 

Figure 3. Component model 

Developers of a mediation process concentrate on the processor 
class where they express the way data should be processed. The 
scheduler and dispatcher can also be entirely specified but are 
generally simply reused. Most frequent operations like periodic 
consumption are provided. Moreover we defined generic 
mediation processes that include fusion algorithms as defined in 
multimodal interfaces. Such mediation processes represent high-
level reusable abstractions. They correspond to generic composition 
operations, defining elementary temporal fusion operations, 
independent from devices, modalities and application tasks. To 
define such mediation composition operations we draw on the 
CARE properties [19]. The CARE properties were proposed as a 
simple way of characterizing and assessing aspects of multimodal 
interaction: the Complementarity, Assignment, Redundancy, and 
Equivalence that may occur between the interaction modalities 
available in a multimodal interface. We define mediation operations 
related to Redundancy and Complementarity of CARE. 

Mediation components are connected through typed ports. 
Bindings are also defined at development time. A binding 
specification describes how communication is established. 
Binding specifications are independent of mediators logic, thus 
mediators could use any binding specification, essentially event-
based and RPC based. Figure 4 provides a simplified example 
where three mediation components are used to allow a multimodal 
interaction with an embedded application. Each mediation 
component is composed of three parts as defined in figure 3. The 
middle parts of the mediation components correspond to 
alignment and fusion code provided by the interface developers. 
Such an example could correspond to the combination of speech 
commands with gestures on a tactile surface to control a 
multimedia player: one complementary mediation component is 



used to combine speech and gesture events processed by two 
mediation components. 

 

Figure 4. Example of mediation chain 

Figure 5 presents the Cilia stack, detailing the computing 
responsibilities of each layer. Cilia has been developed in iPOJO 
(more precisely, a component specification is transformed into a 
set of iPOJO components). Cilia is fully adaptable: it provides 
interfaces allowing us to add, remove, replace, configure a 
mediation component at runtime. To do so, the Cilia execution 
framework maintains internal states and deals with components 
quiescence. This means that, when a component is replaced, the 
new component gets the state of the replaced one (i.e., the data to 
be processed). 

 

Figure 5. Cilia execution stack 

Regarding quiescence, computing threads are controlled at a fine 
grain: a component can be changed or replaced only when there is 
no running client (proxies are used to intercept calls to a 
component to be replaced). 

3.3 Autonomic manager 
The runtime management of a pervasive application requires the 
use of some sort of autonomic capabilities. Obviously, an 
application cannot be dynamically updated by a user who is 
supposed to be unaware of the surrounding infrastructure. 

Autonomic systems are usually structured according to a simple 
reference architectural model introduced by IBM [10]. This 
reference architecture clearly defines two distinct entities: the 
managed artifacts and an autonomic manager. Managed artifacts 
are the software entities that are automatically administered in an 
autonomic element. The autonomic manager is the module in 
charge with the run time administration of the managed artifacts. 
Managed artifacts provide specific interfaces, called control points 
or touch points, for monitoring and adaptation. 

Here the managed artifacts are clearly the mediation chains 
realizing the multimodal interactions. The purpose of the 
autonomic manager is to create and adapt the multimodal 
interactions, using the dynamic capabilities of the underlying 
component model (Cilia). It is driven in its decisions by high level 
goals set by the users (or by an initial administrator). A user can 
choose an interaction policy at runtime. For now, a user can 
choose between two predefined interaction policies: simple and 
bind-all. If the simple policy is selected, the autonomic manager 
tries to connect each task of the application to sensors of the 
devices. With the bind-all policy, the autonomic manager tries to 
connect all available sensors to tasks of the application. This 
policy likely implies that different modalities are defined for a 

given task (i.e., equivalence of modalities for a given task as 
defined by the CARE properties). The selection of the interaction 
policies is made through the DynaMo-settings graphical interface.  

The autonomic manager is reactive: when a modification occurs 
in the environment, it computes a new mediation chain or adapts 
the current one. Similarly, if the user changes the interaction 
policy, the mediation chain is changed or adapted. Adaptations 
can be done globally, that is at the mediation chain, or at the 
component level. Impacts of a modification are actually well 
delimited from an architectural point of view. On the one hand, 
the multimodal process is decoupled from the autonomic manager 
and, on the other hand, devices and applications are simply not 
aware of the mere existence of the multimodal processes. 

From the users’ point of view, the impacts of modification are 
obviously more important. First, the time needed to completely 
change an interaction is about 3 seconds (for up to 15 mediation 
components). It is less than 1 second when a single component is 
removed or replaced. The biggest impact is obviously due to the 
change in the way interactions are conducted. A new device is 
used or the same device is used differently. Of course, the 
adaptation is supposed to better serve the user and her/his 
interaction preferences. 

 

Figure 6. Model-driven autonomic management 

The autonomic manager contains the domain-specific knowledge 
needed to appropriately create and update mediation chains. In 
most autonomic systems, this knowledge is encoded in rules and 
thus is not really explicit. Recently, several studies have used 
explicit models in order to specify the autonomic manager 
knowledge or constraints [8]. In particular, architectural models 
are used as a basis for system construction and update. The 
purpose of the autonomic manager is here to maintain consistency 
between a target architectural structure, generally made of 
collaborating components, and the actual structure of a running 
system. Models make explicit global and local properties. It is 
possible to use more generic autonomic managers that are easier 
to understand and maintain. 

This latter approach is limited to domains where clear reference 
architecture can be defined. This is usually not the case for 
multimodal interfaces in very dynamic settings: we cannot define 
a reference architectural model of the mediation chain for 
multimodal process. Based on the architectural work in the Arch 
model [1], we have defined an alternative approach where the 
autonomic manager manipulates incomplete models, named 
interaction models. These interaction models are specific to 
devices and applications. The purpose of the autonomic manager 
is then, depending on the runtime context, to relate the interaction 
models of the devices and applications in order to define the 
architecture of the mediation chain. These interaction models are 
presented in detail in the following section. 

We conclude the presentation of the autonomic manager by 
considering the users’ involvement in the whole process. Users 



are involved at different stages. First, they select the high level 
goals (i.e., interaction policy) driving the autonomic manager. 
Users also decide on the applications to be controlled through 
multimodal interaction and, somehow, on the available devices 
(turning them on or off for instance). Moreover a major aspect of 
autonomic computing is the feedback provided by the system to 
the administrators or the users. In our case, appearance and 
disappearance of a service (i.e., an application or a device) are 
notified to the user by a pop-up window. Also, semantic 
alignment allows a device dedicated to a task to be bound to that 
task, if this task is present in the controlled application. The main 
limit so far concerns observability by the user of an interaction 
modality. We provide partial observability of the available 
modalities by graphically displaying which sensors of the devices 
are connected to the tasks of the current active application. 
Although this representation is updated each time a change occurs 
in the multimodal process, it is only useful for simple cases (e.g., 
a press button of a device to trigger a simple action of the 
application). For complex cases with complementary modalities 
and equivalent modalities for a given task, the representation is 
too partial to be useful. Information from the mediation chain is 
accessible and further work must be done to define the way to 
present the interaction modalities. We focused so far on designing 
and developing our DynaMo framework, but DynaMo clearly 
defines a good candidate platform for studying and experimenting 
this aspect of dynamic multimodal interfaces. 

4. MODELS 
As previously indicated, the autonomic manager is driven by 
partial models to manage multimodal processes. These models 
store and make explicit most of the information necessary to 
generate interactions. Two kinds of models are defined: proxy 
models and interaction models. This separation has been done in 
order to target the two different stakeholders: developers and 
interaction designers. Indeed for developing a multimodal 
application with DynaMo, developers first create proxies (in Java) 
for the applications and the interaction devices as well as their 
proxy models. Interaction designers can then define interaction 
models for these applications and devices. Interaction models are 
expressed in an xml language and we provide a graphical editor to 
define such interaction models. 

Proxy models defined by developers are attached to applications 
and devices. A proxy model contains information about the 
process that is used by the discovery manager in the execution 
machine (see section 3.1). From this information, the discovery 
manager is able to track the corresponding applications or devices 
and start its corresponding proxy. The model also contains 
information about the protocols and ports to be used to 
communicate with other devices and about provided data types. 
Based on this information, the autonomic manager can connect 
the endpoints of a mediation chain to the proxies. If a data type is 
a number (float or integer), an interval has to be provided. An 
interval is composed of a lower bound and an upper bound. This 
information enables the autonomic manager to adapt intervals at 
runtime by inserting an adaptor between incompatible intervals. 
For example, if a device provides numbers in the interval [-180, 
+180], and a connected application task handles numbers in the 
interval [0, +100], the automatically inserted adaptor does a linear 
transformation for each value between these two intervals. Figure 
7 shows the meta-model of the proxy models. 

Interaction designers, now, specify one or several interaction 
models for each proxy. Such an interaction model defines the way 
an application or a device can be used from an interaction point of 

view. Because such a model relates to a single proxy, it only 
describes a partial interaction that has to be completed by the 
autonomic manager. Interaction models contain information about 
data semantics, data processing and data path. Semantics-related 
knowledge is important for the autonomic manager in order to go 
beyond type alignments. Through data processing, an interaction 
designer is able to enhance an interaction by adding tasks to an 
application, synchronizing data and so on. For example, if a media 
player application proposes a task to control sound volume 
through a number, then the interaction designer can add a task that 
mutes the volume. A data path is a series of functions that data 
will pass through. Figure 7 shows the meta-model of the 
interaction models. 

 

Figure 7. Proxy (left) and interaction (right) meta-models 

It is to be noted that defining semantics without any guidance 
does not really make sense because the autonomic manager needs 
to match meanings defined in the different interaction models. 
Several interaction classes have been predefined. An interaction 
class defines several meanings that make sense together. An 
interaction model references one interaction class, so only the 
meanings of this class can be attached to data of this model. For 
instance in the example of the following section, we use the 
interaction class named MediaPlayer that defines meanings 
including Pause and Mute (figure 10) and the interaction class 
GamePad including the meanings Up and Down. 

In order to ease data processing definition, a predefined library of 
processing functions is provided. The interaction designer 
declares which function has to be used and provides a 
configuration for the function. For example, a triggering function 
sends an event as soon as it receives a value greater than a 
configured maximum value. Moreover generic composition 
functions (e.g., temporal fusion) based on the CARE properties 
[19] are provided. These functions are specific to the interaction 
domain. They have been crafted with reuse concerns in mind. The 
functions are implemented by components. Thus, the interaction 
designer specifies a partial interaction by declaring which base 
components to use, configuring them and binding their ports 
together in the graphical editor. At this stage of the specification, 
data types can generally be ignored because the autonomic 
manager will be able at runtime to infer each port data type. This 
inference leads to a completion of the component configuration, 
and adds a data type converting component if necessary. 

Specifying a partial interaction by assembling and configuring 
several domain-specific components facilitates the work of the 
interaction designer. This approach maximizes reusability by 
providing generic components, decreases technical difficulties by 
hiding implementation details. These models are conformed 
through instantiation to their corresponding meta-model. The 
autonomic manager relies on a general meta-model that integrates 
these two meta-models and notably includes relation between 
proxies, partial interactions and component library. 



5. ILLUSTRATIVE EXAMPLE 
The following example shows how the autonomic manager deals 
with two devices and two applications. The first application is a 
media player software, named VLC (www.videolan.org/vlc). The 
second application is a sudoku game (KSudoku, 
http://games.kde.org/game.php?game=ksudoku). VLC and 
KSudoku can receive commands through an inter-process 
communication system, named D-Bus (dbus.freedesktop.org). The 
first device is a Blu-ray remote control, namely BD Remote 
Control (or BDRC). The second device is a controller for a video 
game console, namely Wii Remote (or Wiimote).  The two devices 
use the Bluetooth protocol to send data. Figure 8 shows an excerpt 
of the proxy models of VLC and the two devices.  

 

Figure 8. Excerpt of the proxy models 

The example follows this scenario: “Alice has previously used 
DynaMo. She wants to watch a movie. She starts VLC and 
activates her BDRC. Bob comes and talks to Alice, so she pauses 
the movie. Later, when the BDRC runs out of power, she activates 
her Wiimote. Finally, she found the movie boring, so when Bob 
comes to ask something, she just mutes the sound volume to 
answer. She then finally decides to play Sudoku, with the Wiimote 

that she is holding”. 
From the autonomic manager point of view, it receives a 
discovery notification about VLC, hence it downloads the VLC 
binary proxy from the repository and starts it. Since no device is 
discovered, no mediation chain is generated. Then, it receives a 
discovery notification about the BDRC. It starts the BDRC proxy. 
Now, a mediation chain can be generated. Amongst the 
interaction models of BDRC and VLC, it selects the two that use 
the same interaction class, namely the MediaPlayer interaction 
class. It instantiates the components declared in the interaction 
models, and binds mediators of each interaction if their semantics 
match. When Alice pushes the pause button, a data is sent by the 
BDRC. The proxy gets the data and passes an event to a mediator. 
The event follows a path through the mediation chain and is 
received by the pause port of the VLC proxy. The proxy calls the 
pause task on VLC. As soon as the autonomic manager is notified 
of the Wiimote discovery, it starts the proxy. No interaction class 
of VLC and Wiimote interaction models matches each other. The 
autonomic manager generates the same mediation chain plus a 
part that connects the Wimote proxy to the VLC proxy. This new 

part is created only from information about data type, because it 
does not have any semantic information. Finally, when the BDRC 
runs out of energy, the autonomic manager is notified, and 
generates the same mediation chain without the BDRC part. 
Finally when Alice starts the KSudoku game, the corresponding 
binary proxy is started. Since both KSudoku and Wiimote have an 
interaction model of the same class, namely GamePad, the 
manager will instantiate the components declared in the 
interaction models of the GamePad class. For the Wiimote, the 
GamePad interaction model declares in particular that the 
accelerometer coupled with a gesture recognition has the 
meanings up and down of the GamePad class. Alice can then 
perfom vertical movements with the Wiimote to change the 
selected cell in the Sudoku.  

Figure 9 presents excerpts of partial interaction models for VLC 
and BDRC. The matching interaction class is MediaPlayer. Its 
meaning set contains pause and mute. Since only components can 
be declared in the interaction models, attaching a meaning is done 
by declaring an identity component and by attaching a meaning to 
a port of the component. Since same meanings are employed in 
each model, the autonomic manager can directly bind these ports. 
The same approach is applied for KSudoku and Wiimote: the 
matching interaction class is GamePad and its meaning set 
contains up and down. 

 

Figure 9. Excerpt of the partial interaction models 

 

Figure 10. Excerpt of the generated mediation chain 

The generated mediation chain for VLC is shown in figure 10. The 
identity components declared in the interaction models are not 
apparent in the mediation chain, since the identity component does 
not modify data that pass through it. They are removed at the end 
of the generation process. The Wiimote proxy model does not 
have an interaction model that uses the MediaPlayer interaction 
class. This lack of information results in random bindings between 
Wiimote proxy ports and VLC ports. Of course, the autonomic 
manager verifies the data type compatibility. Moreover, since the 
interaction policy is set to simple, it distributes the bindings 
between application tasks to prevent that a single task is bound to 



all sensors. With a policy set to bind-all, all the Wiimote sensors 
would be bound to the tasks: for instance two buttons could 
command the same task. 

6. CONCLUSION 
Pervasive computing implies dynamic and heterogeneous 
environments. Multimodal interfaces fit well in this pervasive 
landscape. In particular dynamic multimodality allows the users to 
use whatever devices to engage an interaction, depending on the 
context. In this paper we presented the autonomic DynaMo 
framework for the development and runtime management of 
pervasive multimodal interfaces. Our contribution is dedicated to 
software engineering of dynamic multimodal interfaces by 
providing a robust and extensible framework based on service-
oriented and autonomic computing. Indeed the DynaMo 
architecture relies on three main parts: a domain-specific 
component model, an autonomic manager, and an execution 
machine. The component model enables developers and 
interaction designers to express their knowledge. The autonomic 
manager used these models to generate and maintain a multimodal 
interaction. The multimodal interaction data-flow from input 
devices to an interactive application is managed by a generated 
mediation chain. The execution machine is able to effectively 
realize the interaction provided by the autonomic manager. 

DynaMo adopts a global approach for developing multimodal 
interfaces: On the one hand, DynaMo supports the cases where 
multimodal adaptable interaction is completely defined at design 
time as with the existing toolkits and platforms HephaisTK [4] 
ICARE [3], OpenInterface [17] and Squidy [11]. In these cases, 
the interaction models are complete and the autonomic manager 
does not have to complete partial interaction models. For instance 
using DynaMo we have developed the multimodal map navigator 
described in [18] for illustrating OpenInterface. On the other 
hand, DynaMo also defines an autonomic solution when partial 
models are defined and multimodal interaction is not fully defined 
at design time. The role of the autonomic manager is to build 
complete input multimodal interfaces based on runtime conditions 
and in conformance with the predicted partial interaction models. 

The DynaMo framework being fully operational, as further work, 
we will first perform experimental evaluations with users. Such 
experiments will enable us to enrich the autonomic manager by 
identifying new policies. For example, the adaptation is currently 
realized without learning from the users’ inputs. However, several 
cases would obviously leverage the learning. For example, if a 
button is never used by a user, DynaMo could propose to bind this 
button to another function. The usage of an autonomic 
architecture will ease the machine learning process because 
sensing and actuating are already done. Moreover based on our 
framework we will study an important aspect of dynamic 
multimodal interfaces that is how to make observable by the users 
the performed changes in multimodal interaction. Our general 
research direction is to make the autonomic manager observable 
and controllable by the users by defining different levels for 
tuning the autonomic capacity of the framework and therefore 
make the user in control of her/his pervasive environments. 
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