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a b s t r a c t

This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall
deformationswhich can lead to flow separation. An asymptoticmodel is proposed by using the successive
complementary expansion method with generalized asymptotic expansions. In particular, the model
emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown
that the model is more general than the models developed with the method of matched asymptotic
expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables
us to treat original problems.

1. Introduction

We consider a plane Poiseuille flow in a two-dimensional
channel perturbed by wall deformations – troughs or bumps –
which are sufficiently severe to induce flow separation.

At high Reynolds number, an asymptotic analysis can be
applied.When the Reynolds number tends to infinity, the first step
consists of a straightforward simplification of the Navier–Stokes
equations leading to the Euler equations. So, it is tempting to call
for a hierarchical process. In the vicinity of singular zones, near
the walls, the second step consists of trying to correct the first
approximation by a boundary layer analysis.

However, it is known that, in many problems involving a strong
coupling, this type of hierarchical approach is not possible and the
two approximations must be considered simultaneously. In fact,
the solution of the inviscid flowequations depends on theReynolds
number and it is better to talk about Euler equations rather than
inviscid flow equations as is done very often.

If we decide that the numerical solution of Navier–Stokes
equations is not desirable, because either the numerical cost to
find such a solution is too big, or a better understanding of
physical phenomena is desired, a suitable approach consists of
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using the asymptotic model called the interactive boundary layer
(IBL) model.

Then, we are facedwith a paradox. The only constructiveway to
establish asymptotic approximations is to use a small parameter,
here the inverse of the Reynolds number, which goes to zero.
This leads to regular asymptotic expansions and to a hierarchical
approach.

Excluding a multi-layer approach of triple deck type, which
introduces very restrictive hypotheses on the scales, a possibility
is to use generalized asymptotic expansions. According to this
method, the small parameters of the problem can be included
in the functions which form the expansions. This conception is
very different because the small parameters are not considered as
tending towards zero but are only small. This is easy to conceive
if a uniformly valid approximation (UVA) is constructed from the
standard method of matched asymptotic expansions.

In fact, the reasoning can be inverted by starting from an
assumed form of the UVA. In order to extend the techniques on
which the method of matched asymptotic expansions is based,
the successive complementary expansionmethod (SCEM)has been
developed [1]. When regular approximations are sufficient, it can
be shown that the regular SCEM is equivalent to the method of
matched asymptotic expansions associated to amodified VanDyke
matching principle.

Thanks to the generalized expansions, interaction effects
between the Eulerian and boundary layer regions are considered
simultaneously and the construction of a UVA does not require any
matching principle; only the boundary conditions of the problem
are used.



In a channel, there is no external flow region and the asymptotic
models for the flow perturbations are mainly based on an inviscid
rotational core flow region together with boundary layers near
the walls; a comprehensive discussion of this structure can be
found in Sobey [2]. The asymptotic analysis of these flows has been
performed essentially by Smith [3], and a systematic approach has
been proposed later on by Cousteix and Mauss [4]. More recently,
the modelling of channel flows has been examined by Lagrée
et al. [5] and by Lagrée and Lorthois [6].

After a presentation of the SCEM (Section 2), the problem
is formulated (Section 3), then the flow is analysed with SCEM
using standard hypotheses on the wall deformations (Section 4).
In Section 5, a new approach is proposed in order to emphasize
the role of the asymmetry of the channel geometry. As shown
in Section 6, the resulting model contains the standard model
obtained by Smith [7,8,3] but is more general. Finally, the
numerical technique is presented in Section 7 and results are given
with comparisons with Navier–Stokes solutions (Section 8).

2. About the SCEM

The purpose of this section is to give a short overview of the
SCEM, which is explained inmore detail in Cousteix andMauss [1].

Definition of a generalized asymptotic approximation.
First of all we have to define clearly what is an asymptotic

approximation of a function. Two functions Φ(x, ε) and Φa(x, ε)
defined in a domain D are asymptotically identical to order δ(ε) if
their difference is asymptotically smaller than δ(ε), where δ is an
order function:

Φ(x, ε) − Φa(x, ε) = o(δ), (1)

where ε is a small parameter arising from the physical problem
studied. The function Φa is called an asymptotic approximation of
the function Φ . The converse being also true, it must be stressed
that the goal of an asymptotic approximation is to replace Φ by a
simpler function Φa(x, ε). This simplicity comes from the different
methods used to construct asymptotic expansions (AE), generally
defined by

Φa(x, ε) =
n∑

i=0

δi(ε)ϕi(x, ε), (2)

where the asymptotic sequence of order functions δi is such that
δn � δ and such that all functions ϕi are of strict order 1, ϕi =
OS(1). This is called a generalized asymptotic expansion because ε
is included in the developed functions.

Definition of a regular asymptotic approximation.
In many cases, it is possible to construct a regular AE, with an

asymptotic sequence noted δ
(0)
i , which can be written

Φa(x, ε) = E0Φ =
n∑

i=0

δ
(0)
i (ε)ϕ

(0)
i (x). (3)

For this reason, when the AE is not regular, it is called a generalized
asymptotic expansion. Strictly, it is not necessary to add the
qualifying adjective ‘‘generalized’’ but, too often, it is thought that
an AE is necessarily regular. Such an asymptotic approximation
is objectively simpler than the function Φ since the construction
is made step by step by limiting processes. This is the reason
why, following Eckhaus [9], we define, for a regular AE, a special
operator E0 called the ‘‘expansion operator’’ at a given order δ; thus,
Φ − E0Φ = o(δ).

Method of matched asymptotic expansions (MMAE).
Interesting cases occur when the function Φ is not regular in D,

i.e., when AE (2) or (3) of Φ is valid only in a restricted region D0 ∈

D called the outer region.We are facedwith a singular perturbation
problem and we must introduce boundary layer domains. Here,
in the simplest case, we introduce an inner domain which can be
formally denoted D1 = D − D0 and located near the origin. The
boundary layer variable or inner variable is X = x

ζ (ε)
, ζ (ε) being

the order of thickness of this boundary layer. If a regular expansion
can be constructed in D1, we can write

Φa(x, ε) = E1Φ =
m∑

i=0

δ
(1)
i (ε)ϕ

(1)
i (X). (4)

This inner ‘‘expansion operator’’ E1 is defined in D1 at the same
order δ as the outer expansion operator E0; thus, Φ − E1Φ = o(δ).
The links between these expansions E0Φ and E1Φ are the rules or
heuristic principles which define the asymptotic matching.

To our knowledge, the best principle is the modified Van Dyke
principle (MVDP), which can be found in [1] and can be written
E0E1Φ = E1E0Φ . As the expansions are defined at the same order
δ, we can construct a composite approximation at this order, or an
asymptotic approximation, which can be written

Φa = E0Φ + E1Φ − E1E0Φ. (5)

This is clearly a uniformly valid approximation (UVA) defined at
order δ.

The successive complementary expansion method (SCEM).
For singular perturbation problems, the successive comple-

mentary expansion method (SCEM) is based on the knowledge
of generalized asymptotic expansions and upon the idea that the
reasoning using the method of matched asymptotic expansions
(MMAE) must be inverted. First, the structure of the uniformly
valid approximation (UVA) must be assumed and then the method
to construct the UVA is deduced. This point of view has been
adopted in other methods likeWKB ormultiple scale methods, but
their usefulness is restricted to particular problems.

We assume that two significant subdomains have been identi-
fied, classically called the outer and inner domains. According to
the SCEM, a UVA Φa of the function Φ is supposed to have the fol-
lowing structure:

Φa(x, X, ε) =
n∑

i=1

δ̄i(ε)
[
ϕ̄i(x, ε) + Ψi(X, ε)

]
. (6)

We say that Φa is a UVA of Φ defined at order δ̄n if Φ =
Φa + o(δ̄n). Again, this UVA is called generalized because classical
understanding used rather ‘‘regular’’ asymptotic expansion where
ε is not in the developed functions. For instance, we can write

Φa = Φar + o(δm),

where Φar is a regular UVA such that δ̄n = O(δm), and

Φar(x, X, ε) =
n∑

i=1

δi(ε) [ϕi(x) + Ψi(X)] . (7)

The sequence of order functions δ̄i may or may not be the same
as the sequence δi since the elements of this latter sequence are
gauge functions. Recall that a gauge function is an a priori choice
of an order function in its equivalence class.

The SCEM has already been used in its regular form [10,11],
but not in its generalized form. Under the name of composite
expansions, Nayfeh [12] discusses the related technique developed
earlier.

In its regular form, the SCEM is equivalent to theMMAEwith the
modified form of the Van Dyke matching principle (MVDP). This is
a crucial point since the matching is a consequence of the chosen
form of the UVA and not the contrary.



The ambiguous writing of the generalized SCEM needs guide-
lines to enable construction of a UVA. In general, knowledge of the
physics of the problem, as will be seen later, provides us with an
efficient solution.

One can be guided by the fact that if the solution Φ of integro-
differential equations is formally written LεΦ = 0, then, for the
UVA given by (6) we have LεΦa = Rn(x, ε). Since we have assumed
that the boundary conditions are exactly satisfied for Φa, Rn is
small in a certain sense. This is ascertained by estimate theorems
which can be obtained, in general, only for linear problems. The
generalized form proposed here is very well adapted to strong
interaction problems leading logically to the models of interactive
boundary layers.

3. Formulation of the problem

The dimensionless Navier–Stokes equations are

∂U

∂x
+

∂V

∂y
= 0, (8)

LεU = U
∂U

∂x
+ V

∂U

∂y
+

∂P

∂x
−

1

R

(
∂2

U

∂x2
+

∂2
U

∂y2

)
= 0, (9)

LεV = U
∂V

∂x
+ V

∂V

∂y
+

∂P

∂y
−

1

R

(
∂2

V

∂x2
+

∂2
V

∂y2

)
= 0. (10)

The above equations arewritten in an orthonormal axis system.
Coordinates x and y are reduced by the width W ∗ of the basic
channel whose lower wall is y = − 1

2
and upper wall is y =

1
2
(Fig. 1). The velocity components are reduced by a reference

velocity V ∗ defined below by (12). The Reynolds number is

R =
̺∗V ∗W ∗

µ∗
, (11)

where ̺∗ and µ∗ are the dimensionalized density and viscosity
coefficient.

The reference velocity V ∗ is expressed as a function of the basic

pressure gradient
dp0
dx or, equivalently, of the dimensionalizedmass

flow Q
∗ per unit width of the channel:

Q
∗ = ̺∗V ∗W ∗

∫ 1/2

−1/2

u0 dy, V ∗ = 6
Q

∗

̺∗W ∗
,

dp0
dx

= −
2µ∗

̺∗V ∗W ∗
,

(12)

where the basic plane Poiseuille flow is

u0 =
1

4
− y2, v0 = 0, p0 = −

2x

R
+ pc, (13)

and pc is an arbitrary constant.
The flow is perturbed by indentations of the lower and upper

walls:

yl = −
1

2
+ F(x, ε), yu =

1

2
− G(x, ε), (14)

where ε is a small parameter (Fig. 1).
At high Reynolds number, the reduced equations obtained

formally by taking their limit when the Reynolds number goes to
infinity are of first order. A singular perturbation problem arises.

4. Direct analysis

To go further, it is usual to consider small wall perturbations
leading to hypothesis (H1):

(H1)

{
F = εf ,
G = εg.

(15)

Fig. 1. Flow in a two-dimensional channel with deformed walls. In this figure, all

quantities are dimensionless.

From the application of the standard method of matched
asymptotic expansions, two zones are considered in the flow. One
of them is the core where the flow perturbations are governed by
Euler equations. The other zone is the proximity of walls where
the flow perturbations develop in a structure of boundary layer
type. A perturbation is said to be significant when flow separation
is possible. To translate this, it is required that, in the boundary
layers of thickness ε, the perturbation of the longitudinal velocity
is of the same order as u0, i.e., of order O(ε). Thus, according to the
SCEM, we are seeking a UVA of the form

U = u0(y) + εû(x, y, ε) + · · · , (16)

V = εv̂(x, y, ε) + · · · , (17)

P − pc = −
2x

R
+ εp̂(x, y, ε) + · · · . (18)

For large Reynolds numbers, the core flow equations are [1]

∂ û1

∂x
+

∂v̂1

∂y
= 0, (19)

u0

∂ û1

∂x
+ v̂1

du0

dy
+ ε

(
û1

∂ û1

∂x
+ v̂1

∂ û1

∂y

)
= −

∂ p̂1
∂x

, (20)

u0

∂v̂1

∂x
+ ε

(
û1

∂v̂1

∂x
+ v̂1

∂v̂1

∂y

)
= −

∂ p̂1
∂y

, (21)

where the index ‘‘1’’ denotes the characteristics of the flow
perturbation in the core. This means that (19)–(21) are valid only
in the core.

In the whole flow field, the Navier–Stokes equations reduce
to [1]

∂ û

∂x
+

∂v̂

∂y
= 0, (22)

u0

∂ û

∂x
+ v̂

du0

dy
+ ε

(
û
∂ û

∂x
+ v̂

∂ û

∂y

)
= −

∂ p̂1
∂x

+
1

R

∂2û

∂y2
. (23)

As shown in [1,4], it must be noted that in the streamwise

momentum equation,
∂ p̂
∂x is replaced by

∂ p̂1
∂x . This means that

the pressure required to solve (22)–(23) satisfies the core flow
equations (19)–(21) but (22)–(23) are valid everywhere in the
channel and they provide us with a UVA. Since this is the key point
of the method, let us recall that the variables of the boundary layer
are given by

Y =
1
2

+ y

ε
, Ŷ =

1
2

− y

ε
. (24)

It can be shown that a uniformly valid approximation of the
pressure is given by

p̂(x, y, ε) = p̂1(x, y, ε) + ε3P̂CL(x, Ŷ , ε) + ε3PCL(x, Y , ε), (25)

where P̂CL and PCL are zero in the core flow.
Eqs. (22)–(23) look like the standard boundary layer equations,

but they are valid in the whole domain. To calculate the flow, it is



required to solve the system comprising the generalized boundary
layer equations (22)–(23) and the core flow equations (19)–(21). It
is also necessary to prescribe the wall conditions

y = yℓ and y = yu : u0 + εû = 0, v̂ = 0, (26)

and to express the coupling between the core flow equations and
the generalized boundary layer equations by identifying û, v̂ and
û1, v̂1 in the core:

(û, v̂) → (û1, v̂1). (27)

The global interactive boundary layer model described by
(19)–(21), (22)–(23), (26), (27) is the best approximation of the
Navier–Stokes model we can propose.

In [1,13], it is seen that the boundary layer analysis leads to

R = ε−3. (28)

Then, using the Navier–Stokes operator defined in (9)–(10), we
observe that

Lεû =
∂p

∂x
−

∂ p̂1
∂x

−
1

R

∂2û

∂x2
, Lε v̂ = −

1

R

∂2v̂

∂x2
.

From (25) and (28), it is easily shown that

Lεû = O(ε3), Lε v̂ = O(ε3), (29)

which shows, as stated before, that this is a very good approxima-
tion.

The nonlinear core equations are not easy to solve. Fortunately,
as shown below from a deeper analysis, the core flow equations
can be linearized, and the solution of the resulting model is much
easier.

In the boundary layer whose thickness is of order ε, u0 = O(ε),
û = O(1) and v̂ = O(ε), so the three terms
(
u0

∂ û

∂x
+ v̂

du0

dy

)
, ε

(
û
∂ û

∂x
+ v̂

∂ û

∂y

)
, ε3 ∂2û

∂y2
,

are of the same order, O(ε).
In the core of the flow, the orders ofmagnitude are not the same.

The terms û1,
∂ û1
∂x ,

∂ û1
∂y , v̂1,

∂v̂1
∂x ,

∂v̂1
∂y are all O(1). Therefore, the field

equations are structurally nonlinear, whereas the core flow Euler
equations can be linearized rightfully.

If we define

u = u0 + εû, (30)

v = εv̂, (31)

and

u1 = u0 + εû1, (32)

v1 = εv̂1, (33)

p1 = p0 + εp̂1, (34)

the field and core flow equations become

∂u

∂x
+

∂v

∂y
= 0, (35)

u
∂u

∂x
+ v

∂u

∂y
= −

∂p1
∂x

+
1

R

∂2u

∂y2
, (36)

∂u1

∂x
+

∂v1

∂y
= 0, (37)

u0

∂u1

∂x
+ v1

du0

dy
= −

∂

∂x
(p1 − p0) , (38)

u0

∂v1

∂x
= −

∂

∂y
(p1 − p0) . (39)

It is interesting to note the singular behaviour of the solution of
(37)–(39) in the neighbourhood of the boundaries. For instance, as
y → −1/2, we have

u1 − u0 = −2p10 ln

∣∣∣∣
1

2
+ y

∣∣∣∣ + c10 + · · · , (40)

where p10 and c10 are functions of x and ε.
The logarithmic singularity of this solution near y = −1/2 and

y = 1/2 exhibits an essential difference compared with external
boundary layers. In the following, for this reason, the evolution of
the perturbed flow in the core will be characterized by v1. From
(37)–(39), it is found that v1 is a solution of Poisson’s equation:

u0

(
∂2v1

∂x2
+

∂2v1

∂y2

)
= v1

d2u0

dy2
, (41)

and the x-component of the pressure gradient required to solve the
generalized boundary layer equations is given by (38), inwhich the
continuity equation (37) is taken into account:

− u0

∂v1

∂y
+ v1

du0

dy
= −

∂

∂x
(p1 − p0) . (42)

It can be shown that (41) associated to (42) gives the y-
momentum equation (39) if the perturbations vanish at upstream
infinity. This establishes the equivalence between (37)–(39) and
(41)–(42).

To sum up, the problem to solve comprises (35)–(36), (41) and
(42). At the walls, the boundary conditions are

y = yℓ and y = yu: u = 0, v = 0, (43)

and the coupling between the core flow equations and the
generalized boundary layer equations is expressed by identifying
u, v and u1, v1 in the core:

(u, v) → (u1, v1). (44)

The model presented above belongs to the class of strong
couplingmodels since there is no hierarchy between the boundary
layer equations and the core flow equations. The triple deck theory,
or more precisely its equivalent for channel flows as developed by
Smith [7,8], also belongs to this class of strong coupling models.
In fact, Smith’s model is included in the present model since
the expansions are regular, whereas in the present model the
expansions are generalized. It is interesting to note that the first
approximation of Smith’smodel for v1 is symmetricwith respect to
y and corresponds to a geometrically antisymmetric problem. This
point will be discussed later when a regular analysis is developed
(Section 6). In the core, Smith’s model gives

v1 = −u0(y)
dA(x)

dx
, (45)

where A is defined as the displacement function.
It must be noted that (45) is an eigensolution of (42) but not of

(41). In addition, the approximation (45) does not have the singular
behaviour of (40). These two remarks lead us to try to separate as
far as possible the symmetric and antisymmetric problems, which
leads, as wewill see, to a new approach of the asymptotic problem.

5. Influence of asymmetry

The analysis starts from Navier–Stokes equations (8)–(10) in
which we introduce the transformation

X = x, (46)

Y = y − H(x, ε), (47)

U = U, (48)

V = V − U
dH

dx
, (49)

P = P , (50)



where ε is formally the thickness of the boundary layer, i.e., the

regionwhere the inertial terms are of the same order as the viscous

terms.

This point is also important in transferring the perturbations

from the walls into the equations. The asymptotic analysis is also

easier to do.

In order to define H , we set

E =
F + G

2
, (51)

H =
F − G

2
, (52)

so that the problem is geometrically symmetrized in the trans-

formed plane. Obviously, the solution is not symmetrical. Note also

that the physical channel is deformed symmetrically when H = 0.

In general, the wall conditions are

Y = Yℓ = −
1

2
+ E and Y = Yu =

1

2
− E : U = 0; V = 0.

(53)

We introduce hypothesis (H2):

(H2): E = O(ε), νµ2 � ε, (54)

with

H = νh(µx),

where ν(ε) and µ(ε) are order functions.

This extension of hypothesis (H1) shows that actually hypothe-

sis (H1) applies only on the symmetric part of the perturbation.

With these hypotheses, the Navier–Stokes equations become

∂U

∂X
+

∂V

∂Y
= 0, (55)

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P

∂X
+

1

R

(
∂2U

∂X2
+

∂2U

∂Y 2

)
+ O(νµ), (56)

U
∂V

∂X
+ V

∂V

∂Y
= −

∂P

∂Y
+

1

R

(
∂2V

∂X2
+

∂2V

∂Y 2

)
+ O(νµ). (57)

For small ε, the basic flow corresponding to E = 0 is

U0 =
1

4
− Y 2, (58)

V0 = 0, (59)

P0 = −2
X

R
+ Pc, (60)

where Pc is an arbitrary constant.

The Navier–Stokes equations can now be written as

∂U

∂X
+

∂V

∂Y
= 0, (61)

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P

∂X
+

dH

dX

∂P

∂Y
+

1

R

∂2U

∂Y 2
+ O

(
1

R

)
, (62)

U
∂V

∂X
+ V

∂V

∂Y
+

d2H

dX2
U2 = −

[
1 +

(
dH

dX

)2
]

∂P

∂Y
+

dH

dX

∂P

∂X

+
1

R

∂2V

∂Y 2
+ O

(
1

R

)
. (63)

For the core flow whose characteristics are denoted with index

‘‘1’’, the Euler equations become

∂U1

∂X
+

∂V1

∂Y
= 0,

U1

∂U1

∂X
+ V1

∂U1

∂Y
= −

∂

∂X
(P1 − P0) +

dH

dX

∂

∂Y
(P1 − P0) ,

U1

∂V1

∂X
+ V1

∂V1

∂Y
+

d2H

dX2
U2
1 = −

[
1 +

(
dH

dX

)2
]

∂

∂Y
(P1 − P0)

+
dH

dX

∂

∂X
(P1 − P0) .

(64)

As in (32)–(34), the flow characteristics can be expanded about
the basic flow characteristics (58)–(60). Then, the following orders
of magnitude are found:

U1 = OS(1),
∂U1

∂X
= O(ε),

∂U1

∂Y
= OS(1),

V1 = O(ε),
∂V1

∂X
= O(ε),

∂V1

∂Y
= O(ε).

(65)

It is recalled that the symbol OS means ‘‘is of strict order of’’
whereas the symbol O means ‘‘is at most of order of’’ [1].

With hypothesis (H2), the left-hand sides of the second and
third equations of (64) are of order ε. It is deduced that

∂

∂X
(P1 − P0) = O(ε),

∂

∂Y
(P1 − P0) = O(ε).

As in Section 4, this leads us to the linearized core flow
equations:

∂U1

∂X
+

∂V1

∂Y
= 0, (66)

U0

∂U1

∂X
+ V1

dU0

dY
= −

∂

∂X
(P1 − P0) , (67)

U0

∂V1

∂X
+

d2H

dX2
U2
0 = −

∂

∂Y
(P1 − P0) . (68)

Moreover, for large Reynolds numbers, as in [1], it can be shown

that, in the boundary layer, ∂P
∂X can be replaced by

∂P1
∂X in the

streamwise momentum equation.
Finally, the complete system to solve comprises the core flow

equations (66)–(68) and the field equations (61)–(62), simplified
as

∂U

∂X
+

∂V

∂Y
= 0, (69)

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P1
∂X

+
1

R

∂2U

∂Y 2
. (70)

It must be noted that Eqs. (69)–(70) are valid not only in the
boundary layers but everywhere in the channel.

The conditions required to solve this system are the boundary
conditions (53) and the coupling condition in the core:

V → V1. (71)

Since d2H
dX2 is an approximation of the curvature along the

median line Y = H(X), the resulting problem obtained using the
SCEM is analogous to the problem sets with hypothesis (H1), with
an additional term in Eq. (68).

6. Regular analysis of the transformed problem

The idea is to perform a regular analysis of the model based on
(69)–(70), (66)–(68), (71) and to show that this model contains in
particular the first-order results obtained by Smith. A slow variable
X is introduced:

X = Xεα. (72)



By defining V such that

V = εαV , (73)

the continuity equation is

∂U

∂X
+

∂V

∂Y
= 0. (74)

It is assumed thatα ≥ 0 so that the length of thewall deformations
ismuch larger than the channel width or is of the same strict order.
The streamwise momentum equation (70) becomes

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P1

∂X
+

1

Rεα

∂2U

∂Y 2
. (75)

It is easy to show that, in the vicinity of walls, the regular
analysis of (75) leads to boundary layer equations which have the
same form as (75).

Now, let us examine the core flow equations. By defining V 1

such that

V 1ε
α = V1, (76)

the core flow equations (66)–(68) become

−U0

∂V 1

∂Y
+ V 1

dU0

dY
= −

∂

∂X
(P1 − P0) , (77)

ε2αU0

∂V 1

∂X
+

d2H

dX2
U2
0 = −

∂

∂Y
(P1 − P0) . (78)

As we know the behaviour of the pressure, we look for regular
expansions beginning with

V 1(X, Y , ε) = εrV 10(X, Y ) + · · · , (79)

P1(X, Y , ε) − P0 = ε2P10(X, Y ) + · · · . (80)

With the above expansions, V 1 = O(ε) implies that r ≥ 1. In
addition, the regular analysis imposes µ = εα and H = εh(X).

The analysis of (77)–(78) with the asymptotic expansions
(79)–(80) leads us to consider two cases.

1. α > 1
2
. To first order, the pressure is constant in a cross-section

∂P10
∂Y

= 0, (81)

and, for a direct comparison with Smith’s results, the solution
for V 1 can be cast in the form

V 1 = −εU0

(
dA

dX
+

dh

dX

)
, (82)

where A(X) is a function of X known as the displacement
function.
As the global problem to solve is fully symmetric with respect

to Y , V 10 must be antisymmetric, but (82) gives a symmetric
solution if A + h 6= 0. Thus, we have to take A + h = 0. To the
considered order, the perturbation is negligible.

2. α ≤ 1
2
. The solution for V 1 is

V 1 = −ε
dh

dX
U0(Y ) − ε2−2α dA

dX
U0(Y ) + · · · , (83)

and, for α < 1/2, the pressure variation in a cross-section is
given by

∂P10
∂Y

=
d2A

dX
2
U2
0 (Y ). (84)

Here, the displacement function A(X)must be determined from
the matching condition between the core and the boundary
layer.

For α = 1/2, we have

V 1 = −ε

[
dh

dX
+

dA

dX

]
U0 + · · · , (85)

∂P10
∂Y

= U2
0 (Y )

d2A

dX
2
. (86)

Finally, the solution for U1, V1 is

1. α > 1
2

U1 = U0(Y ) + O(ε2), (87)

V1 = O(ε2). (88)

This case is interesting because it gives the limits of a problem
where the walls are not exactly symmetric but which can be
treated as being symmetric.

2. α ≤ 1
2

U1 = U0(Y ) + εh(X)
dU0

dY
+ ε2−2αA(X)

dU0

dY
+ · · · , (89)

V1 = −ε1+α dh

dX
U0(Y ) − ε2−α dA

dX
U0(Y ) + · · · . (90)

Let us recall that the regular form of the SCEM leads to a
uniformly valid approximation to a given order, here ε. In addition,
the results are equivalent to those obtained with the standard
method of matched asymptotic expansions when the matching is
performed to the same order according to the modified Van Dyke
principle [1]. For U , we have formally

U = U1 + εUBL − εUc, (91)

where U is a UVA to order ε, U1 is the approximation in the core
to order ε, and εUBL is the approximation in the boundary layer
to order ε. The quantity Uc results from the matching condition to
order ε. For example, in the vicinity of Y = 1/2, the boundary layer
variable is

Ỹ =
1
2

− Y

ε
. (92)

With

U0 =
1

4
− Y 2,

we obtain the following matching conditions:

1. α < 1
2
: limỸ→∞(UBL − Ỹ ) = −h(X),

2. α = 1
2
: limỸ→∞(UBL − Ỹ ) = −h(X) − A(X),

3. α > 1
2
: limỸ→∞(UBL − Ỹ ) = 0.

These results can be interpreted in terms of the original variables.
Taking into account the transformation (47), and defining the
boundary layer variable ỹ =

(
1
2

− y
)
/ε, we have

Ỹ = ỹ + h(X), (93)

so the matching conditions become

1. α < 1
2
: limỹ→∞(uBL − ỹ) = 0,

2. α = 1
2
: limỹ→∞(uBL − ỹ) = −A(X),

3. α > 1
2
: limỹ→∞(uBL − ỹ) = h(X).

If all the results obtained in this section with the transformed
variables are interpreted in terms of the original variables, they are
identical to those obtained in [1,7,8]. This means that the model
based on (69)–(70), (66)–(68), (71) contains in particular themodel
developed by Smith to first order, but is more general.



7. Numerical procedure

According to the analysis proposed in Section 5, the problem
is to solve the generalized boundary layer equations (69)–(70)
associated to the core flow equations (66)–(68). The velocity
components U and V vanish at the walls, and the coupling
condition between the boundary layer solution and the core flow
solution is given by (71).

First, the core flow equations are rewritten by introducing a
change of variable:

V ∗
1 = V1 +

dH

dX
U0. (94)

Then, it is shown that V ∗
1 obeys Poisson’s equation:

U0

∂2V ∗
1

∂X2
+ U0

∂2V ∗
1

∂Y 2
= V ∗

1

d2U0

dY 2
. (95)

The coupling condition becomes

V = V ∗
1 −

dH

dX
U0. (96)

To solve the equations, a change of coordinates is introduced,

ξ = X, (97)

η =
Y

ζ (X)
with ζ (X) = 1 − 2E(X), (98)

so that the domain is limited by the lines η = −1/2 and η = 1/2
which define the channel walls.

In agreement with the analysis of Section 5, the core flow
equations are linearized in the (ξ , η)-plane, so that Poisson’s
equation for V ∗

1 keeps the same form as (95). In this equation, the
velocity of the basic flow is

U∗
0 =

1

4
− η2. (99)

The generalized boundary layer equations are rewritten by
introducing the following velocity transformation:

U∗ = U, (100)

V ∗ = V − Uη
dζ

dX
, (101)

so the generalized boundary layer equations are only slightly
modified.

The numerical procedure used to solve the whole set of
equations is discussed below.

Poisson’s equation for V ∗
1 is discretized using a five-point

stencil. A successive line overrelaxation method is applied to solve
the resulting equations. According to this technique, an iterative
procedure is implemented in which the calculation domain is
swept from upstream to downstream. When the solution is
calculated at a given ξ -station, the value of V ∗

1 at the upstream
ξ -station is the updated value of V ∗

1 calculated at the current
iteration, whereas the value of V ∗

1 at the downstream station is
taken at the previous iteration. The sweeping of the calculation
domain is repeated until convergence is achieved.

At a given ξ -station, the longitudinal component of the pressure
gradient is calculated from the core flow streamwise momentum
equation and is used to solve the generalized boundary layer
equations. These equations are discretized using a standard finite
difference method with three points in the η-direction and two
points in the ξ -direction.

In fact, Poisson’s equation and the generalized boundary layer
equations are strongly coupled, and the whole set of equations is
solved as simultaneously as possible. The procedure is described
below.

The calculation of the values of U∗, V ∗ and V ∗
1 at the different

grid points for a given ξ -station consists of solving a system of

algebraic equations inwhich the coefficients of the unknowns form
tridiagonal matrices. The main problem is that the values of V ∗

1 are
not known a priori along the lines η = −1/2 and η = 1/2.

At a given ξ -station, the solution of Poisson’s equation can be
written as

V ∗
1i = AiV

∗
1

(
−

1

2

)
+ BiV

∗
1

(
1

2

)
+ Ci, (102)

where V ∗
1i is the value of V ∗

1 at a certain grid point i along a line
ξ = const. The coefficients Ai, Bi and Ci do not depend on the values
V ∗
1 (−1/2) and V ∗

1 (1/2), and are calculated explicitly.
In the same way, after replacing the streamwise component of

the pressure gradient by its expression as a function of V ∗
1 and of

its transverse derivative, the solution of the generalized boundary
layer equation for U∗ has the form

U∗
i = aiV

∗
1

(
−

1

2

)
+ biV

∗
1

(
1

2

)
+ ci, (103)

and for V ∗, we have

V ∗
i = αiV

∗
1

(
−

1

2

)
+ βiV

∗
1

(
1

2

)
+ γi. (104)

Solution (103) forU∗ is obtainedby applying thewall conditions
onU∗. Thismeans that the coefficients ai, bi and ci are calculated by
taking into account these boundary conditions. For V ∗, the above
solution (104) is obtained by using the condition V ∗ = 0 along one
wall only, for example the lower wall. Indeed, only one boundary
condition can be taken into account because V ∗ is deduced fromU∗

by integrating the continuity equation which is of first order with
respect to the transverse coordinate.

At this stage, two conditions are not yet prescribed. The first
condition is V ∗ = 0 along the other wall (the upper wall); this
condition is equivalent to the prescription of a constant mass
flow in the whole channel. The second condition is the coupling
between the boundary layer solution and the core flow solution.
These two missing conditions are written from the expressions of
V ∗
1i, U

∗
i and V ∗

i . For example, the coupling condition is

AcV
∗
1

(
−

1

2

)
+ BcV

∗
1

(
1

2

)
+ Cc −

dH

dξ
U∗
0 (ηc)

= αcV1∗

(
−

1

2

)
+ βcV

∗
1

(
1

2

)
+ γc + U∗

c ηc
dζ

dξ
, (105)

where the index c denotes the given core line along which the
coupling conditions hold. Eq. (105) gives the first relation to
calculate the values of V ∗

1 (−1/2) and V ∗
1 (1/2). The second relation

is obtained by calculating the mass flow from the expression of U∗
i

(103).
When the values of V ∗

1 (−1/2) and V ∗
1 (1/2) are determined,

the solutions for V ∗
1i, U

∗
i and V ∗

i are known from (102)–(104) and
the calculation can proceed to the next ξ -station. In this way, the
whole domain is swept from upstream to downstream. The sweep
is repeated until convergence is achieved.

This procedure ensures a quasi-simultaneous resolution of
the whole system of equations and makes the algorithm very
efficient [14].

8. Results

To assess the validity of the interactive boundary layer (IBL)
method, we examined the evolution of the skin-friction coefficient
which is a very sensitive flow feature,

Cf =
2

R
τw,

where τw is the reduced wall shear stress.



Fig. 2. Flow produced by symmetric and antisymmetric wall deformations. R = 1000. NS = Navier–Stokes results, IBL = interactive boundary layer results.

The Navier–Stokes calculations were performed with the
commercial CFD package FLUENT. The test-case geometry is a
channel whose walls are deformed in a domain x1 ≤ x ≤ x2:

F =
hl

2

(
1 + cos

2πx

L

)
; G = −

hu

2

(
1 + cos

2πx

L

)
. (106)

For all cases, the Reynolds number is R = 1000.
First, comparisons between the IBL and Navier–Stokes results

are given for the purely symmetric and antisymmetric wall
deformations in Fig. 2. The lower wall is deformed by a trough
located in the domain −2 ≤ x ≤ 2 (L = 4) with hl = −0.3.
The upper wall is deformed in the same domain −2 ≤ x ≤ 2
(L = 4) with hu = 0.3 for the symmetric case and hu = −0.3
for the antisymmetric case. Even though the amplitude of the wall
deformation is not really small as required by the formal theory, an
excellent agreement with the Navier–Stokes results is observed.

It can be noted that there is a very slight upstream influence in
the symmetric case. In fact, the pressure is also nearly constant in
a cross-section. This is not the case for antisymmetric geometries
where the upstream influence is clearly evidenced.

The IBL model enables us also to treat original problems. In
the case of a bend, when the channel does not recover its initial
axis location at the downstream end, the usual techniques of small
perturbations do not work any longer. As an example, thewalls are
deformed in the domain −2 ≤ x ≤ 0 (L = 4) with hl = 0.5 and
hu = 0.5; for x > 0, we have yl = 0, yu = 1, so the channel
axis is displaced from y = 0 upstream to y = 0.5 downstream.
In this case again, a good agreement with Navier–Stokes results is
observed (Fig. 3).

In this latter case, if the flow is far from being separated, a
slight constriction can be added in the bend to induce separation
deliberately. Thus, the walls are deformed by an additional
symmetric constriction given by (106) with L = 2 in the domain
−3 ≤ x ≤ −1 with hl = 0.1 and hu = −0.1. The same
configuration with hl = 0.2 and hu = −0.2 has also been
calculated. The results are given in Figs. 4 and 5.

Then, we can observe that an antisymmetric deformation is
much less disturbing than a symmetric deformation of same
amplitude except if the flow is excited by a small upstream
perturbation.

Along the same lines, it should be possible to consider channels
whose downstream cross-section is not equal to the upstream
cross-section. However, it is possible to give an idea of the quality
of the results obtained with the IBL model presented here. To
show this, the calculations are performed with the transformation
(97)–(98) and with the basic flow (99). For instance, Figs. 6 and 7
show the results obtained for a constricted channel and a dilated
channel. The shape of these channels is defined from (106). The
walls are deformed in the domain −2 ≤ x ≤ 0 with L = 4. In the
case of the constricted channel, we have hl = 0.2 and hu = −0.2;
in the downstream part (x > 0), we have yl = −0.3 and yu = 0.3.
In the case of the dilated channel, we have hl = −0.4 and hu = 0.4;
in the downstream part (x > 0), we have yl = −0.9 and yu = 0.9.

A very good agreement with the Navier–Stokes results is
obtained again, even if a significant separated zone is present in
the case of the dilated channel.

9. Conclusion

The method presented in this paper enables us to consider
significant deformations of the channel walls. A few representative
cases have been selected and the skin-friction coefficients have
been compared to Navier–Stokes solutions.

The skin-friction coefficient is a very sensitive flow feature. A
very good agreement is observed in difficult cases which cannot be
treated easily with other methods such as the method developed
by Smith which is the counterpart of the triple deck theory for
internal flows.

The idea of strong coupling between the linear core flow
equations and the nonlinear uniformly valid equations is called
here the interacting boundary layer, IBL, for simplicity. We use
also GIBL, G for global, since the equations are valid in the



Fig. 3. Flow produced by a channel bend. R = 1000. NS = Navier–Stokes results, IBL = interactive boundary layer results.

Fig. 4. Flow produced by a the superposition of a bend and of a symmetric constriction. R = 1000. NS = Navier–Stokes results, IBL = interactive boundary layer results.

Fig. 5. Flow produced by the superposition of a bend and of a symmetric

constriction. Streamlines calculated in the separated region with FLUENT.

whole domain. This approach is systematically used so that a
non-hierarchical process is employed even if it is not necessary.
Moreover, there is no matching and the boundary conditions are
exactly satisfied.

The main goal of this study was to separate, as far as possible,
the symmetrical problem and the antisymmetrical one. The
final problem is geometrically symmetrized and the interaction

with the antisymmetrical effects appears in the transverse Euler
equation (68) through the second derivative ofH , knowing that the
problem is fully symmetrical for H = 0.

Separation is more easily produced with a symmetrical
dilatation. In that case, for H = 0, numerical calculations show
that V1 = 0, and the transverse pressure variation is null which is
a classical hypothesis and a good approximation. The drawback of
taking a constant pressure in a cross-section is that this assumption
prevents us from observing any upstream influence. However, in
practice, this upstream influence is very slight.

In contrast, for the antisymmetrical case, the upstream
influence is important as the transverse pressure gradient is not
negligible. Moreover, when E = 0, asH can be of order 1, Poiseuille
flow is only displaced so that the approximation (45) is only good
locally. The analysis of the upstream interaction has been done in
this framework by Smith [15].



Fig. 6. Flow produced by a symmetric constriction. R = 1000. NS = Navier–Stokes results, IBL = interactive boundary layer results.

Fig. 7. Flow produced by a symmetric dilatation. R = 1000. NS = Navier–Stokes results, IBL = interactive boundary layer results.

According to hypothesis (H2), within our degree of approxi-
mation, the second derivative of H is the curvature of the curve
y = H(x). This suggests that it should be possible to consider chan-
nels whose downstream direction is no longer the direction of the
x-axis, and thus is different from the upstreamdirection. In fact, the
hypothesis that the first derivative ofH is small is not necessary. In
the same way, in the numerical applications, we considered chan-
nels whose downstream cross-section is not equal to the upstream
cross-section. Thus, it is possible to change the fact that E is small.
Obviously, the study of such cases will be considered in the frame
of an extended theorywith curvilinear coordinates, but interesting
results have been obtained with the present approach.

This study confirms the soundness of the SCEMwhich,we recall,
is based on the construction of a uniformly valid approximation.
This is particularly fruitful in the case of strong coupling when,
for example, boundary layer separation can occur, which implies a
significantmodification of the flow. The numerical calculations are
faster for these simplifiedmodels than for Navier–Stokes solutions,
but this is not the primary goal of the development of thesemodels.
In fact, this new asymptotic analysis, the so-called SCEM, helps
us to understand the flow structure; this step was necessary for
further important problems. It is clear that future developments
are not lacking. If channel flows proved to be an interesting test to
approach other problems such as flow ducts, it seems valuable to
look at external flows and wakes with flow control, in laminar or
turbulent regimes, which are a fundamental target and for which
the SCEM seems to be particularly well adapted.
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