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Asymptotic Stability of Uniformly

Bounded Nonlinear Switched Systems
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Abstract

We study the asymptotic stability properties of nonlinear switched
systems under the assumption of the existence of a common weak
Lyapunov function.

We consider the class of nonchaotic inputs, which generalize the
different notions of inputs with dwell-time, and the class of general
ones. For each of them we provide some sufficient conditions for
asymptotic stability in terms of the geometry of certain sets.

The results, which extend those of [5], are illustrated by many
examples.
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1 Introduction.

This paper is concerned with the asymptotic stability properties of nonlinear
switched systems defined by a finite collection {f1, . . . , fp} of smooth vector
fields in Rd. They are assumed to share a smooth weak Lyapunov function V ,
hence to be stable at the origin, and we are looking for sufficient conditions
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of asymptotic stability for certain classes of switching laws.
Our stability hypothesis is similar to the ones of [3–5, 9, 11]. In particular
in [4, 5, 11] the vector fields are linear, the Lyapunov function is quadratic,
and the asymptotic stability properties are closely related to the geometry
of the union of some linear subspaces of Rd.

In the present paper, we introduce in the same way two geometric subsets
of Rd which turn out to be fundamental in the sense that they contain all
the limit sets for two classes of inputs. More accurately let Ki = {LfiV = 0}
be the set where the vector field fi is tangent to a level set of the Lyapunov
function V . We show in Section 8 that the limit sets are always contained
in the union of the Ki’s. On the other hand, for the class of nonchaotic
inputs (which are a generalization of inputs with dwell-time), the limit sets
are included in the smaller set

⋃p

i=1Mi where Mi is roughly speaking the
largest fi-invariant subset of Ki.

The geometry of the union of the Mi’s and the Ki’s is consequently the
key point of our results. Of course these sets are no longer linear whenever
the vector fields are not, and we are lead to approximate them by linear
subspaces or cones.

In the paper [3] the authors deal with another set included in the union of
the Ki’s but generally much larger than the union of theMi’s (see Example 1
in Section 4). However they consider only dwell-time inputs and their results
are improved by the distinction we introduce between the two categories of
sets and inputs.

The paper is organized as follows: basic definitions and notations are
stated in Section 2, and some preliminary and technical results in Section 3.
In Section 4, we state a general result of asymptotic stability for nonchaotic
inputs. We provide sufficient conditions of stability by means of some tangent
objects in Section 5. The results are then refined in the analytic case (Sec-
tion 6) and in the linear one (Section 7). Section 8 is devoted to asymptotic
stability for general inputs and the particular case of two globally asymptot-
ically stable vector fields is dealt with in Section 9. Finally, in Section 10 a
necessary and sufficient condition for a planar switched system to be GUAS
is stated. The results are illustrated by some examples in Section 11.
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2 Statement of the Problem

As explained in the introduction, we deal with a finite collection {f1, . . . , fp}
of smooth vector fields on Rd vanishing at the origin and assumed to share
a smooth weak Lyapunov function V : Rd −→ R+.
This means that V is positive definite and for each i ∈ {1, . . . , p} the Lie
derivative LfiV is nonpositive, so that V is nonincreasing along the solutions
of ẋ = fi(x), i = 1, . . . , p.

An input, or switching signal, is a piecewise constant and right-continuous
function u from [0,+∞[ into {1, ..., p}. We denote by (an)n≥0 the sequence
of switching times (with a0 = 0). In the particular case where the number
of switches is finite we adopt the following convention: if u is discontinuous
at a0 < · · · < aN and constant from aN , then we set an = aN + (n −N) for
n > N . The sequence (an)n≥0 is thus strictly increasing to +∞ in any case,
and u(t) is constant on each interval [an, an+1[. This value will be denoted
by un ∈ {1, ..., p}, and the duration an+1 − an by δn.

As the input is entirely defined by the switching times and the values
taken at these instants we can write

u = (an, un)n≥0.

We consider the switched system

ẋ = fu(x), x ∈ Rd, u ∈ {1, . . . , p} (S)

Fixing a switching signal u gives rise to the dynamical system defined in Rd

by
ẋ = fu(t)(x).

Its solution for the initial condition x will be denoted Φu(t, x) and Φi(t, x)
will stand for the flow of fi.
As we are concerned with the stability analysis at the origin of the switched
system given by (S), let us recall some stability notions :

Definition 1 The switched system (S) is said to be

1. uniformly stable at the origin if for every δ > 0, there exists ε > 0 such
that for every x ∈ Rd, ‖x‖ ≤ ε, all inputs u and t ≥ 0, ‖Φu(t, x)‖ ≤ δ;
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2. locally attractive at the origin if there exists δ > 0 such that for all
x ∈ Rd, ‖x‖ ≤ δ and all inputs u, Φu(t, x) converges to the origin as t
goes to infinity;

3. globally attractive at the origin if for every input u and all x ∈ Rd,
Φu(t, x) converges to the origin as t goes to infinity;

4. asymptotically stable at the origin if it is uniformly stable and locally
attractive at the origin;

5. globally asymptotically stable at the origin if it is uniformly stable and
globally attractive at the origin.

6. globally uniformly asymptotically stable (GUAS) at the origin if it is
uniformly stable and globally uniformly attractive at the origin i.e.

∀ε, δ > 0, ∃T > 0 s.t. ‖x‖ ≤ δ =⇒ ∀t ≥ T ‖Φu(t, x)‖ ≤ ε.

It is a well-known fact that the set {f1, . . . , fp} being finite, hence com-
pact, global asymptotic stability is equivalent to GUAS (see [2]).
The vector fields are not necessarily forward complete but V being a weak
common Lyapunov function, the switched system is uniformly stable, and
all solutions of (S) starting in some neighborhood of the origin are forward
bounded, hence defined for all positive times (however the fi’s are forward
complete whenever V is radially unbounded, see Proposition 1).
Before concluding this section, let us define some classes of inputs that we
will consider in the sequel.

Definition 2 (see [5]) An input u is said to be chaotic if there exists a
sequence ([tk, tk + τ ])k∈N of intervals which satisfies the following conditions:

1. tk −→k→+∞ +∞ and τ > 0;

2. For all ε > 0 there exists k0 ∈ N such that for all k ≥ k0, the input u is
constant on no subinterval of [tk, tk + τ ] of length greater than or equal
to ε.

An input that does not satisfy these conditions is called a nonchaotic input.

In the litterature, one often encounters inputs with dwell-time (an input
u is said to have a dwell-time δ > 0 if for each n ∈ N, δn ≥ δ). Such an input
is clearly nonchaotic.
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Definition 3 An input u is said to satisfy the assumption H(i) if there exist
a subsequence (ank

)k∈N and δ > 0 such that

∀k ≥ 0, unk
= i and δnk

≥ δ.

It is said to be regular if it is nonchaotic and satisfies the assumption H(i)
for i = 1, . . . , p.

3 Limit Sets and Convergence Results

For an input u and an initial condition x ∈ Rd, we denote by Ωu(x) the set
of ω-limit points of {Φu(t, x); t ≥ 0}, that is the set of limits of sequences
(Φu(tk, x))k≥0, where (tk)k≥0 is increasing to +∞.

Since V is a Lyapunov function for each fi, i = 1, . . . , p, it is clear that
t ∈ R+ 7−→ V (Φu(t, x)) is nonincreasing, and we have the following result:

Proposition 1 There exists a neighborhood W of the origin such that for all
x ∈ W and all input u, the solution starting at x is forward bounded and the
ω-limit set Ωu(x) is a compact and connected subset of a level set {V = R}
for some R ≥ 0.

In particular if the Lyapunov function is radially unbounded (i.e. V (x) −→
+∞ as ‖x‖ goes to +∞), we can choose W to be equal to Rd.

Proof : V has a positive minimum m on the unit sphere.
Let us fix r ∈]0, m[ and let W be the connected component of {V ≤ r}
which contains 0 (note that W is compact). In the case where V is radially
unbounded r can be chosen arbitrarily in ]0,+∞[.
Let x ∈ W and u be an input.
Since V is nonincreasing along the solution Φu(·, x), the trajectory Φu(t, x),
t ≥ 0, is included in W, and is forward bounded.
It follows that Ωu(x) is a compact and connected subset of W (see [10]).

It remains to show that Ωu(x) is contained in a level set of V .
The map t ∈ R+ 7−→ V (Φu(t, x)) being nonincreasing and nonnegative, has
a limit R ≥ 0 as t goes to +∞.
It is clear that Ωu(x) ⊆ {V = R}.

�
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From now on W will be a connected neighborhood of the origin satisfying
the properties of Proposition 1.

Next, we prove a uniform convergence result that will be used many times
in the sequel and which is based on the notion of weak convergence of the
inputs.

Proposition 2 Let x ∈ W, u an input, (tk)k∈N ⊂ R+ a sequence increasing
to +∞ and τ > 0.
Consider the sequence (ϕk)k∈N defined by

ϕk(t) = Φu(tk + t, x) , t ∈ [0, τ ], k ∈ N.

Then (ϕk)k∈N admits a subsequence that converges uniformly to an absolutely
continuous function ϕ : [0, τ ] −→ Ωu(x).
Moreover ϕ satisfies

ϕ(t) = ϕ(0) +

∫ t

0

p
∑

i=1

wi(s)fi(ϕ(s)) ds, ∀t ∈ [0, τ ]

where wi : [0, τ ] −→ [0, 1], i = 1, . . . , p, are measurable functions such that
∑p

i=1wi = 1 almost everywhere.

Remark 1 Proposition 2 shows that a ”limit trajectory” is a solution of the
convexified system.

Proof : The switched system ẋ = fu(t)(x) can be rewritten as the affine
control one

ẋ =

p
∑

i=1

vi(t)fi(x),

where v : [0,+∞[−→ B, and B = {e1, . . . , ep} is the canonical basis of Rp.
Consider the following functions:

wk(t) = v(tk + t) and ϕk(t) = Φv(tk + t, x)

for t ∈ [0, τ ], k ∈ N.
Since the solution Φu(·, x) is forward bounded, up to a subsequence (ϕk(0))k∈N
converges to a limit ℓ ∈ Ωu(x) and by Proposition 10.1.5 of [12], (wk)k∈N con-
verges weakly to a measurable function w : [0, τ ] −→ U where U is the convex
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hull of B (this is equivalent to saying that wi ≥ 0 and
∑p

i=1wi = 1 almost
everywhere).

Since Φv(tk + t, x) = Φwk(t, ϕk(0)), the conclusion comes from Theorem
1 of [12].

�

The following lemma will also be useful in the study of the stability for
general inputs (Section 8). The notations are the same as above.

Lemma 1 Let (wk)k∈N ⊂ L∞([0, τ ],B) be a weakly convergent sequence and
w ∈ L∞([0, τ ],U) its limit.
The following statements are equivalent:

1. m({t ∈ [0, τ ]; wk(t) = ei}) −→ 0 (resp. τ)

2. wi = 0 (resp. 1) almost everywhere.

where m stands for the Lebesgue’s measure on the real line.

Proof : It suffices to write

m({t ∈ [0, τ ]; wk(t) = ei}) =

∫ τ

0

1{wk=ei}(t) dt

=

∫ τ

0

1{wk

i
=1}(t) dt

=

∫ τ

0

wk
i (t) dt

and to conclude using the weak convergence.

�

4 Stability Results for Regular Inputs

In this section we state and prove one of the main results of the paper;
but first we introduce very important subsets of Rd and establish relations
between them and the ω−limit sets.
For each i ∈ {1, . . . , p} we define the set Mi by

Mi = {x ∈ Rd; ∀k ≥ 1, Lk
fi
V (x) = 0},
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where Lk
fi
V = Lfi . . .Lfi

︸ ︷︷ ︸

k times

V .

The following lemma is the centerpiece of the part of the paper concerned
with nonchaotic inputs because it enables us to establish two fundamental
facts. On the one hand the ω-limit sets intersect Mi for an input satisfying
Assumption H(i) (see Corollary 1) and on the other hand, for a nonchaotic
input every ω-limit set is contained in the union of the Mi’s (see Proposi-
tion 3). A fortiori the ω-limit sets for regular inputs satisfy both statements.

Lemma 2 Let x ∈ W, u an input and (tk)k∈N ⊂ R+ a sequence increasing
to +∞ such that (Φu(tk, x))k∈N converges to a limit ℓ ∈ Ωu(x).
If there exists τ > 0 such that u takes the same value i ∈ {1, . . . , p} on each
interval [tk, tk + τ ] then the limit ℓ belongs to Mi.

Proof : For each k ∈ N, Φu(tk + τ, x) = Φi(τ,Φu(tk, x)), so that

Φu(tk + τ, x) −→k→+∞ Φi(τ, ℓ).

It follows that ℓ and Φi(τ, ℓ) are two ω-limit points of Ωu(x), and by Propo-
sition 1, that

V (Φi(τ, ℓ)) = V (ℓ).

Since V is nonincreasing along the trajectory Φi(·, ℓ), we get

∀t ∈ [0, τ ], V (Φi(t, ℓ)) = V (ℓ).

This implies that for each k ≥ 1,

Lk
fi
V (ℓ) =

dk

dtk
V (Φi(t, ℓ))∣∣

t=0

= 0.

Finally ℓ ∈ Mi.

�

Corollary 1 If an input u satisfies Assumption H(i), then

∀x ∈ W, Ωu(x) ∩Mi 6= ∅.

Proposition 3 Let x ∈ W and let u be a nonchaotic input. Then

Ωu(x) ⊆

p
⋃

i=1

Mi.
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Proof : Assume that

Ωu(x) 6⊆

p
⋃

i=1

Mi.

Let ℓ ∈ Ωu(x) \
⋃p

i=1Mi and let (tk)k∈N ⊂ R+ be a sequence increasing to
+∞ such that

Φu(tk, x) −→k→+∞ ℓ.

Let T > 0 and set

ϕk(t) = Φu(tk + t, x), t ∈ [0, T ], k ∈ N.

By Proposition 2 and up to a subsequence, we can assume that (ϕk)k∈N
converges uniformly on [0, T ] to a continuous function ϕ : [0, T ] −→ Ωu(x).
Since ϕ is continuous and

⋃p
i=1Mi is a closed subset, we can choose T > 0

so small that

ϕ([0, T ]) ∩

p
⋃

i=1

Mi = ∅.

The input u being nonchaotic, there exist a number τ > 0 and a sequence
(sk)k∈N such that for all k ∈ N,

• [sk, sk + τ ] ⊆ [tk, tk + T ];

• u is constant on [sk, sk + τ ].

Up to a subsequence, we can assume that there exists j ∈ {1, . . . , p} such
that u is equal to j on each interval [sk, sk + τ ], and the sequence (εk)k∈N =
(tk − sk)k∈N converges to a limit ε ∈ [0, T ].
By continuity of ϕ and by uniform convergence of (ϕk)k∈N, the sequence
(ϕk(εk))k∈N converges to ϕ(ε). According to Lemma 2 the point ϕ(ε) belongs
to Mj , which contradicts

ϕ([0, T ]) ∩

p
⋃

i=1

Mi = ∅.

�

In [3] the authors showed that for all initial conditions x in W and for
every input u with dwell-time, the ω-limit set Ωu(x) is contained in the
union of all the compact and weakly invariant sets which are included in
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W ∩
⋃p

i=1{LfiV = 0} (a compact set M is said to be weakly invariant if for
each x ∈ M , there exists some i ∈ {1, . . . , p} and δ > 0 such that for either
all t ∈ [0,−δ] or all t ∈ [0, δ], Φi(t, x) ∈M).
Proposition 3 is therefore a generalization of Bacciotti and Mazzi’s result
because the set

⋃p

i=1Mi is in general strictly contained in the set defined
in [3]. Moreover it applies to a larger class of inputs.

Example 1 (see [3, 9]) Consider the linear switched system consisting in

f1(x) =

(
−x1 − x2

x1

)

and

f2(x) =

(
−x1
−x2

)

.

V (x) = x21 + x22 is a weak common Lyapunov function since

Lf1V (x) = −2x21

and
Lf2V (x) = −2x21 − 2x22.

The set {Lf1V = 0}∪{Lf2V = 0} = {x1 = 0} is invariant for the flow of f2.
Bacciotti and Mazzi’s result says that for inputs with dwell-time, the ω-limit
sets are contained in {x1 = 0}.
On the other hand, computing L3

f1
V gives M1 ∪ M2 = {0}. According to

Proposition 3, the switched system is asymptotically stable for every non-
chaotic input (recall that the class of nonchaotic inputs is larger than the
class of inputs with dwell-time).
Notice that the set {x1 = 0} is what we define as K1 ∪ K2 (see Section 8).

Now we give a sufficient condition of asymptotic stability for regular in-
puts.

Theorem 1 If the sets Mi satisfy the condition

there exists a neighborhood V of the origin such that, for all R > 0,
no connected component of the set {V = R} ∩ V ∩

⋃p
i=1Mi

intersects all the Mi’s,
(C)

then for every regular input u, the switched system is asymptotically stable.
In particular if V = W = Rd the switched system is globally asymptotically
stable for every regular switching signal.
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Proof : Since (S) is uniformly stable at the origin, it suffices to check its
attractivity for regular inputs.
Let V be a neighborhood of the origin satisfying Condition (C). We can
assume that V is included in W and is the connected component of {V ≤ r}
containing 0 for some r > 0.

Let x ∈ V and let u be a regular input.
Since V is nonincreasing along the solution Φu(·, x), we have Ωu(x) ⊆ V.
We know from Proposition 1 that Ωu(x) is a connected subset of a level set
{V = R} for some R ≥ 0. Let us show that R = 0.
Since u is a regular input, the two following facts hold:

1. u being nonchaotic, Ωu(x) ⊆
⋃p

i=1Mi by Proposition 3;

2. As u satisfies H(i) for i = 1, . . . , p, Ωu(x) ∩Mi 6= ∅ for i = 1, . . . , p by
Corollary 1.

Therefore Ωu(x) is a connected subset of {V = R} ∩ V ∩
⋃p

i=1Mi which
intersects all the Mi’s. Condition (C) implies R = 0.

�

Remark 2 Note that Condition (C) cannot be fulfilled if the origin is not
isolated in

⋂p

i=1Mi. This provides a necessary condition for (C) to hold.

5 Approximation of the Mi’s

In general the sets Mi are difficult to compute and Condition (C) may be
hard to check directly.
It is of interest to approximate the Mi’s by some ”tangent” sets easier to
compute like linear subspaces or cones.

However the setsMi are not necessarily submanifolds. Moreover dLk
fi
V (0)

may be equal to zero, it is for instance the case for k = 1 because LfiV has
a maximum at 0.
For these reasons we define lk as the smallest integer (which depends on i)
such that dlkLk

fi
V (0) 6= 0. If such an integer does not exist we set lk = 1.

Note that l1 is necessarily even since LfiV has a maximum at 0.
For each i ∈ {1, . . . , p} consider the set

Mi =
⋂

k≥1

ker dlkLk
fi
V (0),
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where
ker dlkLk

fi
V (0) = {y ∈ Rd; dlkLk

fi
V (0) · [y]lk = 0}

([y]lk stands for (y, . . . , y
︸ ︷︷ ︸

k times

)).

The sets ker dlkLk
fi
V (0) are cones but not linear subspaces in general.

Lemma 3 For each i ∈ {1, . . . , p}, we have

Mi = {x ∈ Rd; ∀k ≥ 0, L2k+1
fi

V (x) = 0}.

Proof : Let x ∈ Rd. For t ≥ 0 small enough and all N ∈ N∗,

V (Φi(t, x)) = V (x) +

N∑

k=1

Lk
fi
V (x)

tk

k!
+ o(tN).

Since V is nonincreasing along solutions, the smallest integer k (if it exists)
such that Lk

fi
V (x) 6= 0 is odd, and Lk

fi
V (x) < 0 for this k.

It follows that ⋂

k≥0

{L2k+1
fi

V = 0} ⊆
⋂

k≥0

{L2k+2
fi

V = 0},

and finally that

Mi =
⋂

k≥0

{L2k+1
fi

V = 0}.

�

Lemma 4 We have the following results:

1. Let (xn)n≥0 ⊂ Mi \ {0} a sequence converging to the origin.

If (
xn

‖xn‖
)n≥1 converges to a limit x, then x ∈Mi.

In other words, every tangent vector to Mi at 0 is in Mi.

2. If Mi ∩Mj = {0} then 0 is isolated in Mi ∩ Mj i.e. there exists a
neighborhood V of the origin such that Mi ∩Mj ∩ V = {0}.

3. If Mi is a submanifold then T0Mi ⊆ Mi. In this case Mi can be
replaced by T0Mi.

4. ker d2LfiV (0) is a linear subspace.

12



Proof :

1. For all k, n ≥ 1,

Lk
fi
V (xn) = Lk

fi
V (0) +

1

lk!
dlkLk

fi
V (0) · [xn]lk + o(‖xn‖

lk).

Since xn, 0 ∈ Mi, one has Lk
fi
V (xn) = Lk

fi
V (0) and

dlkLk
fi
V (0) ·

[
xn

‖xn‖

]

lk

=
o(‖xn‖

lk)

‖xn‖lk
.

Taking the limit as n goes to +∞, we get

dlkLk
fi
V (0) · [x]lk = 0.

It follows that x ∈Mi.

2. If 0 is not isolated in Mi ∩ Mj, then there exists a sequence (xn)n≥1

in Mi ∩Mj \ {0} converging to 0.

Up to a subsequence, (
xn

‖xn‖
)n≥1 converges to a limit x 6= 0 which

belongs to Mi ∩Mj by the previous item.

3. Since Mi contains all tangent vectors to Mi at the origin, it contains
the tangent space to Mi at 0.

4. LfiV has a maximum at 0 so d2LfiV (0) is a negative semi-definite
symmetric bilinear form. It follows that the set of all isotropic vectors
of d2LfiV (0) is a linear subspace.

�

Theorem 2 If no connected component of S(1) ∩
⋃p

i=1Mi intersects all the
Mi’s then Condition (C) is fulfilled.

Proof : Let I be the set of all indices i for which there exists a continuous
path in S(1) ∩

⋃p
j=1Mj joining M1 to Mi, and let J be the complementary

set of I in {1, . . . , p}.
Necessarily J is nonempty and for all i ∈ I and j ∈ J , Mi ∩Mj = {0}.
By Lemma 4, there exists a neighborhood of the origin V such that, for all
i ∈ I and j ∈ J , V ∩Mi ∩Mj = {0}.
It is clear that Condition (C) is satisfied.
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Now we give an example of a vector field for which M is hard to compute
but not M .

Example 2 Let α : R2 −→ R− be a smooth nonpositive map such that
α(0) = 0, which implies that dα(0) = 0. Consider the vector field f defined

by f(x) = α(x)x and the weak Lyapunov function V (x) =
x21 + x22

2
.

A straightforward computation gives M = {α = 0} (this set can be any closed
subset of R2 by Borel’s Theorem). One also has dkLfV (0) = 0 for k = 1, 2, 3
so that M ⊆ ker d4LfV (0). But

1

12
d4LfV (0) · [x]4 =

∂2α

∂x21
(0)x41 +

∂2α

∂x22
(0)x42 + 2

∂2α

∂x1∂x2
(0)(x31x2 + x1x

3
2)

+ (
∂2α

∂x21
(0) +

∂2α

∂x22
(0))x21x

2
2.

We can choose α(x) = x21 − x22 + β(x) with β(x) = o(‖x‖2) too complicated
to compute M = {α = 0}. However, the previous computation gives M ⊆
{x2 = ±x1}.

6 The Analytic Case

In this section we assume the vector fields and the Lyapunov function to be
analytic. In that case the set Mi can also be defined as

Mi = {x ∈ Rd; ∀t ∈ Ix, V (Φi(t, x)) = V (x)},

where Ix is the maximal interval of definition of the solution Φi(·, x). It
is shown in the next proposition that whenever Vi is a centre manifold for
fi (see [7] for the definition and basic properties of centre manifolds), then
locally around the origin the inclusion Mi ⊆ Vi holds and enables us to
give sufficient conditions for asymptotic stability. Thanks to the principle of
approximation at any order of centre manifolds (see [7]), these conditions are
checkable in practice.

Proposition 4 Let Vi be a centre manifold for fi. Then there exists a neigh-
borhood O of the origin such that

Mi ∩O ⊆ Vi.

14



Proof : Since fi is stable at the origin, its differential dfi(0) at 0 has no
positive eigenvalue. Therefore we can choose a basis such that fi writes

fi(x) = Ax+ g(x)

where A ≡ dfi(0) is a block diagonal matrix consisting in two blocks, a n×n
block A1, the eigenvalues of which lies on the imaginary axis, and a m×m
Hurwitz block A2.
According to this decomposition we will write each x in Rd as x = (x1, x2) ∈
Rn × Rm.
By definition Vi is locally the graph of a smooth map h : Rn −→ Rm defined
in a neighborhood of the origin such that h(0) = 0 and dh(0) = 0 (see [7]).

Let O be the connected component of {V ≤ r} containing the origin
for some r > 0. According to Lemma 1, page 20 of [7], and for r small
enough, there exist two numbers C, µ > 0 such that for all t ≥ 0 and all
x = (x1, x2) ∈ O,

‖x2(t)− x1(t)‖ ≤ Ce−µt‖x2 − h(x1)‖

where x(t) = Φi(t, x).
We can also assume thatO is bounded and that h is defined on O∩(Rn×{0}).
The map h being continuous on the compact set O∩ (Rn×{0}), there exists
a number M > 0 such that

∀x ∈ O, ‖x2 − h(x1)‖ ≤M.

Let x = (x1, x2) ∈ Mi ∩ O. In order to prove that x ∈ Vi, we show
that x2 = h(x1). By analycity V (Φi(t, x)) = V (x) ≤ r for all t ∈ Ix. It
follows that the trajectory {Φi(t, x); t ∈ Ix} cannot leave the compact set O
in backward time (it is therefore defined for all t ≤ 0).
For each k ∈ N, set xk = Φi(−k, x) and C1 = CM . Then for all t ≥ 0,

‖xk2(t)− h(xk1(t))‖ ≤ Ce−µt‖xk2 − h(xk1)‖

≤ C1e
−µt,

and replacing t by k we get

‖x2 − h(x1)‖ = ‖xk2(k)− h(xk1(k))‖

≤ C1e
−µk −→k→+∞ 0.

Finally x2 = h(x1) and x ∈ Vi.
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From Proposition 4, we deduce that all tangent vectors to Mi at the
origin are contained in the tangent space to Vi at the origin which will be
denoted by Vi. Consequently in the analytic case we get the following results.

Theorem 3 If one of the following conditions is satisfied:

1. there exists a neighborhood O of the origin such that for all R > 0, no
connected component of {V = R} ∩ O ∩

⋃p
i=1 Vi intersects all the Vi’s;

2. no connected component of S(1) ∩
⋃p

i=1 Vi intersects all the Vi’s;

then Condition (C) is fulfilled, and the switched system is asymptotically
stable for every regular input.

Proof : 1. =⇒ (C) follows from Proposition 4.
2. =⇒ 1. From Proposition 4 again we get Mi ⊆ Vi for i = 1, . . . , p. There-
fore the assumptions of Theorem 2 are satisfied as soon as no connected
component of S(1) ∩

⋃p

i=1 Vi intersects all the Vi’s.

�

Remark 3 1. The linear subspaces Vi are in general quite easy to compute
because they are characterized by the linear part of the fi’s.

2. In the case where Vi ⊆ Ki (Ki stands for the set {LfiV = 0}, see
Section 8) then Mi = Vi and consequently Mi = Vi. Indeed, any locally
positively invariant set included in Ki is contained in Mi.

As well as in [5] we deduce from Theorem 3 some geometric sufficient
conditions for asymptotic stability. They deal with linear objects and are
quite easily checkable.

Corollary 2 Assume that
p
⋂

i=1

Vi = {0}.

Then, the switched system is asymptotically stable for all regular switching
signals as soon as one of the following conditions holds:
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1. there exists i such that dimVi = 0;

2. there exists i such that dimVi = 1 and Vi ⊆ Vj =⇒ Vi = Vj;

3. p = 2;

4. p > 2 and dim(
∑p

i=1 Vi) >
∑p

i=1 dimVi − p+ 1.

Proof : Each condition implies Condition (C) (see [5]).

�

Example 3 Let us consider the vector field f defined in R3+n+mby






ẋ1 = −x2 + y2ϕ(z)
ẋ2 = x1 − yψ(z)
ẏ = −y − x1yϕ(z) + x2ψ(z)
ż = Bz + (x21 + x22 + y2)Bz

where ϕ and ψ are analytic functions with ψ(0) = 0, the variable z belongs
to Rn+m, and B is a Hurwitz matrix of the following form:

B =

(
A −CT

C D

)

.

We assume the n×n matrix A to satisfy AT +A = 0, the m×m matrix D to
satisfy DT +D < 0, and the pair (C,A) to be observable. These conditions
ensure that B is Hurwitz (see [4]).

The positive definite function V defined by V (x1, x2, y, z) = x21+x
2
2+y

2+
zT z is a weak Lyapunov function for f . Indeed a straightforward computation
gives:

LfV (x1, x2, y, z) = −2y2 + (1 + x21 + x22 + y2)zT (BT +B)z.

As BT +B ≤ 0, we obtain LfV ≤ 0 and:

{LfV = 0} = {y = 0} × ker(BT +B)
= {y = 0} × Rn.

On the other hand the plane P = {y = 0, z = 0} is a centre manifold for f .
According to Proposition 4 we obtain

M ⊆ P ( K = P × Rn.
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Thanks to LaSalle’s invariance Principle and because z(t) tends to zero as
t goes to +∞ the inclusions are global. This example can be refined in the
following way. Let us first denote by f0 the vector field obtained by applying
to f the diffeomorphism

(x1, x2, y, z) 7−→ (x1, x2, w = y + x41 − x22, z).

The 2-dimensional manifold of R3+n+m defined by V0 = {w = x41−x
2
2, z = 0}

is a center manifold for f0, hence M0 ⊆ V0.
Now let g be the vector field obtained by applying the same diffeomorphism

to the vector field F defined by:

F (x1, x2, y, z) = (−x1,−x2,−y,−z) and let f1 = (x21 + x22)g.

The conclusion is that the switched system defined by f0, f1 is asymptotically
stable for any regular input. Indeed the positive function

W ((x1, x2, w, z) = x21 + x22 + (w − x41 + x22)
2 + zT z

is a weak Lyapunov function for f0, f1, as shown by an easy but long compu-
tation. Moreover M1 = {x1 = x2 = 0} and consequently M0 ∩M1 = {0}.

7 The Linear Case

The paper [5] deals with the linear case but consider quadratic Lyapunov
functions only. Actually Theorems 3 and 4 of [5] are direct consequences of
the results of the previous sections.
However we will show that our results also apply to linear systems with non-
quadratic, but analytic and unbounded, Lyapunov functions.
So let us assume the fields fi to be linear and the Lyapunov function to be
analytic and radially unbounded.
Fix a vector field fi. For every real or complex eigenvalue a of fi, let us
denote by L(a) = ker(fi − aI)d the characteristic subspace of Cd for this
eigenvalue. We define

Ea = L(a) if a ∈ R

Ea = (L(a)⊕ L(a)) ∩ Rd if a /∈ R

where a is the complex conjugate of a, and we set

Vi =
∑

ℜ(a)=0 Ea

V S
i =

∑

ℜ(a)<0 Ea

18



where ℜ(a) stands for the real part of a. It is a well known fact that as soon
as the real part of one of the eigenvalues of fi is positive, or in the case where
the index of one of the eigenvalues whose real part vanishes is greater than
one (that is the characteristic subspace is strictly larger than the eigenspace
for this eigenvalue), there exists an x such that ‖Φi(t, x)‖ tends to infinity
as t goes to +∞.
As by hypothesis fi is stable at the origin, the space Rd is equal to Vi ⊕ V S

i

and the restriction of fi to Vi is semi-simple (i.e. diagonalizable in Cd).
The subspaces Vi and V

S
i are fi-invariant, so that Vi is also invariant under

the flow of fi. It is consequently a centre manifold for fi, since the restriction
of fi to V

S
i is Hurwitz.

Moreover, according to the previous decomposition of Rd, we can write

fi(x) =

(
A1x1
A2x2

)

where the real parts of A1’s eigenvalues vanish and A2

is Hurwitz. The flow of fi is then Φi(t, x) =

(
etA1x1
etA2x2

)

.

Proposition 5 Mi = Vi = Vi.

Proof : Let x = x1 + x2 ≈

(
x1
x2

)

∈ Mi.

In order to prove that x ∈ Vi it suffices to show that x2 = 0.
Since A2 is Hurwitz, there exist C, µ > 0 such that for all t ∈ R and all
y ∈ V S

i , ‖etA2y‖ ≤ Ce−µt‖y‖.

For each n ≥ 1, set xn = xn1 + xn2 = Φi(−n, x) =

(
e−nA1x1
e−nA2x2

)

.

Since x ∈ Mi and by analycity, V (xn) = V (x) for each n ≥ 1. As V is
radially unbounded (xn)n≥1 is bounded, and so is (xn2 )n≥1.
But

‖x2‖ = ‖Φi(n, x
n
2 )‖

= ‖enA2xn2‖

≤ Ce−µn‖xn2‖

≤ C̃e−µn −→n→+∞ 0

It follows that x2 = 0 and x ∈ Vi.

Conversely, since A1 is semi-simple the matrices etA1 are rotation ones in
some Euclidean structure on Vi. It is a well known fact that every point of
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the trajectory t 7−→ etA1 is recurrent. In particular there exists a sequence
(tk)k≥0 increasing to +∞ such that

etkA1 7−→k 7→+∞ IVi
,

where IVi
stands for the identity matrix of Vi. Therefore for all x ∈ Vi

V (etkA1x) 7−→k 7→+∞ V (x),

and V (etA1x) being not increasing and by analycity we obtain x ∈ Mi.

�

Theorem 4 Assume that
p
⋂

i=1

Vi = {0}.

Then, the linear switched system is globally asymptotically stable for all reg-
ular switching signals as soon as one of the conditions (1–4) of Corollary 2
holds.

8 Stability for general inputs

In this section we deal with general inputs, more accurately the stability
results of [5] for possibly chaotic inputs are extended to nonlinear switched
systems using the convergence results of Proposition 2 and Lemma 1 (see
Section 3).

For each i ∈ {1, . . . , p}, we introduce the closed set containing the origin

Ki = {x ∈ Rd/ LfiV (x) = 0},

and for a given input u, the subset Ju of {1, . . . , p} defined by

i ∈ Ju ⇐⇒ m{t ≥ 0; u(t) = i} = +∞

(recall that m stands for the Lebesgue’s measure).

Proposition 6 For all x ∈ W and all switching signals u

Ωu(x) ⊆
⋃

i∈Ju

Ki.
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Proof : Assume by contradiction that there exists ℓ ∈ Ωu(x) such that
ℓ 6∈

⋃

i∈Ju
Ki. Let (tk)k≥0 ⊂ R+ be a sequence increasing to +∞ and such

that
ℓ = lim

k→+∞
Φu(tk, x).

Fix T > 0 and consider the sequence (ϕk)k≥0 defined by

∀k ∈ N, ∀t ∈ [0, T ], ϕk(t) = Φu(tk + t, x).

By Proposition 2 and Lemma 1, and up to a subsequence, (ϕk)k≥0 converges
uniformly on [0, T ] to an absolutely continuous function ϕ : [0, T ] −→ Ωu(x)
satisfying for almost all t ∈ [0, T ],

ϕ′(t) =
∑

i∈Ju

wi(t)fi ◦ ϕ(t)

where for each i ∈ Ju, wi : [0, T ] −→ [0, 1] is a measurable function and
∑

i∈Ju
wi = 1 almost everywhere.

Since ϕ is continuous, for T small enough, ϕ([0, T ]) ∩
⋃

i∈Ju
Ki = ∅.

Since Ωu(x) is contained in a level set of V , we get for almost all t ∈ [0, T ],

0 =
d

dt
V (ϕ(t))

= dV (ϕ(t)) · ϕ′(t)

=
∑

i∈Ju

wi(t) dV (ϕ(t)) · fi(ϕ(t))

=
∑

i∈Ju

wi(t)LfiV (ϕ(t)).

But for all t ∈ [0, T ], ϕ(t) 6∈
⋃

i∈Ju
Ki and LfiV (ϕ(t)) < 0 for i ∈ Ju.

It follows that for each i ∈ Ju, wi = 0 almost everywhere which contra-
dicts ∑

i∈Ju

wi = 1 almost everywhere.

�

Proposition 7 For all x ∈ W and all inputs u:

∀i ∈ Ju, Ωu(x) ∩ Ki 6= ∅.
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Proof : Assume by contradiction that there exists i ∈ Ju such that

Ωu(x) ∩ Ki = ∅.

Since Ωu(x) is compact and Ki is closed, the distance between those two sets

is positive, let ε =
d(Ki,Ωu(x))

2
> 0.

Fix T > 0 such that for each t ≥ T ,

d(Φu(t, x),Ωu(x)) ≤ ε.

Since K := {y ∈ Rd/ d(y,Ωu(x)) ≤ ε} is a compact set which does not
intersect Ki there exists α > 0 such that

∀y ∈ K, LfiV (y) ≤ −α.

For each t ≥ 0,

V (Φu(t, x)) = V (x) +

∫ t

0

d

ds
V (Φu(s, x)) ds

= V (x) +

∫ t

0

dV (Φu(s, x)) · fu(s)(Φu(s, x)) ds.

As Ωu(x) is contained in a level set {V = R} for some R > 0, this integral
converges as t goes to infinity and we get

R = V (x) +

∫ +∞

0

dV (Φu(s, x)) · fu(s)(Φu(s, x)) ds

≤ V (x) +

∫ +∞

T

dV (Φu(s, x)) · fu(s)(Φu(s, x)) ds

≤ V (x) +

∫

{t≥T ; u(t)=i}

dV (Φu(s, x)) · fi(Φu(s, x)) ds

≤ V (x)− αm{t ≥ T ; u(t) = i} = −∞,

a contradiction.

�

From Propositions 6 and 7, we deduce for general inputs a theorem similar
to Theorem 1 for regular ones.
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Theorem 5 Let J ⊆ {1, . . . , p} be a nonempty set.
If the sets Ki satisfy the condition

there exists a neighborhood V of the origin such that, for all R > 0,
no connected component of the set {V = R} ∩ V ∩

⋃

i∈J Ki

intersects all the Ki, for i ∈ J
(K)

then for every input u such that Ju = J , the switched system is asymptoti-
cally stable.
In particular if V = W = Rd then the switched system is globally asymptoti-
cally stable for every input u such that Ju = J .

Using the same technique of linearization as in the regular input case
we can give sufficient conditions for (K) to hold. Set Ki = ker d2LfiV (0),
i = 1, . . . , p, and recall that these sets are linear subspaces (see Lemma 4).

Corollary 3 Let J ⊆ {1, . . . , p} be a nonempty set and assume that

⋂

i∈J

Ki = {0}.

Then, the switched system is asymptotically stable for all switching signals u
such that Ju = J as soon as one of the following conditions holds:

1. there exists i ∈ J such that dimKi = 0;

2. there exists i ∈ J such that dimKi = 1 and Ki ⊆ Kj =⇒ Ki = Kj for
each j ∈ J ;

3. #J = 2;

4. #J > 2 and dim(
∑

i∈J Ki) >
∑

i∈J dimKi −#J + 1.

9 The case of two GAS vector fields

In this section, we are interested in asymptotic stability for all inputs of a
system consisting in a pair of vector fields. They are of course assumed to be
asymptotically stable at the origin (consider constant inputs) and denoted
by f0 and f1 so that the switched system (S) writes

ẋ = (1− u)f0(x) + uf1(x), x ∈ Rd, u ∈ {0, 1}.
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Since the vector fields are asymptotically stable, we can choose a neighbor-
hood W of the origin such that ∀x ∈ W and for i = 0, 1, Φi(t, x) goes to 0
as t goes to +∞.
We consider the set

K = K0 ∩ K1

and we get:

Proposition 8 For all x ∈ W and all inputs u,

Ωu(x) ∩ K 6= ∅.

Moreover, if the vector fields and the Lyapunov function are analytic then

Ωu(x) ⊆ K.

If the vector fields are globally asymptotically stable and V is unbounded,
one can take W = Rd.

Proof : Assume by contradiction that Ωu(x) \ K 6= ∅.
Let ℓ ∈ Ωu(x)\K and let (tk)k∈N ⊂ R+ be a sequence increasing to +∞ such
that

Φu(tk, x) −→k→+∞ ℓ.

Since Ωu(x) ⊆ K0 ∪ K1 we can assume without loss of generality that ℓ ∈
K0 \ K1.
Fix τ > 0 and consider the sequence (ϕk)k∈N defined by

ϕk(t) = Φu(tk + t, x), t ∈ [0, τ ].

By Proposition 2, up to a subsequence, (ϕk)k∈N uniformly converges on [0, τ ]
to an absolutely continuous function ϕ : [0, τ ] −→ Ωu(x) satisfying almost
everywhere

ϕ̇ = (1− λ)f0(ϕ) + λf1(ϕ)

where λ : [0, τ ] −→ [0, 1] is a measurable function.
We can choose τ so small that

ϕ([0, τ ]) ⊆ K0 \ K1.
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As Ωu(x) is contained in a level set {V = r} for some r > 0, we get for
almost all t ∈ [0, τ ]

0 =
d

dt
V (ϕ(t))

= (1− λ(t))Lf0V (ϕ(t)) + λ(t)Lf1(ϕ(t)).

But ϕ([0, τ ]) ∩ K1 = ∅, and Lf1V (ϕ(t)) < 0 for all t ∈ [0, τ ].
Consequently λ(t) = 0 for almost all t ∈ [0, τ ] and

ϕ̇ = f0(ϕ) i.e. ∀t ∈ [0, τ ], ϕ(t) = Φ0(t, l).

In the analytic case this implies ∀t ≥ 0 V (Φ0(t, ℓ)) = r, and Φ0(t, ℓ) cannot
converge to 0 as t goes to +∞.

In the smooth case let us assume that Ωu(x) ∩K = ∅. Let us first notice
that the limit trajectory can be extended to any interval [0, T [ hence to
[0,+∞[. The assumption Ωu(x)∩K = ∅ implies then that ϕ(t) ∈ K0 \K1 for
t ≥ 0, hence that ϕ(t) = Φ0(t, ℓ) for t ≥ 0. The conclusion comes from the
same contradiction that Φ0(t, ℓ) cannot converge to 0 as t goes to +∞.

�

Corollary 4 Assume that the vector fields f0 and f1 are globally asymptot-
ically stable and that V is radially unbounded. If K = {0} then the switched
system is GUAS.

10 Planar analytic switched systems

In this section we give a necessary and sufficient condition for a planar ana-
lytic switched system consisting in two globally asymptotically stable subsys-
tems to be GUAS under our usual assumption of existence of a weak common
Lyapunov function.

Consider the analytic planar switched system

ẋ = (1− u)f0(x) + uf1(x), x ∈ R2, u ∈ {0, 1} (P)

where f0, f1 are two globally asymptotically stable analytic vector fields and
V is a weak analytic Lyapunov function.
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We assume V to be radially unbounded and dV (x) to vanish at x = 0
only, which implies that for each R > 0, the set {V = R} is a one-dimensional
submanifold.
It is a well-known fact that (P) is GUAS if and only if the convexified planar
switched system, obtained by replacing u ∈ {0, 1} by u ∈ [0, 1], is GUAS
(see [2, 6]).
In [6] the authors consider the set

Z = {x ∈ R2 : det(f0(x), f1(x)) = 0}

where the vector fields are colinear. Under generic conditions they give a
necessary and sufficient condition for a planar nonlinear switched system to
be GUAS, a necessary condition being that the set {x ∈ Z, 〈f0(x), f1(x)〉 <
0} is empty.
This condition turns out to be also sufficient under our hypothesis.

Theorem 6 Under our hypothesis the following statements are equivalent:

1. the switched system (P) is GUAS;

2. the set {x ∈ Z : 〈f0(x), f1(x)〉 < 0} is empty;

3. the set {x ∈ K : 〈f0(x), f1(x)〉 < 0} is empty.

Proof : 1. =⇒ 2. Let y ∈ {x ∈ Z : 〈f0(x), f1(x)〉 < 0} 6= ∅.
There exists u0 ∈ [0, 1] such that (1 − u0)f0(y) + u0f1(y) = 0. The point y
is therefore an equilibrium of the convexified switched system for the input
u ≡ u0.
The convexified system is not GUAS, and neither is System (P).

2. =⇒ 1. Assume that {x ∈ Z : 〈f0(x), f1(x)〉 < 0} = ∅.
Let x ∈ R2 and u an input. Assume by contradiction that Ωu(x) 6= {0}.
Let ϕ : [0,+∞[−→ Ωu(x) be a limit trajectory as in Proposition 2.
There exists a measurable function λ : [0,+∞[−→ [0, 1] such that

ϕ̇ = (1− λ)f0(ϕ) + λf1(ϕ) a.e.

The subsystems and the Lyapunov function being analytic, we know from
Proposition 8 that Ωu(x) is contained in K so that Ωu(x) ⊆ Z. Indeed,
for each y ∈ K \ {0}, Lf0V (y) = Lf1V (y) = 0 and this is equivalent to
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f0(y), f1(y) ∈ ker dV (y). But dV (y) 6= 0; it follows that f0(y) and f1(y) are
colinear and that K ⊆ Z. In particular, ϕ([0,+∞[) ⊆ Z.
Since {x ∈ Z : 〈f0(x), f1(x)〉 < 0} = ∅, for all y ∈ Z \ {0}

f1(y) = α(y)f0(y), where α(y) =
‖f1(y)‖

‖f0(y)‖
> 0.

It follows that
ϕ̇ = (1− λ+ λα(ϕ))f0(ϕ)

with 1− λ + λα(ϕ) > 0, so the trajectories {ϕ(t) : t ≥ 0} and {Φ0(t, ϕ(0)) :
t ≥ 0} are the same which contradicts the global asymptotic stability of f0.
Consequently the switched system is GUAS.

2. =⇒ 3. comes from the fact that K ⊆ Z.

3. =⇒ 2. It suffices to show that {x ∈ Z : 〈f0(x), f1(x)〉 < 0} ⊆ K.
Let y ∈ {x ∈ Z : 〈f0(x), f1(x)〉 < 0} and let λ ∈]0, 1[ such that (1 −
λ)f0(y) + λf1(y) = 0. Then 0 ≤ −λLf1(y) = (1 − λ)Lf0(y) ≤ 0, and
Lf0V (y) = Lf1V (y) = 0, i.e. y ∈ K.

�

Corollary 5 If for all x ∈ R2 〈f0(x), f1(x)〉 ≥ 0, then (P) is GUAS.

As the next example shows, the previous theorem is no longer true without
the analycity hypothesis.

Example 4 Consider the smooth vector field

g(x) =

(
−x2
x1

)

whose trajectories are circles around the origin, and the closed sets F1 =
{x1x2 ≥ 0} and F2 = {x1x2 ≤ 0}.
By Borel’s Theorem, there exists two smooth functions ϕi : R2 −→ R+,
i = 1, 2, such that Fi = ϕ−1

i ({0}).
Then we consider the vector fields

fi(x) = −ϕi(x)x+ g(x), i = 1, 2
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and the weak Lyapunov function V (x) = x21 + x22.
It is easy to see that Ki = Fi, K = Z = {x1 = 0} ∪ {x2 = 0} and for each
x ∈ Z, 〈f1(x), f2(x)〉 ≥ 0.
Thus all hypothesis of Theorem 6 are satisfied except analycity of the vector
fields. However the switched system is not GUAS since it admits periodic
trajectories.

11 Examples

Example 5 Consider the following analytic vector fields on R2,

f1(x) = (x21 − x32)
2

(
−x1
−x2

)

and

f2(x) = (x22 − x31)
2

(
−x1
−x2

)

.

Then V (x) = x21+x22 is a weak common Lyapunov function which is radially
unbounded,

Lf1V (x) = −2(x21 + x22)(x
2
1 − x32)

2,

and
Lf2V (x) = −2(x21 + x22)(x

2
2 − x31)

2.

It follows that Lf1V (x) = 0 if and only if x21 − x32 = 0. But all these points
are equilibrium so that

M1 = K1 = {x21 − x32 = 0}.

Similarly Lf2V (x) = 0 if and only if x22 − x31 = 0, and

M2 = K2 = {x22 − x31 = 0}.

For 0 < R < 2, no connected component of {V = R}∩ (M1∪M2) intersects
M1 and M2. By Theorem 1 the switched system is asymptotically stable for
all regular input.
Notice that we cannot conclude using centre manifolds because the linear parts
of f1 and f2 at the origin vanish.
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Example 6 Consider the following vector fields on R2,

f1(x) =

(
0

−x2

)

and

f2(x) =

(
x1x2

−x2 − x21

)

.

The weak Lyapunov function V (x) = x21 + x22 is radially unbounded, and

Lf1V (x) = Lf2V (x) = −2x22.

From
L3

f2
V (x) = −4(x31 + x2x

2
1 + 2x22),

follows that M1 = {x2 = 0} and M2 = {0}, and that the switched system is
globally asymptotically stable for all regular switchings.
We could conclude using centre manifolds but the conclusion would be only
local.
Indeed V1 = {x2 = 0} and V2 is the graph of a map x2 = −x21 + O(x41)
(see [7]).
It follows that Condition 1 of Theorem 3 is satisfied and that the switched
system is asymptotically stable for all regular inputs. However we cannot say
anything about the region of attraction.

Example 7 (see [1]) Now we consider

f1(x) =

(
x32

−x31 − 2x32

)

and

f2(x) =

(
−2x31 − x32

x31

)

.

Here V (x) = x41 + x42 is a weak common Lyapunov function. Indeed,

Lf1V (x) = −8x62

and
Lf2V (x) = −8x61.

It follows that K1 = {x2 = 0} and K2 = {x1 = 0} so that K = {0}.
According to Corollary 4, the switched system is GUAS.
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Example 8 (see [3]) Consider the switched system consisting in the two
following vector fields

f1(x) =

(
−x2

x1 − xk2

)

and

f2(x) =

(
x2

−x1 − xk2

)

where k is an odd integer.
The map V (x) = x21 + x22 is a weak common Lyapunov function. Indeed,

Lf1V (x) = Lf2V (x) = −2xk+1
2 .

Then M1 and M2 are contained in the set K1 = K2 = {x2 = 0}.
We know from Proposition 6 that for all inputs u,

∀x ∈ R2, Ωu(x) ⊆ {x2 = 0}.

But each limit set is connected and contained in a level set of V , hence re-
duced to a point.
If u satisfies Assumption H(i) for at least one i ∈ {1, 2} then for each x ∈ R2,
Ωu(x) consists in an equilibrium point for the vector field fi which implies
that Ωu(x) = {0}.
So the switched system is globally asymptotically stable for all inputs satisfy-
ing H(i) for at least one i ∈ {1, 2}.

Example 9 Consider the switched system consisting in the two following
analytic vector fields

f1(x) =

(
−x31 − x2

x31

)

and

f2(x) =

(
−2x31 − x2

x31

)

.

The function V (x) = x41+2x22 is a weak analytic common Lyapunov function.
Indeed,

Lf1V (x) = −4x61

and
Lf2V (x) = −8x61.
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It follows that K = {x1 = 0}, so that Condition (K) is not fulfilled.
However the LaSalle invariance principle tells us that the vector fields are
globally asymptotically stable, and on the other hand, for each x ∈ K, 〈f1(x), f2(x)〉 =
x22 ≥ 0. According to Theorem 6 the switched system is GUAS.

Example 10 Consider the three following analytic vector fields:

f1(x) =





−2x2 + x1x3
x1

−x3 − x21





f2(x) =





−x1
−2x2
−x21x

3
3





f3(x) =





−x1 + 2x3 − 2x2 cosx1
x1 cos x1
−x3





and the analytic Lyapunov function V (x) = x21 + 2x22 + x23. It is easy to see
that V1 = {x3 = 0}, V2 = {x1 = x2 = 0} and V3 = {x1 = x3 = 0} so that the
switched system is asymptotically stable for regular inputs by Theorem 3 (or
Condition 2 of Corollary 2). We have

Lf1V (x) = −2x23

Lf2V (x) = −2x21 − 8x22 − 2x21x
4
3

Lf3V (x) = −(x1 − x3)
2

thus K1 = V1, K2 = V2 and K3 = {x1 = x3}. It follows by Theorem 5 that
the switched system is globally asymptotically stable for all inputs u such that
Ju = {1, 2, 3}.
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