N

N

ArCo: an architecture for children to control a set of
robots
Céline Jost, Brigitte Le Pévédic, Dominique Duhaut

» To cite this version:

Céline Jost, Brigitte Le Pévédic, Dominique Duhaut. ArCo: an architecture for children to control a
set of robots. RO-MAN 2012 - 21st IEEE International Symposium on Robot and Human Interactive
Communication, Sep 2012, France. hal-00745649

HAL Id: hal-00745649
https://hal.science/hal-00745649

Submitted on 26 Oct 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00745649
https://hal.archives-ouvertes.fr

ArCo: an architecture for children to control a set of robots*

C. Jost, B. Le Pévédic and D. Duhaut

Abstract— This article presents ArCo which is an
architecture for managing a digital environment in a context of
ambient intelligence. ArCo can integrate all kinds of objects and
is totally configurable. Moreover it proposes a visual
programming interface, AmbiProg, which allows controlling
each digital object which composes an environment. The
objective of this paper is to appraise AmbiProg. An experiment
was realized with 16 children around 10 years old. They were
asked to realize exercises in a limited period of time. The
objective was to determine if programming was easy and how
many times they needed to learn scenarios creation. It appeared
that they succeed tasks and were able to use AmbiProg.
Programming an environment was easy as pie.

1. INTRODUCTION

Currently the domain of ambient intelligence emphasizes
as a major concern. It is not only a need but also a comfort.
First, the population is ageing. There is the willing to keep the
elderly at home as long as possible. Second, technology
improves the quality of life. The ambient intelligence takes
considerations from ubiquitous computing and human-
machine interaction [1]. The human should be the core of the
system [2] but currently, humans are partially taken into
account. There is the willing to provide computing systems
which are accepted [3] and there is the willing to be able to
analyze human’s actions. These analyses offer the system to
adapt to the user. Actually, the ambient intelligence concerns
seem to be technical [4]: how to give comfort to users without
imposing technology? Thus, the technology is hidden or
adapted to existing objects. Objects become more and more
electronic and capable of doing complex tasks. Thus, humans
own numerous complex electronic objects which work
independently from each other. They need to learn how to use
each object. We can imagine that, in the future, a person will
have 10 or 20 remote control which allows interacting with
10 or 20 different objects. The learning process will be
increasingly hard. Moreover, interactions with these objects
are limited to the manufacturer proposals. These kind of
computing systems are closed. They cannot be adaptable.
They cannot evolve with time and new technologies. Each
time a new object is added to the environment, human has to
learn how to use it. But, considering that the human should be
a part of the program [5], the ambient intelligence should take
the user willing into account. Aarts et al [6] gave a complete

*Research supported by French National Research Agency.

C. Jost is with the Lab-STICC computing laboratory in the University
of South Brittany, France (e-mail: celine.jost@gmail.com).

B. Le Pévédic is with the Lab-STICC computing laboratory in the
University of South Brittany, France (e-mail: brigitte.le-pevedic@univ-
ubs.fr).

D. Duhaut is with the Lab-STICC computing laboratory in the
University of South Brittany, France (e-mail: Dominique.duhaut@univ-
ubs.fr).

overview about ambient intelligence. They explain that three
main points must be considered: interoperability,
heterogeneity and dynamics. We [7] created a computing
system which responds to these three points. We defined a
communication protocol (interoperability). Different kinds of
objects can communicate together to bring a complete
application (heterogeneity). Our system adds and removes
dynamically objects (dynamics). Moreover, the user actively
participates to the environment evolution by creating
interaction scenarios through a visual programming interface.

First, this paper presents our previous work in a nutshell.
At the beginning, it deals with ArCo, our computing
architecture, which introduces the context of this paper. Then,
it focuses on the programming language which allows
controlling the environment. A first experiment has ever been
realized on this interface. This paper reminds its objective
and results.

Second, this paper presents the new experiment which
showed that programming some scenarios is easy. Children
can do it. During this experiment, children not only created
some interaction scenarios but also launched their
interpretation and saw the environment objects being in
action.

II. PREVIOUS WORK

A. ArCo: the environment manager

ArCo, which is represented in Fig. 1, is an Architecture
for interaction with Companions. The companion can be a set
of communicating objects: avatars, robots, television... This
definition is shared by Pesty et al [8] who give some
considerations about the future relationship with these kinds
of companions. There are two kinds of communicating
objects in ArCo. Actuators make actions. They help people.
They communicate with people. They give information to
people. Sensors are responsible for analyzing the computing
environment (camera, micro, temperature sensor...). They
describe what happens and give information to ArCo.

Actuators and Sensors are MIIME Modules. MIIME is
a XML-based protocol of communication. To be compatible
with ArCo, each module must be a MIIME Module, that is to
say respect the communication rules established with the
server (identification, connection, disconnection...). MIIME
Modules are independent programs. They can be described
by a XML description file which indicates what kind of data
they can send and what kind of actions they can do. This
description file allows people knowing the capabilities of
each module. This information is used by MICE, which is a
programming environment which allows people configuring
and using MIIME Modules.

MICE Interpreter

1 4 MICE Client
1 r
<y MIME Modules

G-9

) .6‘ I -disconm’ect

| MIIME Server

Figure 1. ArCo architecture organization

B. AmbiProg: the programming environment

It is possible to create some interaction scenarios through
the graphical user interface AmbiProg. For example, an
interaction scenario could be: “If the patient did not take
his/her medicine, the avatar reminds the patient of doing it”.

AmbiProg is composed of two main parts as show in Fig. 2.
On the left, programming area displays graphical program
between a start and a stop element. On the right, a tree
contains programming data which are perceptions, actions
and program structures.

Perceptions are the equivalent of variables in computer
science. They are sent by modules which supervise sensors
and retrieve associated data. A perception can be the
temperature, the localization of people, the luminosity
value...

Actions are the equivalent of functions in computer science.
They represent the actions which can be done by actuators.

For example, an action can be “robot smiles”, “turn on the
light”...

Program structures represent the programming language. It
proposes conditional elements (if... then, if... then... else),
loops (repeat, while), wait elements, break element,

parallelism elements and event elements.

Actions

0 e

E“i*bgram
structure

* ton
+.0)

Figure 2. AmbiProg organization

AmbiProg is different from other visual programming
languages like Scratch, Choregraphe (Nao) and Lego
Mindstorm NXT.

Indeed they do not have the same functions. AmbiProg is
designed to control a complete environment by creating
interaction scenarios whereas the three others are specialized.
Scratch allows creating stories. Choreographe allows
controlling only Nao robots. And Lego Mindstorm NXT
allows programming Logo objects and sensors.

AmbiProg is made to create interaction between all kinds of
digital devices which are automatically added to AmbiProg
(perceptions and actions). Its content is not fixed.

C. How to build a scenario

To create a scenario, users must drag and drop data from
programming data to programming area.

Fig. 3 shows a four steps example. (1) Users have to select
a data in the tree. (2) When users click on the data, some gray
area highlight between the start and stop elements. It
corresponds to the location where data can be placed. (3)
Users drop data. (4) The graphical representation appears in
the programming area.

In this example, the box represents an action.

. @ Find data

AmbiProg
Perceptions

Programmation
Macros

o chy "ngraphyolo
° c‘ phy020

° chms\ »hy03(0

Llick

¢ send(module_name, ¢ ‘
¢ dire(instructions)
@ jouer_son(nom_fichie
L=<t content). :
ni i © desespair()
~ @ choreography01()
Building scenario : &z

¢ choreography03()

Figure 3. Programming with drag and drop

The same procedure allows users adding a program
structure. Fig. 4 shows the representation of a parallelism
element which allows to create at least two sub-scenario in
parallel.

[= Programmation |

® Branche
nabi. (i N
. est_content(); M} 4 w @

Figure 4. Adding a program structure

¢ Répéter

¢ TantQue

@ SiAlors

@ Si Alors Sinon

Each program structure adds some locations to drop new
data. Fig. 5 shows 5 possible locations to drop an action.

_ '_ © jouer_son(nom_fichie| =
Py A B \ © est_content()
est_content(); L L desespair()

o choreography01Q)
¢ choreography02()

¢ dire(instructions)
nabette. ¢ jouer_son(nom_fichie =
Habi. i\ ‘“I} desespoir(); | g2l © est_content()
est_content(); 3 ° _*___L". ——]
@ choreography01Q
o choreography02()

Figure 5. Visuel help to drop an action

D.The first experiment: usability and acceptability

A first experiment of AmbiProg has ever been realized
[7]. The objective was to study the:

e Usability of AmbiProg: is the interface organization
pertinent and easy to understand? Is the drag and drop
principle judicious to programming tasks?

e Acceptability of AmbiProg: do the participants want
to have this kind of interface at home in order to
control their environment? Are they reluctant to this
kind of interface?

This experimentation was not interested in the creation of
scenarios although the participants were asked to do one. The
objective was to evaluate the quality of AmbiProg out of
context. It is pertinent to study first acceptability of the
interface before studying scenarios creation.

This experimentation had good results. There were no
statistical differences between computer scientists and other
participants. Knowing computing had no impact on the
learning process of the interface functioning. Moreover,
AmbiProg was positively perceived by participants. They had
never seen the interface before the experiment. But everyone
was able to create the asked scenario in less than five minutes
without showing great difficulties. Participants were favorable
to use this kind of interface at home to control their
environment. AmbiProg structure was validated and we
decided to study the visual language itself in an ambient
context.

III.

The objective of this experimentation was to evaluate the
visual programming language in order to know if people can
easily learn how to control their environment with ArCo.
Each participant had to create scenarios and to launch their
interpretation in order to see actuators making asked actions.

EXPERIMENTATION

A. Global setting

Participants were pupils in the last “level” of elementary
school (average age: 10.44 years old). This experimentation
was realized by 16 children (8 girls and 8 boys) during one
hour.

We choose young people to test ArCo because we wanted
to check whether the programming language was easy to
manipulate. Young people are not expert in computing, so
they represent a big cross-section.

Moreover, we decided to test first with children because
they do not have prejudice against technology. Thus, if
children, who are motivated, do not success tasks, it is not
worth testing with the elderly. We experiment step by step.

Fig. 6 illustrates the experimental setting and the materiel
used during the experiment. Two participants were isolated in
a room with an experimenter. The presence of two participants
allowed maintaining a good level of concentration because
children felt in competition. However, to avoid cheating or
reciprocal influences, they were almost back to back.

They had to use a computer which displayed AmbiProg. They
manipulated drag and drop with a mouse to facilitate the task.
They had the possibility to control two active Nabaztag robots
[13] and a tablet PC. The robots were Actuators and were
able to make choreographies which means: rotating ears,
turning on four leds with different colors and pronouncing
sentences. Each participant could control the both robots. The
tablet PC was a Sensor and displayed a basic graphical user
interface with four buttons. An access point allowed
communication between these five devices.

Nabaztag
Acces point

oid,
+CORRGCEt,
sdisconnect

fo mepsaoe:

MIIME Server

Figure 6. Experimental setting

B. Experimentation process

1) Step 1: explanation

The experimenter introduced the both robots to the
participants: Nabi and Nabette. Then she explained that the
tablet PC was a Sensor capable to send ‘“Perceptions”. A
perception is a data about the environment. In this
experimentation, there were four perceptions: “clicked on
blue button”, “clicked on pink button”, “clicked on green
button” and “clicked on black button”. She explained that is
was possible to control the robot by creating some scenarios.
For example: “if the user has clicked on the red button,
Nabette says hello”.

The experimenter explained that it was possible to do it with
AmbiProg. Children received a five minutes explanation
about the organization of AmbiProg. It was a shorter
explanation than in the first experiment.

Thus, the experimenter explained the process which would be
used during all the experiment: (1) Participant had to create a
scenario with respect to the given instructions. (2) Participant
had to “compile” the scenario; that means clicking on the
menu and saving the scenario as a predefined specific file. (3)
Participant had to double-click on an executable file to launch
the interpretation.

2) Step 2: exercises
Participants had to do six exercises classified in three
concepts:

e Sequentiality: actions are done one after the other.
e Parallelism: several actions are done simultaneously.

e Event: actions depend on Perception. The system
waits for a specific perception before doing actions.

We consider that the three concepts had almost the same
difficulty level. Thus, the given order does not represent a
progression of difficulty. However, there is several difficulty
levels for each concept.

Explanation before “sequentiality” exercises: The
experimenter explained the programming language by an
example showing sequentiality (see Fig. 7). She wrote the
scenario: “Nabi does the choreography | and then does the
choreography 2”.

nabi. nabi.
choreol1();

choreol2();

Figure 7. Explanation before exercise 1

Exercises on sequentiality: This first explanation made the
transition to the first exercise. They had to reuse the same
concept and to choose other actions. It allowed checking
whether the first explanation was understood. The first
exercise (see Fig. 8) consisted in writing the scenario: “Nabi
says hello and then says good bye”.

nabi.

nabi.
direfhello); dire(bye ');

Figure 8. Exercise 1

The second exercise completed the first one (see Fig. 9).
The scenario was: “Nabi does the choreography 1, then says
hello, then does the choreography 2, then says good bye”.
This exercise was the last of the sequential part.

nabi. nabi. nabi. nabi.
choreo01(); direthello); choreol2(); diref{bye ');
Explanation before “parallelism” exercises: The

Figure 9. Exercise 2

experimenter introduced the parallelism. It increased a little
the difficulty level because participants had to use a program
structure element: parallel. It makes a second bar appear,
which makes possible to drag and drop two actions in the
same time. The experimenter wrote the scenario: “Nabi does
the choreography 1 and in the same time Nabette does the
choreography 1” (see Fig. 10)

nabi.

E ~ | choreo®(y;, | liinﬁ'
5 | nabette. |

choreolity; |

Figure 10. Explanation before exercise 3

Exercises on parallelism: This explanation made the
transition to the third exercise. They had to reuse the same
concept. The exercise 3 (see Fig. 11) consisted in writing the
scenario: ‘“Nabette says hello and does the choreography 1 in
the same time”.

nabette.
‘ __direthelloy; | liﬁ‘
u nabette. | 3
__thoreodi(y; |

Figure 11. Exercise 3

The fourth exercise completed the previous one (see Fig.
12). It was asked to write the scenario: “Nabette says hello
and does the choreography 1 in the same time. Then Nabi
says hello and does the choreography 1 in the same time”.
This exercise used sequentiality concept and parallelism
concept which increased the difficulty level.

naheﬂe nabi.
’7 direthello); r dire(hello); |
chnreulH(), choreo0 ()
Figure 12. Exercise 4

The fifth exercise completed the previous one (see Fig.
13). It was asked to write the scenario: “Nabette says hello
and does the choreography 1 in the same time. Then Nabi
says hello and does the choreography 1 in the same time.

Then Nabi says pleased and does the choreography 2, and
Nabette says pleased and does the choreography 2. These
four actions are in the same time”. The difficulty level was
increased because participants had to use a program structure
element: braunch. It adds a new bar to the parallel element.

dlre(plensed) '— ‘

’7 hnrznﬂZ()
’— dlre(plansed)
nabette.

choreotz();

nabi.
dire(hello);

nabette.
chareol();

nabi.
"= _choreadtgy

Figure 13. Exercise 5

Explanation before “event” exercises: The experimenter
introduced the event concept. Participants had to use a
program structure element: event. This element requires a
perception and an action. The experimenter wrote the
example scenario: “If the user has clicked on the blue button,
Nabi does the blue choreography” (see Fig. 14).

Button.
._%\rem_ blue.EstVrai() l&' gabeaie . @

Figure 14. Explanation before exercise 6

Exercise on event: This explanation made the transition to
the last exercise. They had to use the event and parallelism
concepts. They were asked to write the scenario: “If the user
has clicked on the black button, Nabi says hello and does the

choreography 3 in the same time” (see Fig. 15).
@

dlre.(hello)

Button.
. @'— black.Estyraig) | 2a2rS - W| mhl

l:hnreul]ii()

Figure 15. Exercise 6

C. Evaluation

There were two evaluations: observations made by the
experimenter during the experiment and auto-evaluation
questionnaire filled by the participants at the end.

1) Observations

During the experiment, the experimenter observed
easiness and difficulties concerning the concepts and the
exercises. She noted whether participants understood: drag
and drop, compilation, instructions, sequentiality, parallelism
and event. Each concept was noted understood (1) or
misunderstood (0). If participants need some help about one
of these concepts, it was noted as misunderstood. In this case,
the experimenter helped the participant in order that he/she
was able to continue the experiment. Help was not a bias
because concept was noted misunderstood. The experimenter
noted the success or failure of each exercise independently of
concept understanding. The duration of the experiment was
noted too.

2) Questionnaire

At the end of the experiment, participants had to fill a
questionnaire, which corresponds to the Table I. It allows
having the mental representation of children and the
evaluation on AmbiProg. The A-F questions, except the

question B, were evaluated with a Likert scale [14].
Participants had to choose among the following answers:
Strongly disagree, Disagree, Neither agree or disagree, Agree
and Strongly agree. In results study, we associate a value to
these answers. 0=Strongly disagree, 1=Disagree, 2=Neither
agree or disagree, 3=Agree and 4=Strongly agree. The
question B did not impose specific answer. The G-H
questions were yes-no questions.

TABAE 1. QUESTIONNAIRE

A. 1did not have any problem to do the exercises.

B. From which exercise did you think you were able to create scenario
alone?

C. I think it was easy to create scenario with the graphical interface.

D. I can create others scenarios.

E. I like the graphical interface.

F. I think I can control others robots with this graphical interface.

G. Would you like to continue using the graphical interface?

H. Would you like to change something in the graphical interface?

IV. REsuLTS

A. Encountered problems

1) Instructions

The half of participants received written instructions. We
noticed that the children took a long time to achieve the tasks.
Observations and discussion with teachers indicated that the
problem came from the understanding of instructions.
Children were concentrated to read and it was a problem to
understand the instructions. It seemed to be a bias to our
experiment. To ensure that the problem was indeed
instructions, the second half of participants received oral
instructions and we compared the instructions understanding
in the both cases. It was important to check whether the
difficulty came from instructions rather than AmbiProg.

2) Time

In parallel of this problem, we had a time problem.
Teachers were not able to give children the same amount of
time. Before this constraint, our idea was to be free of time
and to observe how many times it took for children to do
tasks. Time was not a consideration in our experimentation
because our objective was to check if children were able to
learn programming. The consequence of this time constraint
was the impossibility to test the third concept. And, we had to
accelerate children education.

B. Observations

Fig. 16 shows the difference between concepts
understanding according to given instructions. The graph
shows the average value obtained by each participant (1 for
understood, 0 for misunderstood) The results revealed that
participants had a better understanding when instructions
were given verbally. Concerning the drag and drop, 100.00%
of participants made it correctly against 87.5% with written
instructions. There is no difference concerning the

compilation (75.00%). 37.50% of participants understood
written instructions whereas 87.50% of participants
understood oral instructions. 62.50% of participants
understood sequentiality and 75.00% of them understood
parallelism with written instructions while 100.00% of them
understood both sequentiality and parallelism with oral
instructions. Finally, 37.50% understood the event concepts
in written condition against 0.00% in oral condition.

Instructions understanding

Comparison between written and oral instructions

OWritten B Oral

Figure 16. Comparison between written and oral instructions effects. A
means drag and drop. B means Compilation. C means Instructions. D
means Sequentiality. E means Parallelism. F means Event.

Almost all the participants completed exercises after at
most two helps. The results are enough good because there
was not a lot of time to do the explanations and exercises.

Exercises success

O Written B Oral

Figure 17. Comparison between exercices success according to given
instructions

C. Questionnaire

The children mental representation seemed different to the
observation (see Fig. 18). Despite the lack of complete
control of AmbiProg, the majority of them considered having
no problem to do the exercises (score of 4.44/5). The
majority of them found the programming easy (score of
4.25/5). They feel capable of doing others programs alone
(score of 4.56/5). Their judgment of the interface is
tremendously positive. They liked the graphical interface
(score of 4.88/5) and they thought it was possible to control
other robots with it (score of 4/5).

Concerning their autonomy, they thought they were
capable to create scenarios alone from the second or third
exercise (mean of 2.31).

Questionnaire answers

Figure 18. Answers to questions A, C, D, E and F

Concerning AmbiProg acceptability, results are positive
(see Fig. 19). All the participants liked the interface and
indicated that they wanted to continue using it. Only one
participant wanted to change something to the interface,
without any precision. All the others indicated that the
interface did not need changes.

Questionnaire answers

Figure 19. Answers to questions G and H

V. DISCUSSION

A. Differences between written and oral condition

Fig. 16 and Fig. 17 compared concepts understanding and
exercises success according to written or oral instructions. In
spite of improvement of concept understand with oral
instructions, the exercises success seemed to decrease.
Actually, children better succeed the exercises in oral
instructions but it does not appear in the statistics. It is easy to
explain why. In the written instructions, the experimenter had
more time: almost one hour. But after 8 children, the teacher
explained that it was too long. The children missed a
complete lesson and it was annoying. After that, the
experimenter had only a half hour to carry out the experiment.
She did not let children think and work a lot of time. She
quickly changed exercises and had to note the exercises as
uncompleted. So, exercises succeed seems better in the
written instructions but it is explained by the fact that she had
time to give more explanations about the instructions and the
GUL It added a bias to the experiment which should be
avoided in a future experiment. Moreover, the only reason
why the event concept did not be understood in the oral
concept is the lack of time. The experimenter did not have the
time to introduce it to children. That distorted results.

However, it allows understanding that a 10 years child
needs 15 minutes to understand an AmbiProg concept.

This hypothesis should be confirmed in a future
experiment. To avoid bias and time-consuming experiment, it
could be a good idea to take more children during 15 minutes
in order to show them only one concept. We could test each
concept separately.

B. Differences between mental representation and reality

Children mental representation does not reflect the reality.
They thought they have no problem to control the robot, no
problem to do the exercises. It is extremely positive because
they were voluntary and motivated although they had
complex tasks to do. AmbiProg allowed them making
program, executing program, controling robots without
showing difficulties. In a learning process, it is not a problem
if they make mistake when they create scenario. But the most
important is their motivation. If they are motivated to use
AmbiProg, they will more easily learn how to program and
control their environment. AmbiProg is accepted by children.
It is easy to manipulate AmbiProg. Children can control a set
of robots!

VI. CONCLUSION AND PERSPECTIVES

This paper presented a computing architecture which
connects a set of devices: ArCo. A communication protocol
makes them communicating together ensuring an intercom-
prehension. Moreover, ArCo contains a graphical user
interface, AmbiProg, which allows manipulating a new visual
programming language. Thanks to this language, everyone
can create and activate some interaction scenarios. For
example, a scenario can supervise a person health, while
another one can supervise an agenda, while another one can
supervise the activities... AmbiProg evolves according to the
environment devices. In the domotic context, that means
people do a single learning process with AmbiProg. Each
time a new object is added to the environment, it is possible
to control it through AmbiProg, with the same language than
all others objects. It is even possible to take numerous objects
into account and to do combinations between these objects,
which is not currently possible.

This paper presented evaluation of AmbiProg. Two
experiments showed that AmbiProg is easy to use for people
who do not have computing skills. People are favorable to
have this kind of application at home in order to control their
environment.

ArCo was introduced at a stand during a robotic
competition. Ten students with good computing skills tested
AmbiProg with the robot shown in Fig 20. We observed that
everyone was able to create and execute scenarios with less
than 1 minute explanation. Two participants even created new
robots motion and changed robot XML file which allowed
integrating automatically new actions into AmbiProg. All the
persons who tested AmbiProg were able to create and execute
scenarios with less than 1 minute explanation. Two
participants even created new robots movements and
integrated new functionalities into AmbiProg.

Figure 20. Robofesta stand with Bioloid robot

We think that AmbiProg proposes a programming
language closed from natural language. It allows everyone
understanding AmbiProg concepts because scenarios are built
almost like sentences.

The future work will be the experiment of ArCo at home.
We will test our architecture with the elderly in a context of
assisted ambient living.

ACKNOWLEDGMENT

We would like to thank teachers and pupils for their
participation to our experiment.

REFERENCES

[1] C.Jacquet, “Présentation opportuniste et multimodale d’informations
dans le cadre de I’intelligence ambiante”. PhD thesis, Université
d’Orsay Paris-Sud, 2006.

[2] M. Tedre, “What should be automated?”, Interactions, (2008), 47-79
[3] M. Grandgeorge and D. Duhaut, “Human-Robot: from Interaction to
Relationship”, 14th International Conference on Climbing and
Walking Robots And the Support Technologies for Mobile Machines

6th-8th september, Paris, France, 2011

[4] G. Pruvost and Y. Bellik, “Ambient Multimodal Human Computer
Interaction”, in proceedings of the poster session at The European
Future Technologies Conference FET09, Pragues, 2009

[51 A.Elgammal, “Human-Centered Multimedia: Representation and
Challenges”, Proceedings of the 1st ACM international workshop on
Human-centered multimedia, ACM,11-18, 2006

[6] E. Aarts and R. Wichert, “Ambient intelligence” in Technology
Guide, Springer, 244-249, 2009

[7] C.Jost, B. Le Pévédic and D. Duhaut, “Creating Interaction Scenarios
With a New Graphical User Interface”, in the 5 International
Workshop on Intelligent Interfaces for Human-Computer Interaction,
Italy, 2012

[8] S.Pesty and D.Duhaut, “Artificial Companion: building a impacting
relation”, in IEEE-Robio 2011 December 7-11, 2011

[9] M. Young, D. Argiro and S. Kubica, “Cantata: visual programming
environment for the Khoros system”, in ACM SIGGRAPH Computer
Graphics, vol 29, no 2, ACM, 22-24, 1995.

[10] J. Maloney, M. Resnick, N. Rusk, B. Silverman and E. Eastmond,
“The Scratch Programming Language and Environment” in ACM
Transactions on Computing Education (TOCE), 2010.

[11] http://msdn.microsoft.com/en-us/library/bb483088.aspx

[12] P. Newton and J.C. Browne, “The CODE 2.0 graphical parallel

[13] http://www.nabaztag.com

[14] J.S. Uebersax, “Likert scales: dispelling the confusion”, in Statistical
methods for rater agreement, vol 31, 2006.

	I. INTRODUCTION
	II. Previous work
	A. ArCo: the environment manager
	B. AmbiProg: the programming environment
	C. How to build a scenario
	D. The first experiment: usability and acceptability

	III. Experimentation
	A. Global setting
	B. Experimentation process
	1) Step 1: explanation
	2) Step 2: exercises

	C. Evaluation
	1) Observations
	2) Questionnaire

	IV. Results
	A. Encountered problems
	1) Instructions
	2) Time

	B. Observations
	C. Questionnaire

	V. Discussion
	A. Differences between written and oral condition
	B. Differences between mental representation and reality

	VI. Conclusion and perspectives

