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In this paper, we obtain almost sure invariance principles with rate of order n 1/p log β n, 2 < p ≤ 4, for sums associated to a sequence of reverse martingale differences. Then, we apply those results to obtain similar conclusions in the context of some non-invertible dynamical systems. For instance we treat several classes of uniformly expanding maps of the interval (for possibly unbounded functions). A general result for φ-dependent sequences is obtained in the course.

Introduction

Let T be a map from [0, 1] to [0, 1] preserving a probability ν on [0, 1]. Let f be a measurable function

such that ν(|f |) < ∞. Define S n (f ) = n-1 i=0 (f • T i -ν(f )).
According to the Birkhoff-Khintchine ergodic theorem, n -1 S n (f ) satisfies the strong law of large numbers. One can go further in the study of the statistical properties of S n (f ) and recently there have been extensive researches to study the almost sure invariance principle (ASIP) for S n (f ). Roughly speaking, such a result ensures that the trajectories of a process can be matched with the trajectories of a Brownian motion in such a way that almost surely the error between the trajectories is negligible compared to the size of the trajectory. This result is more or less precise depending on the error term one obtains. In this paper, for some classes of uniformly expanding maps, we give conditions on f ensuring that there exists a sequence of independent identically distributed (iid) Gaussian random variables (Z i ) i≥1 such that

sup 1≤k≤n k-1 i=0 (f • T i -ν(f ) -Z i ) = o(n 1/p L(n)) almost surely, (1.1) 
for p ∈]2, 4] and L an explicit slowly varying function. For different classes of piecewise expanding maps T of [0, 1], almost sure invariance principles with good remainder estimates have been established by Melbourne and Nicol ([17], [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF]) for Hölder observables, and by Merlevède and Rio [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF] under rather mild integrability assumptions. For instance, for uniformly expanding maps as defined in Definition 3.1, Merlevède and Rio [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF] obtained in (1.1) a rate of order n 1/3 (log n) 1/2 (log log n) (1+ε)/3 for any ε > 0 and a class of observables f in L r (ν) where r > 3. Because of the intrinsic time-orientation of the noninvertible dynamical systems studied in the papers above mentioned, the almost sure invariance principle cannot be obtained directly by mean of a martingale approximation as done for instance in [START_REF] Field | Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions[END_REF]. In [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF], the approximating Brownian motion is constructed with the help of the conditional quantile transform combined with a coupling method based, roughly speaking, on a conditional version of the Kantorovitch-Rubinstein theorem. The approach used in [START_REF] Melbourne | Almost sure invariance principle for nonuniformly hyperbolic systems[END_REF] or in [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF] when d = 1 (see their appendix A) is based on the seminal paper by Philipp and Stout [START_REF] Philipp | Almost sure invariance principle for partial sums of weakly dependent random variables[END_REF] which proves ASIP by combining martingale approximation with blocking arguments and the Strassen-Skorohod embedding. With this approach, they cannot reach better rates than O(n ε+3/8 ) in (1.1) for any ε > 0 (see Remark 1.7 in [START_REF] Melbourne | A vector-valued almost sure invariance principle for hyperbolic dynamical systems[END_REF]). Notice that recently Gouëzel [START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods[END_REF] obtained a very general result concerning the rates in the ASIP for vector-valued observables of the iterates of dynamical systems by mean of spectral methods. In the particular case of expanding maps as defined in Definition 3.1, his result gives the rate o(n 1/4+ε ) for any ε > 0 for some bounded vector-valued observables.

On an other hand if we consider the strong approximation principle of the partial sums of real-valued functions of the Markov chain associated to the dynamical system, better rates can be reached. Let denote by K the Perron-Frobenius operator of T with respect to ν. Recall that for any bounded measurable functions f and g, ν(f

• g • T ) = ν(K(f )g) . (1.2)
Let (Y i ) i≥0 be a stationary Markov chain with invariant measure ν and transition Kernel K. The sequence (Y i ) i≥0 corresponds to the iteration of the inverse branches of T . Combining a suitable martingale approximation with a sharp control of the approximation error in L p for p ≥ 2, and the Skorohod-Strassen embedding theorem as done in Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF]Theorem 2.1], Dedecker, Merlevède and Doukhan [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] obtained projective conditions under which the strong approximation holds with an explicit rate, as in (1.1), for the partial sums associated to a stationary sequence of real valued random variables. In the Markov chain setting, the conditions involved in their corollaries 2.1 and 2.2 can be rewritten with the help of the transition kernel K. One can then wonder whether under the same conditions, the strong approximation principle also holds with the same rate for the partial sums associated to some observables of the iterates of the dynamical system. Indeed, it is well known (see for instance Lemma XI.3 in Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]) that on the probability space ([0, 1], ν), the random vector (T, T 2 , . . . , T n ) is distributed as (Y n , Y n-1 , . . . , Y 1 ). Hence any information on the law of n i=1 (f • T i -ν(f )) can be obtained by studying the law of n i=1 (f (X i ) -ν(f )). However, the reverse time property cannot be used to transfer directly the almost sure results for n i=1 (f (Y i ) -ν(f )) to the sum n i=1 (f • T i -ν(f )). To prove results on the strong approximation principle for the partial sums of functions of the iterates of the dynamical system, it is then needed to work on the dynamical system itself. Therefore to prove that

n i=1 (f • T i -ν(f ))
satisfies a strong approximation principle with the same rates than the one reached for the associated Markov chain, we shall approximate the partial sum associated to real-valued observables of the iterates of the dynamical system by a sum of reverse martingale differences M * n . To be more precise, we shall approximate S n (f ) by

M * n = n k=1 d * k where (d * k )
k∈N is a sequence of real valued random variables that is measurable with respect to a non-increasing sequence of σ-algebras say (G k ) k∈N and such that E(d * k |G k+1 ) = 0 almost surely. An analogue of Theorem 2.1 in Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF] but in the context of the partial sums associated to a sequence of reverse martingale differences, is then needed. Up to our knowledge, this version for reverse martingale differences sequences does not exist in the literature. Starting from a reverse martingale version of the Skorohod-Strassen embedding theorem as done in Scott and Huggins [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF], we shall prove it in Section 2 (see our Theorem 2.3).

Our paper is organized as follows. In Section 2, we state some results concerning the almost sure invariance principle with rates for sums associated to a sequence of reverse martingale differences. The proofs of these results are postponed to Section 6. In Section 3, we obtain rates of convergence in the ASIP for the sum of a large class of functions (non necessarily bounded) of the iterates of some classes of uniformly expanding maps, as well as for the partial sum associated to the corresponding Markov chain. A part of these results coming from a more general result on φ-dependent sequences, we state and prove in Section 4 an ASIP with explicit rates for functions of a stationary sequence satisfying a mild φ-dependent condition. Section 5 is devoted to the proofs of the results on expanding maps stated in Section 3.

In this paper, we shall use sometimes the notation a n b n to mean that there exists a numerical constant C not depending on n such that a n ≤ Cb n , for all positive integers n.

ASIP with rates for sums of differences of reverse martingales

The next two results can be viewed as reverse martingales analogues to a result of Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF]Theorem 2.1]. The proof of the next result follows from the Skorohod embedding of reverse martingales in Brownian motion as obtained in Scott and Huggins [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF] together with an estimate for Brownian motions given in Hanson and Russo [START_REF] Hanson | Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables[END_REF]Theorem 3.2A]. The proofs of all the results presented in this section are postponed to Section 6.

In this section we consider real random variables defined on a probability space (Ω, A, P). Proposition 2.1 Let (ξ n ) n∈N be a sequence of square integrable variables adapted to a non-increasing filtration

(G n ) n∈N . Assume that E(ξ n |G n+1 ) = 0 a.s. and δ 2 n := k≥n E(ξ 2 k ) < ∞. Then V 2 n := k≥n E(ξ 2 k |G k+1
) is well defined a.s. and in L 2 as well as R n = k≥n ξ k . Let (α n ) n∈N be a sequence of non-increasing positive numbers with

α n = O(δ 2 n ) and α n /δ 4 n → ∞. Assume that V 2 n -δ 2 n = o(α n ) P-a.s. (2.1) n≥1 α -ν n E(|ξ n | 2ν ) for some 1 ≤ ν ≤ 2 . (2.2)
Then, enlarging our probability space if necessary it is possible to find a standard Brownian motion Now, we give a result for partial sums associated to a sequence of reverse martingale differences rather than for tail series. It may be viewed as the analogue of Theorem 2.1 in Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF] but in the context of reverse martingale differences.

(B t ) t≥0 , such that R n -B δ 2 n = o α n | log(δ 2 n /α n )| + log log(α -1 n ) 1/2
Theorem 2.3 Let (X n ) n∈N be a sequence of square integrable random variables adapted to a nonincreasing filtration

(G n ) n∈N . Assume that E(X n |G n+1 ) = 0 a.s., that σ 2 n := n k=1 E(X 2 k ) → ∞ and that sup n E(X 2 n ) < ∞. Let (a n ) n∈N be a non-decreasing sequence of positive numbers such that (a n /σ 2 n ) n∈N is non-increasing and (a n /σ n ) n∈N is non-decreasing. Assume that n k=1 (E(X 2 k |G k+1 ) -E(X 2 k )) = o(a n ) P-a.s. (2.4) n≥1 a -ν n E(|X n | 2ν ) < ∞ for some 1 ≤ ν ≤ 2 . (2.5) 
Then, enlarging our probability space if necessary it is possible to find a sequence

(Z k ) k≥1 of independent centered Gaussian variables with E(Z 2 k ) = E(X 2 k ) such that sup 1≤k≤n k i=1 X i - k i=1 Z i = o a n (| log(σ 2 n /a n )| + log log a n ) 1/2 P-a.s. (2.6)
Remark 2.4 An inspection of the proof allows to weaken slightly some of the assumptions as follows.

Assume that E(X 2 n ) = O(σ 2s n ) for some 0 ≤ s < 1 instead of boundedness and assume that there exists C > 1, such that for every n ≥ 1, sup k≥n (a k /σ 2 k ) ≤ Ca n /σ 2 n , and inf k≥n (a k /σ k ) ≥ a n /(Cσ n ), instead of the corresponding monotonicity assumptions.

We derive now the functional LIL for the partial sums associated to a stationary and ergodic sequence of reverse martingale differences. In the next corollaries, we make use of θ : Ω → Ω a measurable transformation preserving the probability P.

Corollary 2.5 Let X 0 in L 2 and for n ≥ 1, X n = X 0 • θ n . Assume that θ is ergodic. Let (G n ) n≥0 be a non-increasing filtration to which (X n ) n≥0 is adapted and such that E(X n |G n+1 ) = 0 a.s. Enlarging our probability space if necessary it is possible to find a sequence (Z k ) k≥1 of independent centered Gaussian variables with

E(Z 2 k ) = E(X 2 1 ) such that sup 1≤k≤n k i=1 X i - k i=1 Z i = o n log log n P-a.s. (2.7)
Remark 2.6 The Strassen functional law of the iterated logarithm (FLIL) follows from the corollary. Notice that a semi-FLIL has been proved by Wu [START_REF] Wu | Functional law of iterated logarithm for additive functionals of reversible Markov processes[END_REF].

We now give rate results in the strong invariance principle for the partial sums associated to a stationary sequence of reverse martingale differences.

Corollary 2.7 Let 2 < p < 4. Let X 0 be in L p and for n ≥ 1, X n = X 0 • θ n . Let (G n ) n≥0 be a nonincreasing filtration to which (X n ) n≥0 is adapted and such that E(X n |G n+1 ) = 0 a.s. Let b(•) be a positive non-decreasing slowly varying function, such that x → x 2/p-1 b(x) is non-increasing. Assume that n k=1

(E(X 2 k |G k+1 ) -E(X 2 k )) = o(n 2/p b(n)) P-a.s. (2.8)
Enlarging our probability space if necessary it is possible to find a sequence (Z k ) k≥1 of independent centered Gaussian variables with

E(Z 2 k ) = E(X 2 1 ) such that sup 1≤k≤n k i=1 X i - k i=1 Z i = o n 1/p b(n) log n P-a.s.
(2.9)

Corollary 2.8 Let G 0 be a sub-σ-algebra of A satisfying θ -1 (G 0 ) ⊆ G 0 . Let X 0 be a G 0 -measurable random variable in L 4 . For n ≥ 1, let X n = X 0 • θ n and G n = θ -n (G 0 ). Assume that θ is ergodic and that E(X n |G n+1 ) = 0 a.s. Assume that n k=1 (E(X 2 k |G k+1 ) -E(X 2 k )) = O((n log log n) 1/2 ) P-a.s.
Enlarging our probability space if necessary it is possible to find a sequence (Z k ) k≥1 of independent centered Gaussian variables with

E(Z 2 k ) = E(X 2 1 ) such that sup 1≤k≤n k i=1 X i - k i=1 Z i = O n 1/4 (log n) 1/2 (log log n) 1/4 P-a.s. (2.10)
Remark 2.9 If we consider usual martingale differences, so more precisely if (X n ) n∈N is a stationary sequence in L p for a real p ∈]2, 4] adapted to a non-decreasing filtration (F n ) n∈N (assume moreover that F n = θ -n F 0 when p = 4) and such that E(X n |F n-1 ) = 0 a.s., the usual Skorohod-Strassen embedding theorem gives similar results to Corollaries 2.7 and 2.8. Indeed starting from Theorem 2.1 in Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF] when p ∈]2, 4[ or from its proof when p = 4 (notice that by stationarity -of the process and the filtration-, the stopping times used to construct the approximating Brownian motion can be chosen to be stationary), and using the arguments developed to get Corollaries 2.7 and 2.8, we infer that if there exists a positive non-decreasing slowly varying function b(•), such that n k=1

(E(X 2 k |F k-1 ) -E(X 2 k )) = o(n 2/p b(n)) P-a.s. when p ∈]2, 4], or if, (X n ) n∈N is ergodic and n k=1 (E(X 2 k |F k-1 ) -E(X 2 k )) = O((n log log n) 1/2 ) P-a.s. when p = 4,
then, enlarging our probability space if necessary it is possible to find a sequence (Z k ) k≥1 of independent centered Gaussian variables with

E(Z 2 k ) = E(X 2 1
) such that the rates of approximation in the strong invariance principle are the same as those given by (2.9) and (2.10).

ASIP with rates for uniformly expanding maps

Several classes of uniformly expanding maps of the interval are considered in the literature. In Theorem 3.4 below, we shall consider the following definition:

Definition 3.1 A map T : [0, 1] → [0, 1] is uniformly expanding if it belongs to the class C defined in Broise [1, Section 2.

page 11] and if

1. There is a unique absolutely continuous invariant probability measure ν, whose density h is such that 1 h 1 h>0 has bounded variation.

2. The system (T, ν) is mixing in the ergodic theoretic sense.

We refer also to Definition 1.1 in [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF] for a more complete description. Some well known examples of maps satisfying the above conditions are:

1. T (x) = βx -[βx] for β > 1. These maps are called β-transformations.

2. I is the finite union of disjoint intervals (I k ) 1≤k≤n , and

T (x) = a k x + b k on I k , with |a k | > 1. 3. T (x) = a(x -1 -1) -[a(x -1 -1)
] for some a > 0. For a = 1, this transformation is known as the Gauss map.

Our aim is to obtain explicit rates in the strong invariance principle for

n-1 i=0 (f • T i -ν(f )) and n i=1 (f (Y i ) -ν(f )) ((Y i ) i≥0
corresponding to the iterations of the inverse branches of T ) when T is a dynamical system defined in Definition 3.1, and f belongs to a large class of functions non necessarily bounded. Such classes are described in the following definition.

Definition 3.2 If µ is a probability measure on R and p ∈ [2, ∞), M ∈ (0, ∞), let Mon p (M, µ
) denote the set of functions f : R → R which are monotonic on some interval and null elsewhere and such that µ(|f | p ) ≤ M p . Let Mon c p (M, µ) be the closure in L p (µ) of the set of functions which can be written as

L =1 a f , where L =1 |a | ≤ 1 and f ∈ Mon p (M, µ).
Remark 3.3 In previous papers, see for instance [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF], the closure in L 1 (µ) was used in the definition above. It turns out that both definitions coincide. Indeed, a sequence bounded in L p (µ) and converging in L 1 (µ), converges for the weak topology in L p (µ). To conclude, recall that, by the Hahn-Banach theorem, in any Banach space, the weak closure of a convex set is equal to its strong closure.

Our main theorem follows. For uniformly expanding maps as defined in Definition 3.1, it involves an L p -integrability condition of the observables. 

σ 2 = σ 2 (f ) = ν((f -ν(f )) 2 ) + 2 k>0 ν((f -ν(f ))f • T k ) (3.1)
converges absolutely to some non negative number.

1. Let (Y i ) i≥1 be a stationary Markov chain with transition kernel K defined by (1.2) and invariant measure ν. Enlarging the underlying probability space if necessary, there exists a sequence (Z i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 defined by (3.1), such that

sup 1≤k≤n k i=1 (f (Y i ) -ν(f )) -Z i ) = o(n 1/p (log n) 1-2/p ) a.s. if p ∈]2, 4[ O(n 1/4 (log n) 1/2 (log log n) 1/4 ) a.s. if p = 4.
2. Enlarging the probability space ([0, 1], ν) if necessary, there exists a sequence (Z * i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 defined by (3.1), such that

sup 1≤k≤n k-1 i=0 (f • T i -ν(f )) -Z * i ) = o(n 1/p (log n) 1-2/p ) a.s. if p ∈]2, 4[ O(n 1/4 (log n) 1/2 (log log n) 1/4 ) a.s. if p = 4.
As we shall see in the proof of Theorem 3.4, Item 1 will follow from a more general result on φ-dependent sequences. This general result is presented in a separate section (see Section 4) since it has an interest in itself. Item 2 is obtained by considering an approximation by partial sums associated to a sequence (which is non stationary when p ∈]2, 4[) of reverse martingale differences and by applying the results of Section 2. As we shall see, the reverse time property mentioned in the introduction allows to make links with estimates obtained to prove Item 1. Notice that when p = 2, the strong invariance principle (therefore with the rate o(n 1/2 (log log n) 1/2 )) has been proved recently in [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF] (see Item 3 of their Theorem 1.5).

Notice that the proof of the strong invariance principle obtained in [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF] combines different approximation arguments. The observable is approximated by a function with better integrability properties, the almost sure invariance principle with rates obtained in [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF] is then used for this new function, and a bounded law of the iterated logarithm is proved to make it possible to pass the results from the better function to the original function. Let us emphasize that the strong invariance principle obtained in [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF] could be also proved by using a direct approximation by partial sums associated to a sequence of reverse martingale differences as we do in the proof of Theorem 3.4 above, and by using our Corollary 2.5.

Let us mention that when p = 4, Theorem 3.4 is a consequence of the following more general result.

Theorem 3.5 Let T be a map from [0, 1] to [0, 1] preserving a probability ν on [0, 1], and let K be defined by (1.2). Let f be a measurable function such that ν(f 4 ) < ∞. Assume that there exists γ ∈]0, 1] such that n>0

(log n) 3 n 1 γ + 1 2 K n (f ) -ν(f ) 2 4,ν < ∞ , (3.2) 
and n>0

(log n) 3 n 2γ sup i≥j≥n K j (f K i-j (f )) -ν(f K i-j (f )) 2 2,ν < ∞ . (3.3)
Then, the series σ 2 defined by (3.1) converges absolutely and both items of Theorem 3.4 holds with rate

O(n 1/4 (log n) 1/2 (log log n) 1/4 ).
Remark 3.6 We would like to emphasize that the strategy of proof of Item 2 for both Theorems 3.4 and 3.5 is to approximate

S n (f ) = n-1 i=0 (f • T i -ν(f ))
by a partial sum associated to a sequence of reverse martingale differences (possibly non stationary), let say

M * n = n-1 i=0 d * i
, to apply our strong approximation results given in Section 2 and to have a nice control of the approximation error between S n (f ) and M * n . A careful analysis of the proof of Theorem 2.4 and its Corollary 2.7 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] together with the arguments developed in the proof of Item 2 of our Theorems 3.4 and 3.5, show that our strategy of proof also gives new results when we consider classes of expanding maps with a neutral fixed point at zero such as the generalized Pomeau-Manneville (GPM) map as defined in Definition 1.1 of [START_REF] Dedecker | Some almost sure results for intermittent maps and their associated Markov chains[END_REF]. Therefore we infer that if T is a GPM map with parameter γ ∈ (0, 1) and f is a function satisfying Condition (3.22) in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], then the conclusion of Corollary 3.18 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] also holds for S n (f ). In particular, if f is a bounded variation function and T is a GPM map with parameter γ ∈ (0, δ -1 ] where δ = p + 1 -2/p and p ∈]2, 4], then S n (f ) satisfies an almost sure invariance principle with rate o(n 1/p log n).

For a map T from [0, 1] to [0, 1] preserving a probability ν on [0, 1] and (Y i ) i≥0 its associated Markov chain with invariant measure ν and transition Kernel K defined by (1.2), Theorem 3.5 also allows to obtain rates in the strong invariance principle for n i=1 (f • T i -ν(f )) (or for the partial sum of its associated Markov chain) when f has a modulus of continuity that is dominated by a concave and non-decreasing function and the condition (3.4) below is satisfied.

For any integer k, we denote by Q k the operator defined as follows:

E(g(Y 0 , Y k )|Y 0 = x) = Q k (g)(x). Let Λ 1 (R) be the set of functions from R to R that are 1-Lipschitz and let Λ 1 (R 2 ) be the set of functions h from R 2 to R such that |h(x 1 , y 1 ) -h(x 2 , y 2 )| ≤ 1 2 |x 1 -x 2 | + 1 2 |y 1 -y 2 | .
Denote by • ∞,µ the essential supremum norm with respect to ν. Assume that there exist C > 0 and

ρ ∈]0, 1[ such that for any (i, j) ∈ N 2 , sup g∈Λ1(R) K i (g) -ν(g) ∞,ν ≤ Cρ i and sup j≥0 sup h∈Λ1(R 2 ) K i • Q j (h) -ν Q j (h) ∞,ν ≤ Cρ i . (3.4)
Theorem 3.7 Let T be a map from [0, 1] to [0, 1] preserving a probability ν on [0, 1] and let (Y i ) i≥0 be a stationary Markov chain with invariant measure ν and transition Kernel K defined by

(1.2). Assume that condition (3.4) is satisfied. Let f from R to R such that |f (x) -f (y)| ≤ c(|x -y|),
for some concave and non-decreasing function c satisfying

1 0 | log t| 2/ √ 3 | log log(2t -1 )| 3 c(t) t dt < ∞ . (3.5)
Then the conclusion of Theorem 3.5 holds.

Note that (3.5) holds if c(t) ≤ D| log(t)| -γ for some D > 0 and some γ > 1 + 2/ √ 3. Therefore Theorem 3.7 applies to the functions from [0, 1] to R which are α-Hölder for some α ∈]0, 1].

Dedecker and Prieur [9, Section 7.2, Example 4.4] have shown that condition (3.4) is satisfied for a large class of uniformly expanding maps such as those considered in [START_REF] Collet | Exponential inequalities for dynamical measures of expanding maps of the interval[END_REF]. The conditions imposed on the class of the expanding maps they consider are slightly more restrictive than those considered in Definition 3.1. In particular they are defined by mean of finite partitions of [0, 1].

A general ASIP result for a class of weakly dependent sequences

Let (Ω, A, P) be a probability space, and let θ : Ω → Ω be a bijective bimeasurable transformation preserving the probability P. Let F 0 be a sub-σ-algebra of A satisfying F 0 ⊆ θ -1 (F 0 ). Define the nondecreasing filtration (F i ) i∈Z by F i = θ -i (F 0 ). We shall sometimes denote by E i the conditional expectation with respect to F i , and we shall set

P i (•) = E i (•) -E i-1 (•).
Definition 4.1 For any integrable random variable X, let us write

X (0) = X -E(X). For any random variable Y = (Y 1 , • • • , Y k ) with values in R k and any σ-algebra F, let φ(F, Y ) = sup (x1,...,x k )∈R k E k j=1 (1 Yj ≤xj ) (0) F (0) ∞ . For a sequence Y = (Y i ) i∈Z , where Y i = Y 0 • θ i and Y 0 is an F 0 -measurable and real-valued random variable, let φ k,Y (n) = max 1≤l≤k sup n≤i1≤...≤i l φ(F 0 , (Y i1 , . . . , Y i l )) . Theorem 4.2 Let X i = f (Y i )-E(f (Y i )), where Y i = Y 0 •θ i and Y 0 is an F 0 -measurable random variable. Let P Y0 be the distribution of Y 0 and p ∈]2, 4]. Assume that f belongs to Mon c p (M, P Y0 ) for some M > 0 and that k≥1 k 1/ √ 3-1/2 φ 1/2 2,Y (k) < ∞ if p ∈]2, 4[ and k≥2 (log k) 3 k 2/ √ 3 φ 2,Y (k) < ∞ if p = 4 . (4.1)
Then, enlarging our probability space if necessary, there exists a sequence (Z i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 defined by the absolutely converging series

σ 2 = k∈Z Cov(X 0 , X k ) (4.2) such that sup 1≤k≤n k i=1 (X i -Z i ) = o(n 1/p (log n) 1-2/p ) a.s. if p ∈]2, 4[ O(n 1/4 (log n) 1/2 (log log n) 1/4 ) a.s. if p = 4.
Notice that an application of Corollary 2.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] would give a rate of convergence of order o(n 1/p (log n) (t+1)/2 ) with t > 2/p. As we shall see in the proof of the above theorem, the improvement of the power in the logarithmic term is achieved via some truncation arguments.

The proof makes use of the following lemma (see Lemma 5.2 in Dedecker, Gouëzel and Merlevède [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF]).

Lemma 4.3 Let Y = (Y i ) i∈Z , where Y i = Y 0 • θ i and Y 0 is an F 0 -measurable random variable.
Let f and g be two functions from R to R which are monotonic on some interval and null elsewhere.

Let p ∈ [1, ∞]. If f (Y 0 ) p < ∞, then, for any positive integer k, E(f (Y k )|F 0 ) -E(f (Y k )) p ≤ 2(2φ 1,Y (k)) (p-1)/p f (Y 0 ) p .
If moreover p ≥ 2 and g(Y 0 ) p < ∞, then for any positive integers i ≥ j ≥ k,

E(f (Y i ) (0) g(Y j ) (0) |F 0 ) -E(f (Y i ) (0) g(Y j ) (0) ) p/2 ≤ 8(4φ 2,Y (k)) (p-2)/p f (Y 0 ) p g(Y 0 ) p .
4.1 Proof of Theorem 4.2 for 2 < p < 4

Let f ∈ Mon c p (M, P Y0 ). We shall first prove that ≥0 E 0 (X ) p < ∞ provided that k≥1 φ (p-1)/p 1,Y (k) < ∞ (notice that this condition is implied by (4.1)). This will entail that d 0 := ≥0 P 0 (X ) and r 0 := ≥1 E 0 (X ) are well defined and that we have the martingale-coboundary decomposition X 0 = d 0 + r 0 • θ -1 -r 0 . Then the series σ 2 = k∈Z Cov(X 0 , X k ) will converge absolutely and we will have

lim n→∞ n -1 E(S 2 n (f )) = σ 2 . Since f ∈ Mon c
p (M, P Y0 ), by definition, there exists a sequence of functions

f L = L k=1 a k,L f k,L , (4.3) 
with f k,L belonging to Mon p (M, P Y0 ) and

L k=1 |a k,L | ≤ 1, such that f L converges in L p (P Y0 ) to f . Hence, E 0 (X ) p = lim L→∞ E 0 (f L (Y ) -E(f L (Y )) p ≤ lim inf L→∞ L k=1 |a k,L | E 0 (f k,L (Y ) -E(f k,L (Y )) p . Next, by Lemma 4.3, we have E 0 (f k,L (Y ) -E(f k,L (Y )) p ≤ 2(2φ 1,Y (k)) (p-1)/p M . This shows that ≥0 E 0 (X ) p < ∞ as soon as k≥1 φ (p-1)/p 1,Y (k) < ∞.
We shall define random variables by truncating the functions f k,L defined in (4.3). Let j be a positive integer and g j (x) = x1 |x|≤c(j) where c(j) = 2 j/p j -2/p .

Define then

f L,j = L k=1 a k,L g j • f k,L . (4.4) 
By assumption and by construction, for any integers j, L, f L,j has a variation bounded by 4c(j). Hence, by Lemma 2.1 of [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF], (f L,j ) L admits a subsequence, say (f ϕ(L),j ) L converging in L 1 (P Y0 ), hence in L p (P Y0) ), say to fj . Then, f -fj is the limit in L p (P Y0 ) of

f ϕ(L) -f ϕ(L),j = ϕ(L) k=1 a k,ϕ(L) g j • f k,L where g j = x1 |x|>c(j) .
Define then for any integer , Xj, := fj (Y ) -E( fj (Y )) and

X j, := (f -fj )(Y ) -E((f -fj )(Y )) , (4.5) 
and Xj,L, :

= f ϕ(L),j (Y ) -E(f ϕ(L),j (Y )) and X j,L, := (f ϕ(L) -f ϕ(L),j )(Y ) -E((f ϕ(L) -f ϕ(L),j )(Y )) . (4.6)
We define also a sequence of martingale differences, ( dj, ) ≥1 , with respect to the non-decreasing sequence of σ-algebras (F ) ≥1 , as follows: dj, = k≥ P Xj,k .

Notice that by assumption (4.1), the series k≥0 P 0 Xj,k converges in L ∞ as shown by the following claim whose proof is given later.

Claim 1 Let j be fixed. Assume that

k≥1 φ 1,Y (k) < ∞. Then k≥0 E 0 Xj,k ∞ < ∞,
and the sequence (d j, ) ≥1 defined by (4.7) forms a stationary sequence of martingale differences in L ∞ with respect to the non-decreasing sequence of σ-algebras (F ) ≥1 .

We define now some non stationary sequences ( X ) ≥1 and ( d ) ≥1 as follows:

d1 := d1,1 , X1 := X1,1 , (4.8) 
and, for every j ≥ 0 and every ∈ {2 j + 1, ..., 2 j+1 },

d := dj, , X := Xj, . (4.9) 
For every positive integer n, we then define

Mn (f ) := n =1 d and Sn (f ) := n =1 X .
With these notations, the following decomposition is valid: for any positive integer k,

S k (f ) = (S k (f ) -Sk (f )) + ( Sk (f ) -Mk (f )) + Mk (f ) .
Therefore, the theorem will follow if we can prove that

sup 1≤k≤n S k (f ) -Sk (f ) = o(n 1/p (log n) 1-2/p ) almost surely, (4.10) sup 1≤k≤n Sk (f ) -Mk (f ) = o(n 1/p (log n) 1-2/p ) almost surely, (4.11) 
and if, enlarging our probability space if necessary, there exists a sequence (Z i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 such that sup

1≤k≤n k i=1 ( di -Z i ) = o(n 1/p (log n) 1-2/p ) almost surely. (4.12)
Proof of (4.10). For any non negative integer j, let

D j := sup 1≤k≤2 j | k+2 j =2 j +1 (X -X )| = sup 1≤k≤2 j | k+2 j =2 j +1 X j, | ,
where X j, is defined by (4.5). Let N ∈ N * and let

k ∈]1, 2 N ]. We first notice that D j ≥ | 2 j+1 =2 j +1 X j, |, so if K is the integer such that 2 K-1 < k ≤ 2 K , then S k (f ) -Sk (f ) ≤ |X 1 -X1 | + K-1 j=0 D j . Consequently since K ≤ N , sup 1≤k≤2 N |S k (f ) -Sk (f )| ≤ |X 1 -X1 | + N -1 j=0 D j . (4.13) 
Therefore, (4.10) will follow if we can prove that sup

1≤k≤2 j k+2 j =2 j +1
X j, = o j 1-2/p 2 j/p a.s.

By stationarity, this will hold true as soon as

j≥1 sup 1≤k≤2 j k =1 X j, 2 2 
2 2j/p j 2-4/p < ∞ . (4.14)
This is achieved by the following claim whose proof is given later.

Claim 2 Assume that k≥1 k -1/2 φ 1/2 1,Y (k) < ∞ . (4.15)
Then (4.14) holds.

Proof of (4.11). For any non negative integer j, let Dj := sup

1≤k≤2 j k+2 j =2 j +1 ( X -d ) = sup 1≤k≤2 j k+2 j =2 j +1
( Xj, -dj, ) .

Following the beginning of the proof of (4.10), we get that sup

1≤k≤2 N | Sk (f ) -Mk (f )| ≤ | X1 -d1 | + N -1 j=0 
Dj .

Therefore we infer that (4.11) will hold if sup

1≤k≤2 j k+2 j =2 j +1
( Xj, -dj, ) = o j 1-2/p 2 j/p a.s.

By stationarity, this will hold true as soon as

j≥1 sup 1≤k≤2 j k =1 ( Xj, -dj, ) 4 
2 4j/p j 4(1-2/p) < ∞ . (4.16) 4 
This is achieved by the following claim whose proof is given later.

Claim 3 Assume that k≥1 k -1/8 φ 3/4 1,Y (k) < ∞ . (4.17)
Then (4.16) holds.

Proof of (4.12). Let a n = n 2/p (log n) 1-4/p . The result will follow from the following claim.

Claim 4 Assume that ≥1 a -ν E(| d | 2ν ) < ∞ for some 1 ≤ ν ≤ 2 , (4.18) 
and that

n i=1 E i-1 ( d 2 i ) -E( d 2 i ) = o(a n ) a.s. (4.19)
Then (4.12) holds.

It remains to show that (4.18) and (4.19) are satisfied.

Proof of (4.18). We show it for ν = 2. Notice first that

≥2 a -2 E(| d | 4 ) = j≥0 2 j+1 =2 j +1 a -2 E(| dj, | 4 ) j≥0 1 2 4j/p j 2(1-4/p) 2 j+1 =2 j +1 E(| dj, | 4 ) ,
where dj, is defined in (4.7). By stationarity and Lemma 5.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF],

dj, 4 ≤ ≥0 P 0 Xj, 4 ≥0 ( + 1) -1/4 E 0 Xj, 4 . (4.20) 
Using the arguments at the beginning of the proof of Claim 1, we first observe that ( Xj,L, ) L≥1 defined in (4.6) converges in L 4 to Xj, . Hence

E 0 Xj, 4 = lim L→∞ E 0 Xj,L, 4 . (4.21) Next E 0 Xj,L, 4 ≤ ϕ(L) k=1 |a k,ϕ(L) | E 0 g j • f k,ϕ(L) (Y ) -E g j • f k,ϕ(L) (Y ) 4 .
Applying Lemma 4.3, we then derive that

E 0 Xj,L, 4 ≤ 2(2φ 1,Y ( )) 3/4 ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 .
Therefore starting from (4.20), we get that dj, 4 lim inf

L→∞ ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 ≥0 -1/4 (φ 1,Y (k)) 3/4 . Since ϕ(L) k=1 |a k,ϕ(L) | ≤ 1, Jensen's inequality leads to dj, 4 4 lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 4 ≥0 -1/4 (φ 1,Y ( )) 3/4 4 .
Hence, using condition (4.1) and Fubini, there exists a positive constant C not depending on L such that

j≥0 1 2 4j/p j 2(1-4/p) 2 j+1 =2 j +1 E(| dj, | 4 ) lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | j>0 2 j 2 4j/p j 2(p-4)/p E f 4 k,ϕ(L) (Y 0 )1 |f k,ϕ(L) (Y0)|≤2 j/p j -2/p lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | j>0 j 2/p 2 j/p 4-p E f 4 k,ϕ(L) (Y 0 )1 |f k,ϕ(L) (Y0)|≤2 j/p j -2/p < C lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | f k,ϕ(L) (Y 0 ) p p ≤ CM p . (4.22) 
This ends the proof of (4.18).

Proof of (4.19). For any non negative integer j, let

A j := sup 1≤ ≤2 j 2 j + i=2 j +1 (E i-1 ( di 2 ) -E( di 2 )) = sup 1≤ ≤2 j 2 j + i=2 j +1 (E i-1 ( d 2 j,i ) -E( d 2 j,i )) ,
where dj,i is defined in (4.7). Let N ∈ N * and let k ∈]1, 2 N ]. We first notice that

A j ≥ | 2 j+1 =2 j +1 (E i-1 ( d 2 j,i )- E( d 2 j,i ))|, so if K is the integer such that 2 K-1 < k ≤ 2 K , then k i=1 (E i-1 ( d 2 i ) -E( d 2 i )) ≤ |E 0 ( d 2 1 ) -E( d 2 1 )| + N -1 j=0 A j . Consequently since K ≤ N , sup 1≤k≤2 N k i=1 (E i-1 ( d 2 i ) -E( d 2 i )) ≤ |E 0 ( d 2 1 ) -E( d 2 1 )| + N -1 j=0 A j . (4.23) 
Therefore to prove (4. [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF], it is enough to show that sup

1≤k≤2 j k+2 j =2 j +1 (E i-1 ( d 2 j,i ) -E( d 2 j,i )) ≤ 2 2j/p j 1-4/p a.s.
In particular, it suffices to prove that

j≥1 sup 1≤k≤2 j k i=1 (E i-1 ( d 2 j,i ) -E( d 2 j,i )) 2 2 2 4j/p j 2(1-4/p) < ∞ . (4.24) 
Observe now that, by Claim 1 and condition (4.1), ( dj,i ) i∈Z forms a stationary triangular sequence of martingale differences in L 4 . Let Mj,n := n i=1 dj,i .

Applying Proposition 2.3 in [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] and using the martingale property of the sequence ( Mj,n ) n≥1 , we get that sup

1≤k≤2 j k i=1 (E i-1 ( d 2 j,i ) -E( d 2 j,i )) 2 2 2 j d 2 j,1 2 2 + 2 j j-1 k=0 E 0 ( M 2 j,2 k ) -E( M 2 j,2 k ) 2 2 k/2 2 . Noticing that d 2 j,1 2 2 = d j,1 4 
4 , and using the computations made in (4.22), we get that

j≥1 2 j d 2 j,1 2 2 2 4j/p j 2(1-4/p) < ∞ .
Therefore to prove (4.24), it remains to prove that

j≥1 2 j 2 4j/p j 2(1-4/p) j-1 k=0 2 -k/2 E 0 ( M 2 j,2 k ) -E( M 2 j,2 k ) 2 2 < ∞ .
Setting Sj,n = n i=1 Xj,i and Rj,n = Sj,n -Mj,n , according to the proof of Theorem 2.3 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], this will hold provided that

j≥1 2 j 2 4j/p j 2(1-4/p) j-1 k=0 2 -k/2 E 0 ( S2 j,2 k ) -E( S2 j,2 k ) 2 2 < ∞ , (4.25) 
j≥1 2 j 2 4j/p j 2(1-4/p) j-1 k=0 2 -k/2 Rj,2 k 2 4 2 < ∞ , (4.26) 
and j≥1 2 j 2 4j/p j 2(1-4/p)

j-1 k=0 2 k/2 ≥2 k P 0 ( Xj, ) 2 2 < ∞ . (4.27)
According to the proof of Claim 3,

Rj,2 k 4 ≥1 (φ 1,Y ( )) 3/4 lim inf L→∞ ϕ(L) i=1 |a i,ϕ(L) | g j • f i,ϕ(L) (Y 0 ) 4 .
Therefore, since ϕ(L) i=1 |a i,ϕ(L) | < 1, using Jensen's inequality and condition (4.1),

j≥1 2 j 2 4j/p j 2(1-4/p) j-1 k=0 2 -k/2 Rj,2 k 2 4 2 lim inf L→∞ ϕ(L) i=1 |a i,ϕ(L) | j≥1 2 j 2 4j/p j 2(1-4/p) E f 4 i,ϕ(L) (Y 0 )1 |f i,ϕ(L) (Y0)|≤2 j/p j -2/p ,
which together with an application of Fubini show (4.26). We turn to the proof of (4.27). According to Lemma 5.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF],

2 k/2 ≥2 k P 0 ( Xj, ) 2 ≥2 k-1 E 0 ( Xj, ) 2 . Since E 0 ( Xj, ) 2 ≤ lim inf L→∞ ϕ(L) i=1 |a i,ϕ(L) | E 0 (g j • f i,ϕ(L) (Y )) -E(g j • f i,ϕ(L) (Y )) p
, by Lemma 4.3 and using the fact that

ϕ(L) i=1 |a i,ϕ(L) | ≤ 1, we derive that E 0 ( Xj, ) 2 M (φ 1,Y ( )) (p-1)/p .
Since p < 4, we then infer that (4.27) will hold if

≥1 φ 1,Y ( )) (p-1)/p < ∞ which is satisfied if (4.1) is. It remains to show that (4.25) holds true. Since E 0 ( S2 j,2 k ) -E( S2 j,2 k ) 2 ≤ 2 2 k m=1 2 k -m =0 E 0 ( Xj,m Xj,m+ ) -E( Xj,m Xj,m+ ) 2 ,
we infer that there exists C > 0 such that

j-1 k=0 2 -k/2 E 0 ( S2 j,2 k ) -E( S2 j,2 k ) 2 ≤ C 2 j m=1 2 j =0 1 (m + ) 1/2 E 0 ( Xj,m Xj,m+ ) -E( Xj,m Xj,m+ ) 2 ≤ C 2 j m=1 [m γ ] =0 1 (m + ) 1/2 γ j (F 0 , m, ) + C 2 j m=1 2 j =[m γ ] 1 (m + ) 1/2 γ j (F 0 , m, ) .
where γ j (F 0 , m, ) := E 0 ( Xj,m Xj,m+ ) -E( Xj,m Xj,m+ ) 2 and γ ∈ (0, 1] .

Bounding up γ j (F 0 , m, ) in two ways as done in the proof of Corollary 2.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], we infer that, for any γ ∈ (0, 1] (to be chosen later), there exists a positive constant B such that

j-1 k=0 2 -k/2 E 0 ( S2 j,2 k ) -E( S2 j,2 k ) 2 2 ≤ BI 2 1 + BI 2 2 (4.28)
where

I 1 = 2 j m=1 m γ m 1/2 sup ≥k≥m E 0 ( Xj, Xj,k ) -E( Xj, Xj,k ) 2 I 2 = 2 j k=1 k 1/(2γ) k 1/4 E 0 ( Xj,k ) 4 2 .
We shall proceed by using some arguments developed in [START_REF] Dedecker | The almost sure invariance principle for unbounded functions of expanding maps[END_REF] to get their bound (5.7). Arguing as in the proof of Claim 3, we obtain that

I 2 ≤ 8 √ 2 k>0 k 1/(2γ) k 1/4 φ 1,Y (k) 3/4 2 lim inf L→∞ ϕ(L) =1 |a ,ϕ(L) |E(f 4 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|≤c(j) ) 1/2 . ( 4 

.29)

We bound now I 1 . According to the proof of Claim 1, Xj, is the limit in L 4 of ( Xj,L, ) L , where Xj,L, is defined in (4.6). Therefore,

E 0 ( Xj, Xj,k ) -E( Xj, Xj,k ) 2 = lim L→∞ E 0 ( Xj,L, Xj,L,k ) -E( Xj,L, Xj,L,k ) 2 . Applying Lemma 4.3, for ≥ k ≥ m, E 0 ( Xj,L, Xj,L,k ) -E( Xj,L, Xj,L,k ) 2 ≤ 16φ 2,Y (m) 1/2 ϕ(L) =1 |a ,ϕ(L) | g j • f ,ϕ(L) (Y 0 ) 4 ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 .
It follows that

I 1 ≤ 16 2 j m=1 m γ m 1/2 φ 2,Y (m) 1/2 lim inf L→∞ ϕ(L) =1 |a ,ϕ(L) |E(f 4 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|≤c(j) ) 1/2 . (4.30) Let γ = 1/ √ 3. If the condition (4.1) holds, then k>0 k √ 3/2 k 1/4 φ 1,Y (k) 3/4 < ∞ and m>0 m 1/ √ 3 m 1/2 φ 2,Y (m) 1/2 < ∞.
We infer from (4.28), (4.29) and (4.30) that, if (4.1) holds, there exists a positive constant C 4 (φ) such that

j-1 k=0 2 -k/2 E 0 ( S2 j,2 k ) -E( S2 j,2 k ) 2 2 ≤ C 4 (φ) lim inf L→∞ ϕ(L) =1 |a ,ϕ(L) |E(f 4 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|≤c(j) ) . (4.31)
Using this last bound, Fatou's lemma together with Fubini, we then infer that (4.25) holds true. This ends the proof of (4.12).

End of the proof Theorem 4.2 for p ∈]2, 4[. To finish the proof of Theorem 4.2 for p ∈]2, 4[, it remains to prove our claims.

Proof of Claim 1. Notice that ( Xj,L, ) converges in L p to Xj, and Xj,L, ∞ ≤ 2c(j). Therefore, we infer that Xj, ∞ ≤ 2c(j). It follows that Xj, = lim L→∞ Xj,L, in L q for any q ∈ [1, ∞[. Next, by Lemma 4.3 and the fact that

ϕ(L) k=1 |a k,ϕ(L) | ≤ 1, we get that E 0 Xj,L, q ≤ ϕ(L) k=1 |a k,ϕ(L) | E 0 g j • f k,ϕ(L) (Y ) -E g j • f k,ϕ(L) (Y ) ∞ ≤ 4φ 1,Y ( ) ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) ∞ ≤ 4c(j)φ 1,Y ( ) .
Therefore E 0 Xj, q ≤ 4c(j)φ 1,Y ( ). This proves the claim.

Proof of Claim 2. Let S j,L,k = k =1 X j,L, where X j,L, is defined by (4.6). Recall that X j, is the limit in L p of X j,L, . Clearly, to prove (4.14), it suffices to prove that, there exists some positive constant K, such that for any positive integer L,

j≥1 sup 1≤k≤2 j S j,L,k 2 2 2 2j/p j 2-4/p < K . (4.32)
To prove (4.32), we use the maximal inequality of [START_REF] Peligrad | Central limit theorem for stationary linear processes[END_REF]. Therefore, by stationarity,

max 1≤k≤2 j S j,L,k 2 2 2 j X j,L,0 2 2 + 2 j j =0 2 -/2 E 0 ( S j,L,2 ) 2 2 2 j X j,L,0 2 2 + 2 j 2 j k=1 k -1/2 E 0 ( X j,L,k ) 2 2 .
(4.33)

Notice that X j,L,0

2 2 ≤ 4 ϕ(L) =1 a ,ϕ(L) g j • f ,ϕ(L) (Y 0 ) 2 2
. Therefore, since

L =1 |a ,L | ≤ 1, by Jensen's inequality, X j,L,0 2 2 ≤ 4 ϕ(L) =1 |a ,ϕ(L) | g j • f ,ϕ(L) (Y 0 ) 2 2 . (4.34) Now E 0 ( X j,L,k ) 2 ≤ ϕ(L) =1 |a ,ϕ(L) | E 0 ( g j • f ,ϕ(L) (Y k )) -E( g j • f ,ϕ(L) (Y k )) 2 . Applying Lemma 4.3, E 0 ( g j • f ,ϕ(L) (Y k )) -E( g j • f ,ϕ(L) (Y k )) 2 ≤ 2(2φ 1,Y (k)) 1/2 g j • f ,ϕ(L) (Y 0 ) 2 .
Hence by Jensen's inequality, 

2 j k=1 k -1/2 E 0 ( X j,L,k ) 2 2 ≤ 8 k≥1 k -1/2 φ 1/2 1,Y (k) 2 ϕ(L) =1 |a ,ϕ(L) | g j • f ,ϕ(L) (Y 0 ) 2 2 . ( 4 
2 2j/p j 2-4/p 2 j(p-2)/p j 2(p-2)/p k≥1 k -1/2 φ 1/2 1,Y (k) 2 ϕ(L) =1 |a ,ϕ(L) | g j • f ,ϕ(L) (Y 0 ) 2 2 .
Now, via Fubini, there exists a positive constant C not depending on L such that

j>0 2 j(p-2)/p j 2(p-2)/p g j • f ,ϕ(L) (Y 0 ) 2 2 = j>0 2 j(p-2)/p j 2(p-2)/p E f 2 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|>2 j/p j -2/p < C f ,ϕ(L) (Y 0 ) p p ≤ CM p .
Using condition (4.15) and the fact that By stationarity, and since for any k ≥ 1, E 0 ( Mj,k ) = 0, according to Corollary 3 in Merlevède and Peligrad [START_REF] Merlevède | Rosenthal inequalities for martingales and stationary sequences and examples[END_REF], sup

1≤k≤2 j | Rj,k | 4 ≤ Rj,2 j 4 + 2 j/4 j-1 l=0 2 -l/4 E 0 ( Sj,2 l ) 4
Rj,L,2 j 4 + 2 j/4

2 j =1 -1/4 E 0 ( Xj, ) 4 .
Now according to item 2 of Proposition 2.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] applied with N = 2 2j+1 , we get that Rj,2 j 4

2 2j =1 E 0 ( Xj, ) 4 + 2 j/2 ≥2 2j P 0 ( Xj, ) 4 .
Using then Lemma 5.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], it follows that Rj,2 j 4

2 2j+1 =1 E 0 ( Xj, ) 4 + 2 j/2 ≥2 2j k -1/4 E 0 ( Xj, ) 4 .
So overall, sup

1≤k≤2 j | Rj,k | 4 ≤ 2 2j+1 =1 E 0 ( Xj, ) 4 + 2 j/2 ≥2 2j k -1/4 E 0 ( Xj, ) 4 + 2 j/4 2 j =1 -1/4 E 0 ( Xj, ) 4 ≤ 2 j/4 2 j =1 -1/8 E 0 ( Xj, ) 4 + 2 j/2 ≥2 2j -1/4 E 0 ( Xj, ) 4 . (4.37) 
We handle now the quantity E 0 ( Xj, ) 4 . We first observe that by Lemma 4.3,

E 0 Xj,L, 4 ≤ 4(φ 1,Y ( )) 3/4 ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 ,
where X j,L, is defined in (4.6). Taking into account (4.21), (4.37) and the condition (4.17), we then infer that sup

1≤k≤2 j | Rj,k | 4 4 2 j 2 4j/p j 4(p-2)/p lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 4 . Since, ϕ(L) =1 |a ,ϕ(L) | < 1, by Jensen's inequality sup 1≤k≤2 j | Rj,k | 4 4 2 j 2 4j/p j 4(p-2)/p lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 4 4 .
Now, via Fubini, there exists a positive constant C not depending on L such that

j>0 2 j 2 4j/p j 4(p-2)/p g j • f k,ϕ(L) (Y 0 ) 4 4 = j>0 2 j 2 4j/p j 4(p-2)/p E f 4 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|≤2 j/p j -2/p ≤ j>0 2 j/p j 2/p p-4 E f 4 ,ϕ(L) (Y 0 )1 |f ,ϕ(L) (Y0)|≤2 j/p j -2/p < C f ,ϕ(L) (Y 0 ) p p ≤ CM p ,
which combined with the fact that

ϕ(L) =1 |a ,ϕ(L) | < 1 prove the claim. Proof of Claim 4. We first prove that σ 2 = lim n→∞ n -1 Mn (f ) 2 2 . (4.38) 
Recall that (4.1) entails in particular that k≥0 P 0 (X k ) 2 < ∞. We then define

d 0 = i≥0 P 0 (f (Y 0 )•θ i ) and for any integer , d = d 0 • θ . Let M n (f ) = n =1 d . Since k≥0 P 0 (X k ) 2 < ∞, using item 2 of Theorem 1 in [29], S n (f ) -M n (f ) 2 = o( √ n) . (4.39) 
Since σ 2 = lim n→∞ n -1 S n (f ) 2 2 , it follows from (4.39) and stationarity that

σ 2 = n -1 M n (f ) 2 2 = E(d 2 0 ). We show now that Mn (f ) -M n (f ) 2 = o(n 1/2 ) . (4.40) 
Let N be the positive integer such that 2 N -1 < n ≤ 2 N . By the martingale property of Mn (f ) -M n (f ) and stationarity, we have that

Mn (f ) -M n (f ) 2 2 = n =1 E(( d -d ) 2 ) ≤ E(( d1 -d 1 ) 2 ) + N -1 j=0 2 j E((d 1 -dj,1 ) 2 ) . (4.41) 
But d 1 -dj,1 = ≥1 P 1 ( X j, ). Then, by Lemma 5.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] (see also the proof of Corollary 2 in [START_REF] Peligrad | Central limit theorem for stationary linear processes[END_REF]),

d 1 -dj,1 2 ≤ ≥0 P 0 ( X j, ) 2 ≥0 ( + 1) -1/2 E 0 ( X j, ) 2 .
Let X j,L, be defined in (4.6). Applying Lemma 4.3,

E 0 ( X j,L, ) 2 ≤ 2 √ 2(φ 1,Y ( )) 1/2 ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 2 . Since ϕ(L) k=1 |a k,ϕ(L) | ≤ 1 and f k,ϕ(L) belongs to Mon p (M, P Y0 ), it follows that E 0 ( X j,L, ) 2 ≤ 2 √ 2M p/2 (c(j)) 1-p/2 (φ 1,Y (k)) 1/2 . Since E 0 ( X j, ) 2 = lim L→∞ E 0 ( X j,L, ) 2 and, by condition (4.1), k≥1 k -1/2 φ 1/2 1,Y (k) < ∞, we get overall that Mn (f ) -M n (f ) 2 2 N -1 j=0 2 j (c(j)) 2-p 2 2N/p N 2(1-2/p) ,
proving (4.40). Combining the fact that σ 2 = n -1 M n (f ) 2 2 with (4.40), it follows that (4.38) holds. Then, according to Theorem 2.1 in [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF], we see that, enlarging our probability space if necessary, one may find a sequence ( Z ) ≥1 of independent Gaussian random variables with zero mean and variance

E( Z ) 2 = E( d ) 2 = (σ ) 2 such that sup 1≤k≤n Mk - k =1 Z = o a 1/2 n (log n) 1/2 almost surely, as n → ∞. (4.42) 
Let (δ k ) k≥1 be a sequence of iid Gaussian random variables with mean zero and variance σ 2 , independent of the sequence ( Z ) ≥1 . We now construct a sequence (Z ) ≥1 as follows. If σ = 0, then Z = δ , else Z = (σ/σ ) Z . By construction, the Z 's are iid Gaussian random variables with mean zero and variance σ 2 . Let G = Z -Z and note that (G ) ≥1 is a sequence of independent Gaussian random variables with mean zero and variances Var(G ) = (σ -σ ) 2 . Assume that we can prove that

n≥3 E(G 2 n ) a n log n < ∞ . (4.43)
Then by the Kolmogorov theorem (or Lemma 6.2), it will follow that the series n≥3 Gn (an log n) 1/2 converges P-a.s. Hence, Kronecker lemma will imply that n =1 G = o((a n log n) 1/2 ) P-a.s. Therefore starting from (4.42), we will conclude that if (4.18) and (4.19) hold then (4.12) does. Let us prove (4.43). With this aim, we first notice that

E(G 2 n ) = d n 2 -dn 2 2 ≤ d n -dn 2 2 . Next n≥3 E(G 2 n ) a n log n ≤ j≥1 1 2 2j/p j 2-4/p 2 j+1 =2 j +1 E((d -dj, ) 2 ) = j≥1 2 j 2 2j/p j 2-4/p E((d 1 -dj,1 ) 2 ) .
Using the computations as done to prove (4.40), we infer that under condition (4.1),

n≥3 E(G 2 n ) a n log n lim inf L→∞ j≥1 2 j 2 2j/p j 2-4/p ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 2 2 . Since ϕ(L) k=1 |a k,ϕ(L) | ≤ 1, Jensen's inequality leads to n≥3 E(G 2 n ) a n log n lim inf L→∞ j≥1 2 j 2 2j/p j 2-4/p ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 2 2 .
Hence, by Fubini theorem, there exists a positive constant C not depending on L such that

n≥3 E(G 2 n ) a n log n lim inf L→∞ j≥1 2 j 2 2j/p j 2-4/p ϕ(L) k=1 |a k,ϕ(L) | g j • f k,ϕ(L) (Y 0 ) 2 2 lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | j≥1 2 j/p j 2/p p-2 E f 2 k,ϕ(L) (Y 0 )1 |f k,ϕ(L) (Y0)|>2 j/p j -2/p < C lim inf L→∞ ϕ(L) k=1 |a k,ϕ(L) | f k,ϕ(L) (Y 0 ) p p ≤ CM p .
This ends the proof of (4.43) and of Claim 4.

Proof of Theorem for p = 4

In this case, no truncation is needed. The beginning of the proof of Theorem 4.2 for 2 < p < 4 also works for p = 4. In particular, if f ∈ Mon c 4 (M, P Y0 ), condition (4.1) implies that ≥0 E 0 (X ) 4 < ∞. Therefore the series σ 2 = k∈Z Cov(X 0 , X k ) converges absolutely and lim n→∞ n -1 E(S 2 n (f )) = σ 2 . In addition the series k≥0 P 0 (X k ) converges in L 4 and the sequence (d ) ∈Z defined by: To prove (4.45), it suffices to notice that since ≥0 E 0 (X ) 4 < ∞, we have the coboundary decomposition S n (f ) = M n (f ) + r 0 -r 0 • θ n with r 0 4 < ∞. So (4.45) follows directly from the fact that (r 0 -r 0 • θ n )/n 1/4 → 0 P-a.s. To prove (4.46), we shall use Remark 2.9. Therefore we need to show that

n k=1 (E(d 2 k |F k-1 ) -E(d 2 k )) = O(n 1/2 (log log n) 1/2 ) P-a.s.
This condition follows directly from Theorem 12 of [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] together with the fact that (d k ) k∈N is a martingale differences sequence provided that

n≥2 (log n) 3 n 2 E 0 (M 2 n ) -E(M 2 n ) 2 2 < ∞ . (4.47)
According to the proof of Theorem 2.3 and Corollary 2.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], this will hold true provided that there exists γ ∈]0, 1] such that n>0

(log n) 3 n 1 γ + 1 2 E 0 (X n ) 2 4 < ∞ , (4.48) and n>0 
(log n) 3 n 2γ sup i≥j≥n E 0 (X i X j ) -E(X i X j ) 2 2 < ∞ . (4.49) Notice that E 0 (X n ) 4 = lim L→∞ E 0 (f L (Y n ) -E(f L (Y n ))) 4 ≤ lim inf L→∞ L k=1 |a k,L | E 0 (f k,L (Y n ) - E(f k,L (Y n )) 4 . Next, by Lemma 4.3, E 0 (f k,L (Y n ) -E(f k,L (Y n )) 4 ≤ 2M (2φ 1,Y (n)) 3/4 . On the other hand, E 0 (X i X j ) -E(X i X j ) 2 ≤ lim inf L→∞ L k=1 L =1 |a k,L ||a ,L | E 0 (f k,L (Y i )f ,L (Y j ) -E(f k,L (Y i )f ,L (Y j ) 2 ,
and by Lemma 4.3

sup i≥j≥n E 0 (f k,L (Y i )f ,L (Y j ) -E(f k,L (Y i )f ,L (Y j ) 2 ≤ 16M 2 (φ 2,Y (n)) 1/2 .
Hence condition (4.1) (for p = 4) implies that (4.48) and (4.49) hold for γ = 1/ √ 3. The proof of Theorem 4.2 is therefore complete.

5 Proof of the results of Section 3 5.1 Proof of Theorem 3.4 on uniformly expanding maps Item 1 follows directly from Theorem 4.2. Indeed since T is uniformly expanding, it follows from Section 6.3 in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF] that φ 2,Y (n) = O(ρ n ) for some ρ ∈ (0, 1) .

(5.1)

To prove Item 2 we proceed as follows. We start by the case p ∈]2, 4[. Since f ∈ Mon c p (M, ν), we consider the function f j and the random variables Xj,k and X j,k defined in the beginning of the proof of Theorem 4.2. In addition we set

F k = σ(Y i , i ≤ k) and G k = σ(T i , i ≥ k) .
(5.2)

As in the proof of Theorem 4.2, we define a sequence of martingale differences, ( dj, ) ≥1 , with respect to the non-decreasing sequence of σ-algebras (F ) ≥1 , as follows:

dj, = k≥ E Xj,k |F -E Xj,k |F -1 := k≥ P Xj,k ,
and we recall that by Claim 1 and by (5.1), the series k≥0 P 0 Xj,k converges in L ∞ . Notice now that by the Markovian property of (Y i ) i≥0 , we have that

dj, = k≥ E Xj,k |Y -E Xj,k |Y -1 := m(Y , Y -1 ) , (5.3) 
where m(•, •) is a measurable function from R 2 to R. Define now

d * j, = m(T -1 , T ) . (5.4) 
Notice then that d * j, is G -1 -measurable. Moreover, since on the probability space ([0, 1], ν), the random vector (T, T 2 , . . . , T n ) is distributed as (Y n , Y n-1 , . . . , Y 1 ), we have that

E(d * j, |G ) 1,ν = E(d * j, |T ) 1,ν = E( dj, |Y -1 )| 1 = 0 ,
it follows that E(d * j, |G ) = 0 ν-a.s. We define now some non stationary sequences (X * ) ≥1 and (d * ) ≥1 as follows:

d * 1 := d * 1,1 , X * 1 := f1 • T -ν( f1 • T ) , (5.5) 
and, for every j ≥ 0 and every ∈ {2 j + 1, ..., 2 j+1 },

d * := d * j, , X * := fj • T -ν( fj • T ) . (5.6) 
For every positive integer n, we then define

M * n (f ) := n =1 d * and S * n (f ) := n =1 X * .
Therefore, Item 2 of Theorem 3.4 will follow if we can prove that sup

1≤k≤n k i=1 (f • T i -ν(f )) -S * k (f ) = o(n 1/p (log n) 1-2/p ) ν-a.s. , (5.7) 
sup 1≤k≤n S * k (f ) -M * k (f ) = o(n 1/p (log n) 1-2/p ) ν-a.s. , (5.8) 
and if, enlarging our probability space if necessary, there exists a sequence (Z * i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 such that sup

1≤k≤n k i=1 (d * i -Z * i ) = o(n 1/p (log n) 1-2/p ) ν-a.s. (5.9) 
According to the proof of Theorem 4.2, (5.7) will hold if

j>0 2 -2j/p j -2+4/p max 1≤k≤2 j k =1 (f -fj ) • T -ν(f -fj ) 2 2,ν < ∞ . (5.10)
But, since on the probability space ([0, 1], ν), the random vector (T, T 2 , . . . , T n ) is distributed as (Y n , Y n-1 , . . . , Y 1 ), according to the inequality (4.1) in [START_REF] Dedecker | Some almost sure results for intermittent maps and their associated Markov chains[END_REF], we have

ν max 1≤k≤n k =1 (f -fj ) • T -ν(f -fj )) > x ≤ P 2 max 1≤k≤n k =1 X j, > x .
Therefore (5.10) follows from Claim 2.

We turn now to the proof of (5.8). According to the proof of Theorem 4.2, (5.8) will hold if j>0 2 -4j/p j -4(1-2/p) max

1≤k≤2 j k =1 fj • T -ν( fj ) -d * j, 4 4,ν 
< ∞ .

(5.11)

But, as before, since on the probability space ([0, 1], ν), the random vector (T, T 2 , . .

. , T n ) is distributed as (Y n , Y n-1 , . . . , Y 1 ), ν max 1≤k≤2 j k =1 fj • T -ν( fj ) -d * j, ) > x ≤ P 2 max 1≤k≤n k =1 ( Xj, -dj, ) > x .
Therefore (5.11) follows from Claim 3.

To prove (5.9), we shall proceed as for the proof of (4.12) with the difference that Theorem 2.3 is used instead of Theorem 2.1 in [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF]. So we have to prove that

n i=1 E((d * i ) 2 |T i ) -E((d * i ) 2 ) = o(a n ) a.s. ,
where a n = n 2/p (log n) 1-4/p . But following the proof of (4.19), this will follow if we can prove that j>0 2 -4j/p j -4(1-2/p) max

1≤k≤2 j k i=1 E((d * j,i ) 2 |T i ) -E((d * j,i ) 2 ) 2 2,ν < ∞ .
(5.12)

But using again the fact that, on the probability space ([0, 1], ν), the random vector (T, T 2 , . . . , T n ) is distributed as (Y n , Y n-1 , . . . , Y 1 ), we have that

ν max 1≤k≤2 j k i=1 E((d * j,i ) 2 |T i ) -E((d * j,i ) 2 ) > x ≤ P 2 max 1≤k≤2 j k i=1 E i-1 ( d 2 j,i ) -E( d 2 j,i ) > x .
Therefore (5.12) follows by the fact that (4.24) holds true. This ends the proof of Item 2 of Theorem 3.4 when p ∈]2, 4[. We turn now to the proof of Item 2 when p = 4. Let X i = f (Y i ) -ν(f ). According to the beginning of the proof of Theorem 4.2, (5.1) implies that k≥1 E(X k |F 0 ) 4 < ∞. We define a sequence (d ) ≥1 of stationary martingale differences with respect to the non-decreasing sequence of σ-algebras (F ) ≥1 and that are in L 4 as follows: d = k≥ P (X k ) .

By the Markovian property of (Y

i ) i≥0 , d = k≥ E (X k |Y ) -E (X k |Y -1 ) := m(Y , Y -1 ) , where m(•, •) is a measurable function from R 2 to R. We define now d * = m(T -1 , T ) .
As before, notice that d * is G -1 -measurable and satisfies E(d * j, |G ) = 0 ν-a.s. According to Corollary 2.7, the result will then follow if we can prove that .14) This condition implies in particular that n≥1

n k=1 (E((d * k ) 2 |G k ) -E((d * k ) 2 )) = O(n 1/2 (log log n) 1/2 ) ν-a.s. (5.13) But E((d * k ) 2 |G k ) = E((d * k ) 2 |T k ) := h(T k ) ν-a.s. where h(•) is a measurable function such that ν(h 2 ) < ∞. Let h = h -ν(h). Assume that we can prove that n≥1 (log n) 3 h + K h + • • • + K n-1 h 2 2,ν n 2 < ∞ . ( 5 
h+K h+•••+K n-1 h 2,ν n 3/2
< ∞. By Lemma 2 of [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] (and its proof), it follows that ϕ(Y 0 , Y 1 ) := lim n

1 n n j=1 j-1 k=0 (K k h(Y 1 ) -K k h(Y 0 )) exists in L 2 and M n (ϕ) := n k=1 ϕ(Y k-1 , Y k ) is a martingale with stationary increments such that h(Y 1 ) + • • • + h(Y n ) -M n (ϕ) 2 √ n k≥n h + K h + • • • + K k-1 h 2,ν k 3/2 .
Since the random vectors (Id, T, T 2 , . . . , T n-1 ) and (Y n , Y n-1 , . . . , Y 1 ) have same distribution, we can write

M * n (ϕ) := n k=1 ϕ(T k , T k-1 ) = n-1 k=0 ϕ(T n-k , T n-k-1
). Then (M * n ) is a sum associated to a stationary sequence of reverse martingale differences and √ n log log n) ν-a.s., we conclude that (5.13) (and then Item 2 when p = 4) holds as soon as (5.14) does. Notice now that (5.14) can be rewritten as

h + • • • + h • T n-1 -M * n (ϕ) 2,ν √ n k≥n h + K h + • • • + K k-1 h 2,ν k 3/2 . ( 5 
n≥1 (log n) 3 n k=1 (E(d 2 k |F 0 ) -E(d 2 k )) 2 2 n 2 < ∞ ,
that is exactly condition (4.47).

Proof of Theorem 3.5

The proof follows directly by analyzing the proof of Theorem 3.4 when p = 4. Indeed, the proof reveals that if the conditions (4.48) and (4.49) hold for X i = f (Y i )-ν(f ), then the strong approximation principle holds for both To verify now the condition (3.3) of Theorem 3.5, we shall use similar arguments as those developed in the proof of Corollary 3.12 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]. From Section 7 in [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF], we know that for i and j positive integers, there exists (Y * i , Y * j ) distributed as (Y i , Y j ) and independent of Y 0 such that

1 2 E(|Y i -Y * i ||Y 0 ) + E(|Y j -Y * j ||Y 0 ) ∞ = sup h∈Λ1(R 2 ) E(h(Y i , Y j )|Y 0 ) -E(h(Y i , Y j )) ∞ .
Notice now that for i ≥ j ≥ 0, by using the second part of Condition (3.4), sup

h∈Λ1(R 2 ) E(h(Y i , Y j )|Y 0 ) -E(h(Y i , Y j )) ∞ = sup h∈Λ1(R 2 ) K j • Q i-j (h) -ν Q i-j (h) ∞,ν ≤ Cρ j .
On an other hand, we clearly have that

K j (f K i-j (f )) -ν(f K i-j (f )) ∞,ν = E(f (Y i )f (Y j ) -f (Y * i )f (Y * j )|Y 0 ) ∞ = E((f (Y i ) -f (Y * i ))f (Y j )|Y 0 ) -E(f (Y * i )(f (Y * j ) -f (Y j ))|Y 0 ) ∞ .
Since f is continuous on a compact set, there exists a positive constant R such that f ∞ ≤ R. Hence,

K j (f K i-j (f )) -ν(f K i-j (f )) ∞,ν ≤ R E((c(|Y i -Y * i |)|Y 0 ) ∞ + R E((c(|Y j -Y * j |)|Y 0 ) ∞ .
Since c is concave and and non-decreasing function, it follows that

K j (f K i-j (f )) -ν(f K i-j (f )) ∞,ν ≤ R c E(|Y i -Y * i ||Y 0 ) ∞ + R c E(|Y j -Y * j ||Y 0 ) ∞ ≤ R c E(|Y i -Y * i ||Y 0 ) ∞ + Rc E(|Y j -Y * j ||Y 0 ) ∞ ≤ 2R c 1 2 E(|Y i -Y * i ||Y 0 ) ∞ + 1 2 E(|Y j -Y * j ||Y 0 ) ∞ .
So overall, sup

i≥j≥n K j (f K i-j (f )) -ν(f K i-j (f )) ∞,ν ≤ 2R c(Cρ n ) ,
implying that (3.3) is satisfied with γ = 1/ √ 3 as soon as (3.5) is. This ends the proof of the theorem.

Proofs of the reverse martingale's results

We We also recall the following convergence result for reverse martingales. Proof of Lemma 6.2. The result is clear when p = 1, hence we assume p > 1. Notice that for every n > 1, ( n k=n-l ξ k ) 0≤l≤n-1 is a (G n-l ) 0≤l≤n-1 -martingale. Hence, by Burkholder inequality and using that x → |x| p/2 is subadditive, it follows that the exists a positive constant C p such that, for every 1 ≤ r < n, The L 2 and a.s. convergence of k≥1 ξ k follows from Lemma 6.2. By Theorem 2 of Scott and Huggins [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF], enlarging our probability space if necessary, there exists a Brownian motion (B t ) t≥0 , a non-increasing filtration (H n ) n∈N and a non-increasing process (τ n ) n∈N adapted to (H n ) n∈N , such that R n = B τn P-a.s.

Theorem 3 . 4

 34 Let T be a uniformly expanding map as defined in Definition 3.1, with absolutely continuous invariant measure ν. Let p ∈]2, 4]. Then, for any M > 0 and any f ∈ Mon c p (M, ν), the series

  =1 |a ,ϕ(L) | < 1, (4.32) follows. This ends the proof of the claim. Proof of Claim 3. For any positive integer k, let Sj,k = k =1 Xj, , Mj,k = k =1 dj, and Rj,k = Sj,k -Mj,k . (4.36)

  sequence of martingale differences in L 4 with respect to the non-decreasing sequence of σ-algebras (F ) ∈Z . Hence, setting for every positive integer n, M n (f ) := n =1 d and S n (f ) := n =1 X , the conclusion of Theorem 4.2 when p = 4 will follow if we can prove that sup 1≤k≤n S n (f ) -M n (f ) = O(n 1/4 (log n)

  n i=1 (f (Y i ) -ν(f )) and n i=1 (f • T i -ν(f )) with rate O(n 1/4 (log n) 1/2 (log n log n) 1/4). The condition (3.2) (resp. (3.3)) is exactly the condition (4.48) (resp. (4.49)) rewritten with the help of the transition operator K.

5. 3

 3 Proof of Theorem 3.7 on uniformly expanding maps It suffices to verify the assumptions of Theorem 3.5. Using the first part of Condition (3.4) and the fact that |f (x) -f (y)| ≤ c(|x -y|) where c is a concave and non-decreasing function, it follows from Lemma 17 in [7] that K n (f ) -ν(f ) ∞,ν ≤ c(Cρ n ). Therefore, (3.2) is satisfied with γ = 1/ √ 3 as soon as (3.5) is.

Lemma 6 . 1

 61 start by recalling the following estimate of Hanson and Russo [12, Theorem 3.2A] Let (B t ) t≥0 be a standard Brownian motion. Then lim a→∞ sup t≥0 sup 0≤s≤a |B t+s -B t | (2a[log((t + a)/a)) + log log a]) 1/2 = 1 P-a.s. (6.1)

Lemma 6 . 2

 62 Let (ξ n ) n≥1 be a sequence of variables in L p , 1 ≤ p ≤ 2, adapted to a non-increasing filtration (G n ) n≥1 . Assume that E(ξ n |G n+1 ) = 0 and n≥1 E(|ξ n | p ) < ∞. Then n≥1 ξ n converges P-a.s.and in L p .

  k | p ) . (6.2) So, (Z n ) := ( n k=1 ξ k ) is Cauchy in L p , hence converges in L p , say to Z. Moreover, letting n → ∞ in (6.2), we see that for every r ≥ 1E(max m≥r |Z m -Z| p ) ≤ C p k≥r E(|ξ k | p ) ,which implies the desired result.

6. 1

 1 Proof of Proposition 2.1.

  It follows from the proof that if (2.1) holds with "big O" instead of "little o" then (2.3) holds with the same change.

	P-a.s.	(2.3)
	Remark 2.2	

  1/2 (log log n)1/4 ) almost surely,(4.45) and if, enlarging our probability space if necessary, there exists a sequence (Z i ) i≥0 of iid Gaussian random variables with mean zero and variance σ 2 such that

		k	
	sup	(d i -Z i ) = O(n 1/4 (log n) 1/2 (log log n) 1/4 ) almost surely.	(4.46)
	1≤k≤n	i=1	

  .15) Therefore, by Corollary 4.2 of [3] with b(n) = log n, if Using (5.15), it is easy to see that (5.16) holds as soon as (5.14) is satisfied. Using then Corollary 2.5 to observe that M *

	n	log n n 2 h + • • • + h • T n-1 -M * n (ϕ) 2 2,ν < ∞ ,	(5.16)
	then		
		h + • • • + h • T n-1 -M * n (ϕ) √ n log log n	→ 0	ν-a.s.

n (ϕ) = O(

Moreover, writing t n := τ n -τ n+1 ≥ 0 P-a.s., we have Hence, using (6.3) twice,

But it follows from (2.2) and (6.4) that n≥1 α -ν n E(t ν n ) < ∞ which implies, by Lemma 6.2, that k≥1 α -1 k (t k -E(t k |H k+1 )) converges P-a.s.. Then, by an analogue to the Kronecker lemma (see e.g. Heyde [14, Lemma 1]), k≥n (t k -E(t k |H k+1 )) = o(α n ) P-a.s. Together with (2.1), this implies in particular that τ n -δ 2 n = o(α n ) P-a.s. For every t > 0 define B t = tB 1/t , and B 0 = 0. It is well-known that ( B t ) t≥0 is a standard Brownian motion. We have B τn -

By the law of the iterated logarithm for ( B t ) t≥0 (or using that the supremum in (6.1) is greater than what we have for t = 0 and s = 1/δ 2 n ), we see that B 1/δ 2 n = O(δ -1 n (log log(1/δ n )) 1/2 ) P-a.s.Hence since

With this aim, we shall use (6.1). Since

. By (6.1), we have

In particular, we have 

k , by comparing sums and integrals, it follows

, and writing

Using (2.4) and that (σ n ) n∈N and (a n /σ 2 n ) n∈N are respectively non-decreasing and non-increasing, we obtain

We want to apply Proposition 2.1 to (ξ n ) with α n := a n /σ 4 n . Using (2.5), we have 

Hence, using that sup n E(X 2 n ) < ∞, it follows that σ n = O(σ n-1 ) and

In particular, since

In addition since a n is tending to infinity, (6.6) entails also that α n /δ 4 n → ∞. By Proposition 2.1, enlarging our probability space if necessary, there exists a standard Brownian motion (B t ) t≥0 , such that (2.3) holds with

k . Now, for every t > 0 define B t = tB 1/t , and B 0 = 0 (recall that ( B t ) t≥0 is a standard Brownian motion). Notice that

By (6.6) and the law of the iterated logarithm for ( B t ) t≥0 , we derive that

To deal now with

we use the same arguments as the ones used to derive (6.5) (with σ -2 n replacing τ n ). Hence we infer that

So, overall, it follows that

where

). By independence of the increments, ( Z n ) is a sequence of independent centered Gaussian variables. Notice that, by stationarity of the increments E(

Using that (σ n ), (σ 2 n /a n ), (a n /σ n ) and (a n ) are non-decreasing, and taking into account (6.7), we deduce that

where we used that

So, by the Kolmogorov theorem (see also Lemma 6.2), n≥1 (Z n -Z n )/ √ a n converges P-a.s., and (2.6) follows from the Kronecker lemma.

6.3 Proof of Corollary 2.5.

Assume that E(X 2 1 ) = 0, otherwise there is nothing to prove. We start by the proof of Corollary 2.5. Notice first that by stationarity and Fubini theorem,

Hence,

and by the Kronecker lemma,

Then, by the above, using that E(X n |G n+1 ) = 0 a.s., we see that it suffices to prove (2.7) with (X n ) replaced with (Y n ).

We want to apply Theorem 2.3 to (Y n ) with a n = σ 2 n = n. We have to prove conditions (2.4) and (2.5). Let us prove (2.4). Clearly, (E(Y

). Hence, we only need to prove that

We first prove that 

Therefore (6.11) is proved. Now, by the ergodic theorem we have lim sup

1 ) P-a.s. , and for any A fixed, lim inf

Letting A → ∞, we see that the lim inf and the lim sup above are equal to E(X 2 1 ). Hence On an other hand using the fact that E(X k |G k+1 ) = 0 a.s. together with (6.9), we get that

Combining (6.13), (6.14) and (6.11), we see that (6.10) holds, which proves (2.4).

The fact that (2.5) holds with ν = 2 follows from (6.12). By Theorem 2.3, there exists a sequence of independent centered Gaussian variables (

√ n log log n) P-a.s. Let (δ k ) k≥1 be a sequence of iid Gaussian random variables with mean zero and variance E(X 2 1 ), independent of the sequence ( Z n ) n≥1 . We now construct a sequence (Z n ) n≥1 as follows.

. By construction, the Z n 's are iid Gaussian random variables with mean zero and variance E(X 2 1 ). Write

. By Lévy's inequality (see for instance Proposition 2.3 in [START_REF] Ledoux | Probability in Banach spaces. Isoperimetry and processes[END_REF]),

. (6.15)

Hence taking x = 2v 2 r (log log 2 r ) 1/2 , we get that

(log log 2 r ) 1/2 almost surely. P-a.s. This ends the proof of Corollary 2.5 since v 2 n = o(n).

6.4 Proof of Corollary 2.7.

Hence by stationary and Fubini theorem,

Let us prove now that (Y n ) n≥1 satisfies the conditions of Theorem 2.3 with a n = n 2/p b(n) and σ 2 n = n. With this aim, we first notice that since E(X n |G n+1 ) = 0 a.s.,

Since by stationarity and Fubini theorem,

Together with condition (2.8), this implies that

Notice now that by stationarity and Fubini theorem,

Therefore (Y n ) n≥1 satisfies (2.5) with ν = 2. Applying Theorem 2.3, we conclude that enlarging our probability space if necessary, there exists a sequence a sequence of independent centered Gaussian

s. We consider now the sequence of iid centered Gaussian variables (Z n ) n≥1 with variance E(X 2 1 ) as defined in the proof of Corollary 2.5. Notice then that

where for the last inequality, we have used the fact that E(X n |G n+1 ) = 0 a.s. Hence by stationarity

Therefore by the Kolmogorov theorem (or Lemma 6.2), n≥1 (Z n -Zn )/n 2/p converges P-a.s.and by the Kronecker lemma Z 1 + . . . + Z n -( Z 1 + . . . + Z n ) = o(n 1/p √ log log n) P-a.s. This achieves the proof of Corollary 2.7.

Proof of Corollary 2.8.

The proof relies more deeply on the construction of Scott and Huggins [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF]. We want to use Theorem 2.3 without condition (2.5). Now the proof of Theorem 2.3 relies on Proposition 2.1 and (2.5) is used to ensure that condition (2.2) holds for an auxiliary process. Instead of (2.5) we will make use of Remark 6.3. We define a reverse martingale (R n ) n≥1 , by R n = k≥n X k /k. Notice that R n is well defined in L 2 by Lemma 6.2.

For every n ≤ -

Enlarging our probability space if necessary, we may consider a countable set of standard Brownian motions (B (n) t ) t≥0 , n ≤ -1 that are independent of each others and of ( X n ) n≤-1 . Notice that the process ( X n , (B

We now define a filtration ( H t ) t≤-1 as follows. For n ≤ -1 an integer, write

, where [t] stands for the largest negative integer, not exceeding t, and φ is defined on ]0, 1] by φ(s) := 1/s -1. Then, we define a continuous martingale with respect to ( H t ) t≤-1 interpolating ( R n ), by R t = E( R [t]+1 | H t ), for every t ≤ -1. Notice that

.16)

Using Theorem A of [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF] as done page 451 of [START_REF] Scott | On the embedding ofprocesses in Brownian motion and the law of the iterated logarithm for reverse martingales[END_REF], there exists a continuous non-decreasing process ( τ t ) t≤-1 and a Brownian motion (B * t ) t≥0 such that R t = B * τt a.s. and ( R 2 t -τ t ) t≤-1 is a martingale with respect to ( H t ) t≤-1 . In particular, ( τ t ) t≤-1 must be the quadratic variation of ( R t ) on ] -∞, t].

For every n ≥ 1, define τ n := τ -n , H n := H -n . These are exactly the quantities involved in the proof of Proposition 2.1. Then t n = τ n -τ n+1 is nothing else but the quadratic variation of ( R t ) on [-n -1, -n]. But it follows from (6.16) that (n 2 t n ) n≥1 is a stationary and ergodic process.

By Remark 6.