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Abstract Optimization by simulation of agricultural practices caigito improve irrigation
water use efficiency. This work introduces an efficient higrecal decomposition method
to design irrigation management strategies that is madiekea continuous stochastic prob-
lem. Various combinations of selection (greedy, Paresetdy division (middle, pivot, max-
imization) and evaluation techniques (global, standardatien) were tested. We present
results of an 8-continuous-parameter irrigation stra®giesign. Two criteria were chosen
to evaluate the different combinations: the achieved tivergin, and the number of simu-
lation runs that were needed to reach it. Selection teclksigupacted the resolution time,
while the evaluation techniques impacted the direct mastficiency. Based on the two for-
mer criteria, the trade-off combination of greedy selettjmvot partition and average value
evaluation appeared to be the most efficient to design trogatrategies.

Keywords Simulation optimization crop model irrigation management

1 Introduction

According to the FAO, one of the most important challengestifie agriculture in the
decades to come is to increase agricultural productiondd fee increasing world popu-
lation. Much of this increase has to come from an intensiwt stientifically-based agri-
culture, supported by irrigation (FAO (2002)). Howeverniany countries, water resources
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are already very heavily exploited (Smith (2000)). Whengated agriculture is developed,
water used for irrigation can represent more than 90% of thiemconsumption. Thus we
investigate the possibility of increasing the agricultysedduction by increasing the effi-
ciency of irrigation water use without increasing the qitsirgf water used.

Agricultural practices have been modelled for some timegislecision rules (Papy
(2000), Aubry et al (1998), Shaffer and Brodahl (1998)). [Sowdeling allows uncertain
events such as weather to modify planned technical actichebiophysical system in an
adaptive way. For example, the weather influences the sodatey This type of modeling
aims at representing the farmer’'s behavior: actions areééovith regard to both con-
straints and goals, and are in addition modified dependingpatext and local conditions.
MODERATO (Bergez et al (2001a)) has been developed usingauncodeling framework.
The cultural operations are decided with elementary camit rules. These rules involve
condition parameters such as cumulative thermal unitsvasficit or irrigation amounts.
Its purpose is to evaluate current irrigation strategiescforn and to propose improved
strategies.

To optimize management strategies, two main approachdsecapplied: either control-
based optimization or simulation-based optimization {®Beret al (2006)). The former ap-
proach was used with MODERATO, by testing stochastic dyngmmgramming and rein-
forcement learning methods for identifying optimal demisiules (Bergez et al (2001b)). In-
put variables to the optimization problem were the condiparameter of the decision rules.
It gave poor results due to the complexity of the problem &eddrge variable space to op-
timize. Thesimulation-based optimizaticapproach deals with large continuous parameters
problems andhvolves explicit techniques to handle witincertainty. Various methods have
been introduced and developed in this field. Reviews fromraddttir (1998) Olafsson and
Kim (2002) or Fu et al (2005) provide a clear insight of thigadsity: gradient-based proce-
dures, stochastic approximation, sample path optimizatesponse surface methodology,
ranking & selection, and a few branching approaches dealitiy continuous or discrete
input variable problems. These methods include stochasticch techniques moving from
a current best solution to the next, or deterministic segchniques relying on an approxi-
mation of either the response or the objective function.

Among them, a few branching procedures have been introdincetiich the feasible
region is iteratively broken down before separating pramgissubsets from unpromising
ones. For example, Norkin et al (1994) proposed a versiohedbtanch-and-bound method
for discrete parameter optimization where promising angramising regions are selected,
based on objective function value bounds. This method haently been introduced for
continuous parameter optimization. As another exanpBnBfrom Prasetio et al (2004)
seeks to identify the most promising sub-region contaiminigsired solution by an iterative
pruning-or-branching procedure. Branching action isqrentd according to the probability
of reaching a targeted function measurement, while pruisngerformed according to the
significant difference of statistical tests between thetrensd least-promising regions.

The aim of this paper is to present th2 algorithm, a development &2p introduced in
Bergez et al (2004)P2 is a hierarchical decomposition procedure dedicated ntiraoous
parameter optimization, and is one of the simulation-baggithization methods. Promising
regions are selected by a heuristic, relying both on theageewalue and on the standard
deviation of simulation responses. The promising regichés divided into two parts, and
each of them is evaluated by simulation. Different optiomsthe three steps of selection,
division and evaluation were tested on a corn crop irrigatinagement problem in order
to identify the combination of techniques that lead to theshadficient algorithm.



We first describe the principle of tHe2 algorithm and the various techniques that are
tested for selection, division and evaluation. In sectipw@ give some information on the
MODERATO bio-decisional simulation model used to simulhie irrigation strategies and
we set up the simulation experiments. We present the resiuttee combinations of tech-
niques and we eventually discuss the &talgorithm options and the optimized irrigation
strategies.

2 From P2pto P2 algorithm

The P2p algorithm is based on the DIRECT (Jones et al (1993)) and t8& Huyer and

Neumaier (1999)) algorithms which have been developed éterchinistic optimization.

The P2p algorithm is dedicated to large continuous input variablebfems. It includes a
single objective function, which can be the combination efghted multiple objectives.
P2p belongs to the family of stochastic branching methods, $techastic branch-and-
bound or nested partitions methods. It is based on a hiecatatecomposition of the deci-
sion space into a binary tree.

This algorithm is dedicated to the optimization problem

maxJ(6), )
where0 is the set of possible decisions, ah®) is a performance function that can not be
computed analytically. The evaluationf9) thus relies only on the responses of stochastic
simulation runs. The formulation of this kind of optimizati involves input continuous
D-dimensional variable® constrained to be contained within a feasible regiir RP.
An objective function is defined on these variables, such Jha® — R, whereJ(6) =
E[L(6,w)] andw is the uncontrollable input variables vector of the stothasystem. The
general formulation of simulation-based optimization is:

maxJ(6) = E[L(6,w)] . 2
6co

The decision spac® is a hyper-rectangle, segion of RP. The P2 optimization aims
at finding small hyper-rectangles includeddwhich contain the decision vector that max-
imizes the expected value &f6,w). We assume a minimal size of these small regions,
defined by the user for every dimension as the wigffi® of the dimensiord € D.

Let us callpending regionghe regions that are still divisible (or breakable). Thenpri
ciple of theP2 algorithm is described in the Algorithm 1. Initializatiafiocates the initial
decision space as the single pending region of theésidingRLof all the pending regions.
The first step consists &fELECTING out from the pending regions list the region which is
potentially optimal: we call it thggromisingregion. The second stepVIDES this promis-
ing region into two parts. These two parts are offspringargiand are collected in the
of fspringRLlist. During the third step, each of these regions is sampedulated and
indices areeVALUATED . Eventually, the pending regions list is updated, and thextprevi-
ous steps are repeated until stopping criteria are reaattbd pending regions list is empty.
The P2 algorithm main stopping criterion is achieved when thema more pending region,
i.e. there is no more potentially optimal region which couldldté divided for further ex-
ploration. This division limit is explain in the next seati@.2. For practical reasons, time
limits and/or simulation number limits are usually addedh® previous stopping criterion.



pendingRL«— initial decision space;
while (stopping criteria are not reached gpeindingRLis not empty]
promisingReg— SELECTONe region intopendingRL-
of fspringRL— BREAK DOWN the promisingRednto two parts;
for each (regione of fspringRL{
simulateregion;
EVALUATE region;

pendingRL— take outpromisingReg
pendingRL— put in the breakableegiors of of fspringRL

Algorithm 1 The R2 algorithm and its three main steps.
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Fig. 1 P2 process illustration: left hand side displays the tree ¢ortion related to the decision space
exploration, and the right hand side shows iteration 1.

Figure 1 illustrates the three main steps considering arzdsional decision space
related to the decision tree produced. TP2p algorithm included theB3-selection, mid-
dle partition, average value and standard deviation etiahg The major improvements
leading fromP2p to P2 consisted in proposing, testing and selecting combinata@@mew
techniques.

2.1 Selecting the promising region
The selection step is involved in the process efficiency @tieg to its ability to lead straight

to the optimal region. At each iteration, the promising oegto be selected is one of the
pending regions. Each pending region is sampled, simutatddndices are computed dur-



ing the evaluation step. The focus here is to choose one pirgriegiorr . within the pend-
ing regions set, based on these indices. Three selectibnitees have been tested, based
on two indices: the average value and the standard deviatithe simulated responses. We
extended the consideration of these two indicesctarg andscore which could be either
the average value, the standard deviation or the maximwemihimum or the median value
for example.

a. Thegreedy selection consists in choosing the promising region considering oimdy
expected value criterion to be optimized. Considesngre as a generalization of the
criterion to be optimized and maximized, the promising eegi. will be chosen such
thatr, = argmax[scora (r)].

b. We propose a trade-off between greedy and systematichs€eHne 3-selection takes
into account both the average value of the region and thelatdrdeviation of the sam-
pled decision vectors. Let us defiseorq as the average value asdore as the stan-
dard deviation. The figure 2 represents the set of the comvexdominatetiregions, in
which we select the promising one. We use an approach baseuiltiobjective opti-
mization, which looks for regions with a large standard d8en when regions are large,
and for regions with a large average value when regions aa#l @ergez et al (2004)).
Consideringscore andscore as a generalization of the criteria to be optimized and
maximized, let us definf as following.

current depth
maximum depth- €

B(r) = score(r)+scorg(r).tan(y) with y = 7_2T ©)

current depthis the tree depth of the last region of interest, amalximum depths
the depth of an unbreakable region assuming middle panitiiip € is an infinite small
value excludingr/2 from reachable values. Ase [0..11/2] is tree depth dependant,
maximizing is selecting one region among all non dominated ones as sbovigure
2. Then the promising region. will be chosen among all the pending regiansuch
thatr, = argmax 3(r).

c. The previous approach can only reach the convex non deedirfeont. In order to
generalize the method to non convex front, @encf-selection combines the previ-
ous method with non convex dominahc@he selection technique still gives priority
to the standard deviation when regions are large, and t@ageevalue when regions
are smalln that case only the generalized critesieorg andscore have to be min-
imized. proj; and proj, are the projections of respectivebcorg and score onto
the line angled 71/2) — y such thatproji(r) = score(r) xcog 7 — y) and proja(r) =
score(r) «sin(5 —y). The promising regiom, is still part of the Pareto’s set and will
be chosen such that

re= argrma>(min[proj1(r), projo(r)]) - 4)

The figure 3 describe the cgBieselection technique. Depending on the current depth it
allows to select pending regions from the non-convex Pdretd!.

1 See for example Ehrgott (2005) fdominancedefinitions.
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Fig. 2 Some of the pending regions are incorporated in the convexduminated front. The promising
region is one of these. N.B. scerand score have to be maximized.
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Fig. 3 Cong3-selection visual description. N.B. In that case only, sg@nd score have to be minimized.

2.2 Breaking down the promising region

The division step is involved in the resolution time that &eded and in the global op-
timization efficiency: producing small regions could trdge fprocess in local optima, and
producing large regions could be time-consuming.

We proposed iP2p to break theD—dimensional promising region int&Zub-regions.
The depth of the decision tree to reach an unbreakable regsonall, but at every nodes one
region is taken out from the pending regions list while ptitdly 2P are put in. The number
of simulations needed to evaluate every new pending reggotien enormously expended
at every division. We chose in tH2 method to cut down thB—dimensional promising
region into only two parts to save simulations. Hence we fiegid to choose the parameter



p. to be cut. We proposed to choose this parameter with thedarglative range such that
Ps = arg m"((pd - pd )/ P, tep) (5)

wherep] (py) is the upper (lower) bound of dimensidrand p; " is its smallest feasible
range. Thus three division techniques have been tested.

a. Theequal partitioning is the easiest way to proceed. Without taking into accoumt th
results from samples, the paramepeiis simply cut down right in the middle, producing
two equal sub-regions.

Instead of blindly producing two sub-regions, two otheri@ques aim at producing
two regions as different as possible.

b. Thepivot partition chooses the decision vector which divides weak from beter r
sponses. The selection of the pivot vector is based on veatmes related to the prob-
ability of being the best representation of the thresholdddig the y% of the 'best’
responses from the-1y% of the 'worst’ responses. Two user defined indigeandys
are used.

c. Themaximization of the difference technique is based on a binary classification and
regression tree field (Breiman (1996)). The best split i®tals the maximizer of a
“goodness-of-split” function and is chosen as the one meig the difference be-
tween potential sub-region indicgs.

2.3 Evaluating eligible regions

The system performance is not directly available and weethes rely on sampled points
L(8,w) of the region of interestN sampled point vector§; (i € [1..N]) are simulatedv
times (j € [1..M]) in each new pending regiol is linearly related to the region width and
M is a parameter to be chosen. The aim is to compute, basddcadvt sampled performance
measures, the indices of the pending regions that are ughd imext iteration to select the
promising region.

a. As the optimization definition 2 involves trexpected value of the sampled perfor-
mance measures, we first compute the average Jéfljeas an approximation df(6) =
E[L(6,w)].

() ~i6) - 215 S 16,0 ©)
~ = — — |,wj .
M2
b. Theglobal standard deviation Vy can be used in the selection techniques involving two

indices.
1 N M

a3, 2, e [3(6) —~ L(B )] ©)

c. If we consider the sampled performance measures aslifistuesponses of the objec-
tive functionJ, then the idea of the third proposition is to use shendard deviation
of the objective function without considering the standard deviation of the distndea
We tested two indice¥p; andV,. They are computed to focus on the standard devia-
tion due to the controllable input parametef3, (excluding the standard deviation due
to the uncontrollable input parametets)( The aim of this paper is not to establish the
formulation of these standard deviations. NonetheMgsjs based on the hypothesis



that the responsie(8 , w;) depends only on thé andwj; effects, although,; is based
on the hypothesis that the respogé , w;) depends or6, w; and the residue due to
the combination ob; with w;.

3 Choosing algorithm options by application to irrigation management

We have presented various techniques of selection, divigitd evaluation of decision
hyper-rectangles. The aim of this section is to presentxberamental plan which guided
our choice of the best combination of technique. First wepihice the irrigation strategy
simulator and the irrigation strategies design applicatithen, we define the system to be
optimized and the experiments we ran.

3.1 MODERATO Simulator

MODERATO (Bergez et al (2001a)) is a model aimed at evalgatinrent irrigation strate-
gies for corn and at proposing improved strategies. It cag®ba dynamic and biophysical
corn crop model with a dynamic decision model. The crop maldescribed in Wallach
et al (2001). The decision model consists of a set of decisilas for different management
decisions, and especially for irrigation management dmtss The crop model and the de-
cision model interact every day. The crop model updates ttite sariables each day and
passes their values to the decision model together withxblamatory variables of that day.
Within that collection of variables are the indicators & tkecision rules. Then, the decision
model evaluates the decision rules to decide if a manageawtion is to be taken. If so,
this information is passed back to the crop model (for examgnount of water or sowing
density).

The timing of irrigation includes for example these rules:

Starting irrigation This rule determines the starting dapegin irrigation during the grow-
ing season and the water amount for the first irrigation round

Next irrigation round This rule is invoked after a round ofgation has been terminated. It
determines when to start the next round and the irrigatioaweninfor rounds after the
first.

Stopping irrigation This rule is invoked at the end of angation round. It has one of these
three conclusions: either (1) the previous round of iriatvas the last, or (2) another
round of irrigation is to be performed and will be the last(®ywe will re-invoke this
rule after another round of irrigation. Granting that th&tmeund is the last, the amount
of irrigation is given.

Many of the rules in MODERATO are based on the general formf (cond.laV
cond.1b) A (cond.2aV cond.2b) then decision de fine amount — wherecond.1a and b
concern crop development whit®nd 2a and 2 refer to water status in the soil. The first
condition in each pairgond.1a and ) uses meteorological variables as indicator variables
while the second condition in each pair is based on statehlas. The user can choose to
ignore one of the two conditions in each part of the premise.

3.2 Case study

The comparison between the developed options was perfoomead eight-parameter strat-
egy as follows.



The main irrigation period starts froml as soon as the soil water deficit reaches
D1. An amountl 1 is applied. Once an irrigation cycle ends, a new cycle steen
the soil water deficit reachd32. An amountl 2 is applied. For the irrigation cycle
following T3, if the soil water deficit is greater thdd3 before this irrigation cycle
starts, a last irrigation cycle is performed; otherwiseithigation program ends. An
amountl 3 is applied.

Operation  Rules

Sowing  Sowing is between 20 April and 30 May as soon as the iivel rainfall during the
previous 3 days is less than 15 mm. Variety Cécilia is sowB0abd00 plants/ha. Cécilia
is a late growing variety requiring 1045 accumulated théumés (ATU) from sowing to
flowering and 1990 ATU from sowing to maturity (35% grain hudity).

Fertilization A single application of 200 kg/ha of nitrogsmrmade at sowing.

Harvest  The crop is harvested when grain moisture contecches 20% or accumulated thermal
units since sowing reach 2100 ATU and if the cumulative adirduring the previous 3
days is less than 15 mm. In any case, the crop must be hanesfme 15 October.

Irrigation

Sowing Irrigation to facilitate plant emergence (causédegiby dryness or crust created
by heavy rainfall on silty soil) is not taken into accounty wigation to dissolve
fertilizer.

Starting irrigation Part of the optimization process.

Next irrigation round Part of the optimization process

Delay irrigation Precipitation delays irrigation. Wheretbumulative rainfall over the 5
previous days is more than 10 mm, one day delay is appliedvinyel mm. The
delay cannot exceed 7 consecutive days.

Stopping irrigation Part of the optimization process

Table 2 General description of the strategy simulated.

The other cultural operations are given in table 2. Theatian equipment used for the
study allows a 3.5 mm/day flow rate. A 180 mm limitation of d&hle water is applied. No
flow rate restrictions are imposed during summer excepttdog to the equipment.

All simulations were performed using a medium clay-siltl s@.8m deep, with clay
accumulation at depth, locally called “Boulbenes moysfirfguvisol). This type of soil is
representative of a large area of the Midi-Pyrénées asdalidb0 mm cumulative available
water capacity. The soil was assumed to be at field capacihedieginning of the simula-
tion, namely the ¥ of January. Climates used are part of the observed weatheseded at
the Toulouse-Blagnac meteorologic station within 1949 H9@i7. On average, July and Au-
gust receive a total of 92 mm rainfall and the cumulative p& evapotranspiration ()
is 290 mm. The average evaporative moisture deficip(@hus rainfall) for this two-month
period is around 200 mm. However, there is a large variaticainfall during the two sum-
mer months as it ranges from 30 to 240 mm, underlining theadipiable nature of rainfall
in the area. Cumulative ETis less variable, ranging from 235 to 372 mm. The objective
function to be maximized is the expectation of the directgima(.e. the gross margin mi-
nus specific costs for a given activity, here irrigation) eTdirect margin for irrigation can
be written as a weighted sum of multiple criteria:

L(6,w;) =a(6,w;).B—[C+d(6,wj).E+ (8, w;).C] (8)

whereL (6, wy) is the direct margin for climatey; and the strateg@, a(8, wj) is the grain
yield obtained under climatey; and using the strateg§, B is the selling price for corn,
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C is the operational costs for corn productiatif, wj) is the amount of water used under
climatew; and using the strated, E is the cost of irrigation water, (6, w;) is the number

of irrigation cycles performed under climaig and using the strategy andG is the cost of
carrying out a new irrigation cycle. The average selling@fior maize (grain) is assumed
to be 106.7/Mg in the Toulouse area. Operational costs (seed, weetbntjjzer, in-
surance) are assumed to total 327&/ha. The cost of irrigation water is assumed to be
0.76€/mm and the setting up of a new irrigation cycle is assume@td.62<€.

3.3 Experiments

Simulations were run with a Bi-processor of 3 GHz each, ane213RAM with Windows
XP operating system. Optimization took about 3 hours and #tutes for 2 million of
simulation runs including less than 9 seconds forRBeprocedure.

We took into account 10 replications for each alternative. pérticularly focused on
robustness of an alternative through the minimum, maximurh a/erage direct margin
values of these 10 replications. The initial feasible raggodefined in table 3 as the ranges
of the different parameters from the strategy describe@daticn 3.2.

Names Meaning unit min max  step
T1 Accumulated thermal unit to start the irrigation program °C.day 200 1250 5
D1  Soil water deficit to start the irrigation mm 20 150 3

11 Irrigation applied at the first irrigation mm 5 50 2
D2  Soil water deficit to start a new irrigation cycle mm 20 150 3
12 Irrigation depth applied mm 5 50 2

T3  Accumulated thermal units to stop the irrigation °C.day 1250 2000 5
D3 Soil water deficit to stop irrigation mm 20 150 3
I3 Irrigation applied at the last irrigation round mm 5 50 2

Table 3 The eight parameters of the irrigation strategy to be optedi min and max show the range of each
parameter within which the optimum is sought. A step is thermim feasible range of the parameter.

Some procedure parameters were set for all experimentsnakenum number of sim-
ulations was set to 2 millior3- and cong-selections include a 20% probability of randomly
choosing the promising region and the sampling follows oum distribution. As some of
the partitioning alternatives need indices, we called tlyeandys for the pivot partitioning,
and yr for the maximum difference partitioning. We tested all polescombinations with
yr € {0.2,0.5,0.8} andys e {0.2,0.5,0.8}.

To compare alternatives, we defined some criteria in ordendgasure algorithm effi-
ciency. Each time the direct margin average value increagedstored it as well as the
number of simulation runs used to achieve it. These storegesgresented a strictly in-
creasing curve in the simulation runs/direct margin datepace. The general shape of this
curve was made up of two distinct phases: one with a largeangonent in direct margin
average with a few simulation runs, and another with a tingromement with an infinite
number of simulation runs. Therefore, we used simulatiamtand direct margin average
corresponding to 95, 97.5, 99 and 99.5% of the best valuet@aiyn achieved within 2
million of simulation runs. These indices allowed informatabout the best performances
reached by the alternative to be kept, while focusing on tiseificreasing phase of interest.
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The number of runs criterion ensured that the algorithmieffity does not depend on the
computer’s capabilities.

To recognize different techniques and their parameters)see axXY Zcode notation
described in table 4. The first item stands for selectionat®/e: gs for greedy-selection,
bsfor B-selection orcsfor cong3-selection. The second stands for partition alternatye:
for equal-partition,pp for pivot-partition ormpfor maximizedifference-partition. The last
stands for the second evaluation indgg:for global standard deviatiov, ple for point
standard deviatiolp; or p2e for point standard deviatiovi,, evaluation.

selection X | division Y evaluation Z
B bs | equal partition ep | average and global standard deviation ge
Cong3 cs | pivot partition pp | average and point standard deviation 1 ple
Greedy  gs | maximize difference mp | average and point standard deviation 2 p2e

Table 4 Triple code notation: definition of X, Y and Z.

Alternative bsep/ge has been used as a test reference. We first compared separatel
selection, division and evaluation alternatives frbge pgeto assess the impacts of single
techniques. Then, we tested a few hybrid alternatives #whed to be the most interesting
according to previous observations.

4 Results
4.1 Observation oP2 alternatives
4.1.1 Selection alternatives

Experimented selection alternatives Brébse p'ge), con3- (cgep'ge) and greedy-dsep'ge)
selections.

Figure 4 displays the alternative averaged indices of 95, 9B and 99.5%. Alternative
gdep/ge was faster and reached a slightly lower direct margin thslep/ge Alternative
cdep/ge both achieved a lower direct margin and needed many mordations to reach
the best region. Thgdepges deviation along the number of simulation is the smallest.

4.1.2 Division alternatives

The tested partitioning alternatives are equale€pge), pivot- (bpp/ge) and maxdiff-
(bgmp/ge) partitioning. We saw earlier (section 2.2) thepp/ge needs the thresholds
and ys, andbg¥mp/ge needs the thresholgr. Alternativesbgmp/ge. 02 andbgmpge 08
respectively stand fobgmp/ge with yr = 0.2 andbgmp/ge with yr = 0.8. Alternative
bgpp/ge.08.02 stands for the alternativies pp/ge with yr = 0.8 andys = 0.2. Figure 5
displays thebge pfgeand the non dominated alternatives.

bgmpge 02 was faster but reached a slightly lower direct margin thslep'ge Both
bgmp/ge 08 andbd pp/ge 08.02 reached a direct margin larger thHas'e p'gewith less runs.
As alternatives are all very close, it is difficult to rank tfeFigure 5 highlights the slight
improvement due to partitioning methods, thouafpp/ge 08.02 can be considered as the
best. Indeed its maximum value was at least as good as thes pivtale the minimum and
average values were larger.
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4.1.3 Evaluation alternatives

The evaluation alternatives include the expected valueeosampled performance measures
defined ascore. score stands either for the global standard deviatigribse pge), or for

the sampling standard deviatidf, (bs'ep/'ple), or for the sampling standard deviatigg
(bgep p2e) evaluations.
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nb of simulation runs

Fig. 6 Evolution of evaluation alternatives (10 replications kac

Figure 6 shows thdise p/p2e andbse p/ple needed many more simulations thz'e pge
Nevertheless, they both reached a larger averaged diregimmavhich amount has never
been reached with previous alternatives. The largest nuafisenulation runs (fobgep/ple)
was larger than 1.5 million of simulations. This large spremsimulation runs shows that
bgep/'ple reached its second phase of a small benefit for an infinite rumibsimulation
runs. Although the direct margin performance was the bleist|drge spread means that it is
difficult to forecast the required time to reach the optimai-segion.

4.1.4 Hybrid alternatives

There are many hybrid alternatives. We decided to test a felem, selecting those which
could be efficient trade-off between simulation runs nundoed direct margin achieved.
First we hybridized the fagjde pgealternative with better partition techniques/(pp/ge.08.02
andggmp/ge 02). Note that it is useless to couglge pfgewith other evaluation techniques
since it does not take into account theore value. Then we hybridized the alternatives
with larger direct margin achievement with faster ones{p/ple.08.02, bdmp/'ple 02,
bd pp/p2e.08.02 andbgmp'p2e_02). Eight hybrid alternatives were eventually tested.
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Fig. 7 Evolution of non dominated hybrid alternatives (10 repiicas each).

Figure 7 shows the hybrid alternatives that are non domihatth regard to simulation
runs and 99.5% of the final direct margin achieved. Pariitigpalternatives maximizing the
difference of region indices have completely disappeaceethey are always dominated by
the division technique cutting the promising region upam pivot.

4.2 Observation of irrigation strategies

In addition to algorithms results, we observed the inputatde envelopes translating two
computed irrigation alternatives. Figures 8 and 9 represeiitiple axis charts of the en-
velopes enclosing the 10 optimal regions reached for theflications run of thgsep'ge
andbgpp/ple alternatives. Couples of dashed lines bound the parametéhe optimal
regions that were reached for every replications.

The shape envelopes of figures 8 and 9 are very similar. The diférences involve
the T3 parameter which still allows a wide range of possibilitiggput variablesD3 (soil
water deficit to stop irrigation) and (amount of water applied during last irrigation round)
have been barely broken down. On the other hand, the engeldgaput variables oD1
(soil water deficit to start a new irrigation cycle) attl(amount of water applied to a new
irrigation round) are thin for every alternative.

The largest averaged direct margin reached over all refgitais 547€ /ha. It results
from the alternativéos pp/ ple where the envelope denotes the following strategy. The first
irrigation is started after observing a small water defaitgl a medium amount of water is
applied. The new irrigations are performed as soon as a svagdh deficit is observed and
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Fig. 8 Input variable envelope of the 10 optimal regions reachedtiie 10 replications of alternative
gsl/ep/ge.
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Fig. 9 Input variable envelope of the 10 optimal regions reachedtlie 10 replications of alternative
bs/pp/fe.

a large amount of water is applied. The temperature, wateritend water amount leading
to the last irrigation are very variable.
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5 Discussion
5.1 P2 alternatives efficiency

With regard to simulation runs and 99.5% of final direct margchieved, the corfz
selection is completely dominated by the other alternati@ne can guess that the convex
and evolutionary nature of the pending regions set makegtbelection more efficient.
Partitioning alternatives with dominated results have &lsen removed, so that only the
alternatives includingr = 0.8 andys = 0.2 technique’s parameters have been kept. This
combination of indices expresses relatively high leveligk acceptance (low sampled de-
cision vector index) and that the pivot was chosen to buitdddgood’ regions and small
‘bad’ ones (high level of region index). These selectedriadtives are the most efficient at
simulating the crop model MODERATO. Concerning the evatuaglternatives, the use of
sampled point standard deviations achieved larger directims, but needed many more
simulation runs. The cutting process does not noticeablyrawe theP2 procedure, we
nevertheless noticed that each of the non dominated hyhethatives included the pivot
partitioning.

The alternatives shown in figure 10 compete to be the begation strategy designer.
Thegdepgeandgd pp/gealternatives were the most robust with respect to simulatios.
In addition, thegdpp/ge alternative had a direct margin robustness which was at &sas
good as those of the others.
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nb of simulation runs

Fig. 10 All non dominated alternatives.

Figure 11 shows the frontier made of the 99.5% thresholdeeofibn dominated com-
binations. Combinations including tlggeedyselection are the fastest and need less than



17

550 T T T T T T T T

548 E
bs/pp/ple_08_02
546 bs/pp/ge_08_02 bs/pp/p2e_08_02 E

gs/pp/ge_08_02
544 g

542 1

direct margin (euros/ha)

540 |- gslep/ge B

536 - min, average, max of 10 replications 7
99.5% +

1 1 1 1 1 1
40000 60000 80000 100000 120000 140000 160000 180000 200000
nb of simulation runs

Fig. 11 All non dominated alternatives for 99.5% of the optimal czgi

50 000 of simulation runs to reach 99.5% of the optimal regidombinations including
B-selection achieve higher direct margins, but it requiréar darger amount of simulation
runs. Considering the frontier shape, we regardgipp/ge alternative as an improvement
over thegs/ep/gealternative. Although the three last alternatives imprinvedirect margin,
too many simulation runs are needed to do so. @#ipp/ge alternative is now the default
combination of techniques included in tR2 algorithm.

The best combination of techniques is not directly expeledatbother stochastic opti-
mization problems. However, the conclusions drawn abaitdifierent techniques would
allow the user to set it easily, especially when making deciabout cultural operations.

5.2 Optimal irrigation plans

This section deals with the irrigation plans produced whthds pp/ge combination, com-
pared with the irrigation plans produced with our referecambinationbs/ep/ge

Figure 12 shows the optimal decision space envelopes rédongwo alternatives
g9pp/ge chosen as the best, abdepge which was used as a test reference. The main
noticeable difference still concerns th& parameter, and although its range is still wide,
its optimal value could be more difficult to find compared te tthers. The recurrent thin-
ness of input parameteBsl andD2 point out their sensitivity, whild@ 3 values variation are
strongly related to the prior consumption of the limited ammioof water. Nevertheless, the
g9 pp/gealternative improved both the direct margin reached andtimeber of simulation
runs. The optimal decision space was at least no larger thareterence alternative. The
agricultural case that was studied was the same as the onseddruBergez et al (2004).
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Fig. 12 Input variable envelope of the 10 optimal regions reachedtlie 10 replications of alternative
gs/pp/ge08.02 (solid line) and Input variable envelope of the 10 optimaioas reached for the 10 replica-
tions of alternative bs/ep/ge (dashed line).

The direct margin average of 5&l/hawas reached within 1 600 000 simulation runs with
theP2p algorithm. The direct margin average reached withg$ip p/ge 08.02 of theP2 al-
gorithm was 545 /hawithin 2 000 000 simulation runs, and the direct margin of &a
was achieved within less than 40500 simulation runs.

5.3 Conclusion

Although all the combinations are still available, we set tlefaultP2 algorithm as the
combination ofgreedyselection,pivot partition and average evaluation. We reached this
conclusion by testing different combinations with an 8gmaeter irrigation design problem.
These combinations included common and new techniquebdqgrerformance of the three
main steps of the hierarchical decomposition procedutecsen, division and evaluation.

The aim of this paper was to investigate hierarchical deasitipn of three main tech-
niques in order to improveraearlier proposal rather than to compare it with other ap-
proaches. The optimal direct margin reached was abo&t/t@higher than the one reached
with the earlier proposal. About a quarter as many simutatims were needed to reach the
previously optimal direct margin. Hence the results olgdiwere satisfactory. We are now
working on the extension of this approach for a better carsiibn of uncertainty, and
of multiple objectives. In addition, more attention will paid to the representation of the
optimal decision space in order to facilitate its use by sehd.
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