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Abstract

In this paper, we obtain almost sure invariance principles with rate of order nt/P log?n, 2 <p<4,
for sums associated to a sequence of reverse martingale differences. Then, we apply those results to
obtain similar conclusions in the context of some non-invertible dynamical systems. For instance we
treat several classes of uniformly expanding maps of the interval (for possibly unbounded functions).
A general result for ¢-dependent sequences is obtained in the course.
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1 Introduction

Let T be a map from [0, 1] to [0, 1] preserving a probability v on [0,1]. Let f be a measurable function
such that v(|f|) < co. Define S, (f) = S/, (f o T" — v(f)). According to the Birkhoff-Khintchine
ergodic theorem, n=1S,,(f) satisfies the strong law of large numbers. One can go further in the study of
the statistical properties of S,,(f) and recently there have been extensive researches to study the almost
sure invariance principle (ASIP) for S,,(f). Roughly speaking, such a result ensures that the trajectories
of a process can be matched with the trajectories of a Brownian motion in such a way that almost surely
the error between the trajectories is negligible compared to the size of the trajectory. This result is more
or less precise depending on the error term one obtains. In this paper, for some classes of uniformly
expanding maps, we give conditions on f ensuring that there exists a sequence of independent identically
distributed (iid) Gaussian random variables (Z;);>1 such that

sup
1<k<n

k—1

Z(f oT' —v(f) — Zi)| = o(n'/PL(n)) almost surely, (1.1)
i=0

for p €]2,4] and L an explicit slowly varying function. For different classes of piecewise expanding maps
T of [0,1], almost sure invariance principles with good remainder estimates have been established by
Melbourne and Nicol ([17], [18]) for Holder observables, and by Merlevede and Rio [21] under rather
mild integrability assumptions. For instance, for uniformly expanding maps as defined in Definition 3.1,
Merlevede and Rio [21] obtained in (1.1) a rate of order n'/?(logn)/?(loglogn)1+2)/3 for any & > 0
and a class of observables f in L"(v) where r > 3. Because of the intrinsic time-orientation of the non-
invertible dynamical systems studied in the papers above mentioned, the almost sure invariance principle
cannot be obtained directly by mean of a martingale approximation as done for instance in [10]. In [21],
the approximating Brownian motion is constructed with the help of the conditional quantile transform
combined with a coupling method based, roughly speaking, on a conditional version of the Kantorovitch-
Rubinstein theorem. The approach used in [17] or in [18] when d = 1 (see their appendix A) is based on
the seminal paper by Philipp and Stout [24] which proves ASIP by combining martingale approximation
with blocking arguments and the Strassen-Skorohod embedding. With this approach, they cannot reach
better rates than O(nc+3/8) in (1.1) for any € > 0 (see Remark 1.7 in [18]). Notice that recently Gouézel
[11] obtained a very general result concerning the rates in the ASIP for vector-valued observables of the
iterates of dynamical systems by mean of spectral methods. In the particular case of expanding maps as
defined in Definition 3.1, his result gives the rate o(n'/4*¢) for any € > 0 for some bounded vector-valued
observables.



On an other hand if we consider the strong approximation principle of the partial sums of real-valued
functions of the Markov chain associated to the dynamical system, better rates can be reached. Let denote
by K the Perron-Frobenius operator of T" with respect to v. Recall that for any bounded measurable
functions f and g,

v(f-goT)=v(K(f)g). (1.2)

Let (Y;);>0 be a stationary Markov chain with invariant measure v and transition Kernel K. The sequence
(Y;)i>0 corresponds to the iteration of the inverse branches of T. Combining a suitable martingale
approximation with a sharp control of the approximation error in L? for p > 2, and the Skorohod-
Strassen embedding theorem as done in Shao [26, Theorem 2.1], Dedecker, Merleveéde and Doukhan [4]
obtained projective conditions under which the strong approximation holds with an explicit rate, as in
(1.1), for the partial sums associated to a stationary sequence of real valued random variables. In the
Markov chain setting, the conditions involved in their corollaries 2.1 and 2.2 can be rewritten with the
help of the transition kernel K. One can then wonder whether under the same conditions, the strong
approximation principle also holds with the same rate for the partial sums associated to some observables
of the iterates of the dynamical system. Indeed, it is well known (see for instance Lemma XI.3 in Hennion
and Hervé [13]) that on the probability space ([0, 1], v), the random vector (T,T2,...,T") is distributed as
(Y, Yn—1,...,Y1). Hence any information on the law of Y7, (foT* —v(f)) can be obtained by studying
the law of Y | (f(X;) — v(f)). However, the reverse time property cannot be used to transfer directly
the almost sure results for Y7, (f(Y;) — v(f)) to the sum > 1, (f o T% — v(f)). To prove results on the
strong approximation principle for the partial sums of functions of the iterates of the dynamical system,
it is then needed to work on the dynamical system itself. Therefore to prove that > ,(f o T% — v(f))
satisfies a strong approximation principle with the same rates than the one reached for the associated
Markov chain, we shall approximate the partial sum associated to real-valued observables of the iterates
of the dynamical system by a sum of reverse martingale differences M,:. To be more precise, we shall
approximate S, (f) by M} = Y7_, d; where (d})ren is a sequence of real valued random variables
that is measurable with respect to a non-increasing sequence of o-algebras say (Gi)ren and such that
E(d}|Gk+1) = 0 almost surely. An analogue of Theorem 2.1 in Shao [26] but in the context of the partial
sums associated to a sequence of reverse martingale differences, is then needed. Up to our knowledge,
this version for reverse martingale differences sequences does not exist in the literature. Starting from a
reverse martingale version of the Skorohod-Strassen embedding theorem as done in Scott and Huggins
[25], we shall prove it in Section 2 (see our Theorem 2.3).

Our paper is organized as follows. In Section 2, we state some results concerning the almost sure
invariance principle with rates for sums associated to a sequence of reverse martingale differences. The
proofs of these results are postponed to Section 6. In Section 3, we obtain rates of convergence in the
ASIP for the sum of a large class of functions (non necessarily bounded) of the iterates of some classes
of uniformly expanding maps, as well as for the partial sum associated to the corresponding Markov
chain. A part of these results coming from a more general result on ¢-dependent sequences, we state and
prove in Section 4 an ASIP with explicit rates for functions of a stationary sequence satisfying a mild
¢-dependent condition. Section 5 is devoted to the proofs of the results on expanding maps stated in
Section 3.

In this paper, we shall use sometimes the notation a,, < b, to mean that there exists a numerical
constant C not depending on n such that a,, < Cb,, for all positive integers n.

2 ASIP with rates for sums of differences of reverse martingales

The next two results can be viewed as reverse martingales analogues to a result of Shao [26, Theorem 2.1].
The proof of the next result follows from the Skorohod embedding of reverse martingales in Brownian
motion as obtained in Scott and Huggins [25] together with an estimate for Brownian motions given
in Hanson and Russo [12, Theorem 3.2A]. The proofs of all the results presented in this section are
postponed to Section 6.

In this section we consider real random variables defined on a probability space (€2, .4, P).

Proposition 2.1 Let (&,)nen be a sequence of square integrable variables adapted to a non-increasing
filtration (Gn)nen. Assume that E(&,|Gny1) = 0 as. and &, := 3,5 E(&) < oo. Then V;} :=
Z,Qn E(&2|Gk+1) is well defined a.s. and in L? as well as R,, = Z,Qn &k. Let (an)nen be a sequence of



non-increasing positive numbers with a,, = O(62) and o, /64 — co. Assume that
V262 =olay) P-a.s. (2.1)
Z o, "E(|€.]?")  for some1<v <2, (2.2)

n>1

Then, enlarging our probability space if necessary it is possible to find a standard Brownian motion
(Bt)t>0, such that

R, — Bs2 = 0((an(| log(62 /av, )| + log log(agl)))l/2> P-a.s. (2.3)

Remark 2.2 It follows from the proof that if (2.1) holds with ”big O” instead of ”little 0” then (2.3)
holds with the same change.

Now, we give a result for partial sums associated to a sequence of reverse martingale differences rather
than for tail series. It may be viewed as the analogue of Theorem 2.1 in Shao [26] but in the context of
reverse martingale differences.

Theorem 2.3 Let (X, )nen be a sequence of square integrable random wvariables adapted to a non-
increasing filtration (Gp)nen. Assume that E(X,|Gni1) = 0 a.s., that 02 := > ,_, E(X}?) — oo and that
sup,, E(X2) < co. Let (ay)nen be a non-decreasing sequence of positive numbers such that (a, /o2 )nen is
non-increasing and (an /0y )nen is non-decreasing. Assume that

n

SO (E(XRIGks1) ~ B(XD) = o(an)  P-as (2.0
k=1
Z a,"E(|X,*) <00 forsomel <v<2. (2.5)
n>1

Then, enlarging our probability space if necessary it is possible to find a sequence (Zy)r>1 of independent
centered Gaussian variables with E(Z}) = E(X?) such that

k k

sup i = 0((an(| log(o? /a,,)| + loglog an))l/Q) P-a.s. (2.6)

1<k<n

i=1 i=1

Remark 2.4 An inspection of the proof allows to weaken slightly some of the assumptions as follows.
Assume that E(X2) = O(02%) for some 0 < s < 1 instead of boundedness and assume that there exists
C > 1, such that for every n > 1, supys, (ax/o) < Ca, /o2, and infy>,(ar/ok) > an/(Coy), instead of
the corresponding monotonicity assump_tions.

We derive now the functional LIL for the partial sums associated to a stationary and ergodic sequence
of reverse martingale differences. In the next corollaries, we make use of 8 : Q +— € a measurable
transformation preserving the probability P.

Corollary 2.5 Let Xq in L? and forn > 1, X, = Xg00". Assume that 6 is ergodic. Let (G,)n>0 be a
non-increasing filtration to which (Xy)n>0 is adapted and such that E(X,,|G,41) =0 a.s. Enlarging our
probability space if necessary it is possible to find a sequence (Zy)ip>1 of independent centered Gaussian
variables with E(Z?) = E(X?) such that

k k

S a7

=1 i=1

sup
1<k<n

= o(y/nloglogn) P-a.s. (2.7)

Remark 2.6 The Strassen functional law of the iterated logarithm (FLIL) follows from the corollary.
Notice that a semi-FLIL has been proved by Wu [28].

We now give rate results in the strong invariance principle for the partial sums associated to a
stationary sequence of reverse martingale differences.



Corollary 2.7 Let 2 < p < 4. Let Xo be in LP and forn > 1, X,, = Xgo00". Let (Gn)n>0 be a non-
increasing filtration to which (X,)n>o0 s adapted and such that E(X,,|Gn41) = 0 a.s. Let b(-) be a positive
non-decreasing slowly varying function, such that r — xg/p_lb(x) s mon-increasing. Assume that

S (EXP(Gri1) — E(XD)) = o(n®/7b(n))  P-a.s. (2.8)
k=1

Enlarging our probability space if necessary it is possible to find a sequence (Zy)r>1 of independent centered
Gaussian variables with E(Z?) = E(X?) such that

k k

sup ZXZ-—ZZZ-

zo(nl/” b(n)logn) P-a.s. (2.9)
Isksn iy i=1

Corollary 2.8 Let Gy be a sub-c-algebra of A satisfying 0=*(Go) C Go. Let Xo be a Go-measurable
random variable in L*. Forn > 1, let X,, = Xgo0 60" and G,, = 0~"(Go). Assume that 0 is ergodic and
that E(X,|Gnt1) =0 a.s. Assume that

n

S (E(X2IGrar) — E(XD)) = O((nloglogn)'/?)  P-a.s.
k=1

Enlarging our probability space if necessary it is possible to find a sequence (Zy)p>1 of independent centered
Gaussian variables with E(Z?) = E(X?) such that

k k

Sx-Yz

i=1 i=1

sup = O(n1/4(log n)'/2(log log n)1/4) P-a.s. (2.10)

1<k<n

Remark 2.9 If we consider usual martingale differences, so more precisely if (Xp)nen @8 a stationary
sequence in LP for a real p €]2,4] adapted to a non-decreasing filtration (Fn)nen (assume moreover that
Fn = 07" Fy when p = 4) and such that E(X,|F,—1) = 0 a.s., the usual Skorohod-Strassen embedding
theorem gives similar results to Corollaries 2.7 and 2.8. Indeed starting from Theorem 2.1 in Shao [26]
when p €]2,4] or from its proof when p = 4 (notice that by stationarity -of the process and the filtration-,
the stopping times used to construct the approzimating Brownian motion can be chosen to be stationary),
and using the arguments developed to get Corollaries 2.7 and 2.8, we infer that if there exists a positive
non-decreasing slowly varying function b(-), such that

Z(]E(X,a]:k,l) —E(X2)) = o(n*?b(n)) P-a.s. when p €]2,4],
k=1

or if, (Xpn)nen s ergodic and

Z(E(X,?\]—'k,l) —E(X2)) = O((nloglogn)'/?) P-a.s. when p =4,
k=1

then, enlarging our probability space if necessary it is possible to find a sequence (Zi)r>1 of independent
centered Gaussian variables with E(Z2) = E(X?) such that the rates of approzimation in the strong
invariance principle are the same as those given by (2.9) and (2.10).

3 ASIP with rates for uniformly expanding maps

Several classes of uniformly expanding maps of the interval are considered in the literature. In Theorem
3.4 below, we shall consider the following definition:

Definition 3.1 A map T : [0,1] — [0,1] is uniformly expanding if it belongs to the class C defined in
Broise [1, Section 2.1 page 11] and if

1. There is a unique absolutely continuous invariant probability measure v, whose density h is such
that %1h>0 has bounded variation.



2. The system (T,v) is mizing in the ergodic theoretic sense.

We refer also to Definition 1.1 in [6] for a more complete description. Some well known examples of maps
satisfying the above conditions are:

1. T(x) = Bx — [Bx] for B > 1. These maps are called [-transformations.
2. I is the finite union of disjoint intervals (Ix)1<k<n, and T'(z) = arx + by on Iy, with |ax| > 1.

3. T(z) = a(z™! = 1) — [a(z~! — 1)] for some a > 0. For a = 1, this transformation is known as the
Gauss map.

Our aim is to obtain explicit rates in the strong invariance principle for Z?;OI( foT!—u(f)) and
Yo (F(Y) = v(f)) ((Y:)iso corresponding to the iterations of the inverse branches of T') when T is a
dynamical system defined in Definition 3.1, and f belongs to a large class of functions non necessarily
bounded. Such classes are described in the following definition.

Definition 3.2 If u is a probability measure on R and p € [2,00), M € (0,00), let Mon, (M, 1) denote
the set of functions f : R — R which are monotonic on some interval and null elsewhere and such that
p(|fIP) < MP. Let Mony (M, ) be the closure in 1LP(u1) of the set of functions which can be written as

Z,%:l ag fe, where 25:1 lae] <1 and fo € Mony, (M, p).

Remark 3.3 In previous papers, see for instance [6], the closure in L'(u) was used in the definition
above. It turns out that both definitions coincide. Indeed, a sequence bounded in ILP () and converging in
LY (1), converges for the weak topology in 1LP(u). To conclude, recall that, by the Hahn-Banach theorem,
in any Banach space, the weak closure of a convex set is equal to its strong closure.

Our main theorem follows. For uniformly expanding maps as defined in Definition 3.1, it involves an
LLP-integrability condition of the observables.

Theorem 3.4 Let T be a uniformly expanding map as defined in Definition 3.1, with absolutely contin-
uous invariant measure v. Let p €]2,4]. Then, for any M > 0 and any f € Mon;(M, v), the series

o? = (f) = v((f = v(£)*) + 2D v((f —v()f o T") (3.1)
k>0
converges absolutely to some non negative number.

1. Let (Y;)i>1 be a stationary Markov chain with transition kernel K defined by (1.2) and invariant
measure v. Enlarging the underlying probability space if necessary, there exists a sequence (Z;)i>o
of #id Gaussian random variables with mean zero and variance o defined by (3.1), such that

sup
1<k<n

k
_ [ o(n*P(logn)!~2/7) a.s. ifp €]2,4]
;(f(yé) —v(f) = Zi)| = { O(n*/4(log n)/2(log log n)/4) a.s. ifi .

2. Enlarging the probability space ([0, 1], v) if necessary, there exists a sequence (Z);>o of iid Gaussian
random variables with mean zero and variance o defined by (3.1), such that

sup
1<k<n

k—1 . i} o(n'/?(logn)'~2/?) a.s. if p€]2,4]
O(f oT"—v(f))—2Z})| = { O(n1/4(1ogn)l/z(loglogn)l/‘l) a.s. ifp=4.

1=

As we shall see in the proof of Theorem 3.4, Item 1 will follow from a more general result on ¢-dependent
sequences. This general result is presented in a separate section (see Section 4) since it has an interest in
itself. Item 2 is obtained by considering an approximation by partial sums associated to a sequence (which
is non stationary when p €]2,4[) of reverse martingale differences and by applying the results of Section
2. As we shall see, the reverse time property mentioned in the introduction allows to make links with
estimates obtained to prove Item 1. Notice that when p = 2, the strong invariance principle (therefore
with the rate o(n'/?(loglogn)'/?)) has been proved recently in [6] (see Ttem 3 of their Theorem 1.5).
Notice that the proof of the strong invariance principle obtained in [6] combines different approximation
arguments. The observable is approximated by a function with better integrability properties, the almost



sure invariance principle with rates obtained in [21] is then used for this new function, and a bounded
law of the iterated logarithm is proved to make it possible to pass the results from the better function to
the original function. Let us emphasize that the strong invariance principle obtained in [6] could be also
proved by using a direct approximation by partial sums associated to a sequence of reverse martingale
differences as we do in the proof of Theorem 3.4 above, and by using our Corollary 2.5.

Let us mention that when p = 4, Theorem 3.4 is a consequence of the following more general result.

Theorem 3.5 Let T be a map from [0,1] to [0,1] preserving a probability v on [0, 1], and let K be defined
by (1.2). Let f be a measurable function such that v(f*) < co. Assume that there exists v €]0,1] such
that

S (logn)?n it 2| K" (f) — v(H)I3, < oo, (3.2)
n>0
and _ o o
> (logn)*n® Sup K (FK() = (g (I3, < oo (3.3)

n>0

Then, the series o2 defined by (3.1) converges absolutely and both items of Theorem 3.4 holds with rate
O(n*/*(logn)/?(loglogn)'/4).

Remark 3.6 We would like to emphasize that the strategy of proof of Item 2 for both Theorems 3.4
and 8.5 is to approzimate S, (f) = Z;ZOI (f o T — v(f)) by a partial sum associated to a sequence of
reverse martingale differences (possibly non stationary), let say M} = Z?;Ol df, to apply our strong
approximation results given in Section 2 and to have a mice control of the approximation error between
Sn(f) and M. A careful analysis of the proof of Theorem 2.4 and its Corollary 2.7 in [4] together with
the arguments developed in the proof of Item 2 of our Theorems 3.4 and 3.5, show that our strategy of
proof also gives new results when we consider classes of expanding maps with a neutral fized point at zero
such as the generalized Pomeau-Manneville (GPM) map as defined in Definition 1.1 of [5]. Therefore we
infer that if T is a GPM map with parameter v € (0,1) and f is a function satisfying Condition (3.22)
in [4], then the conclusion of Corollary 3.18 in [4] also holds for S, (f). In particular, if f is a bounded
variation function and T is a GPM map with parameter vy € (0,671] where 6 = p+1—2/p and p €]2,4],
then S, (f) satisfies an almost sure invariance principle with rate o(n'/?logn).

For amap T from [0, 1] to [0, 1] preserving a probability v on [0, 1] and (¥;);>0 its associated Markov chain
with invariant measure v and transition Kernel K defined by (1.2), Theorem 3.5 also allows to obtain
rates in the strong invariance principle for >, (f o 7% — v(f)) (or for the partial sum of its associated
Markov chain) when f has a modulus of continuity that is dominated by a concave and non-decreasing
function and the condition (3.4) below is satisfied.

For any integer k, we denote by @} the operator defined as follows: E(g(Yp, Y%)|Yo = 2) = Qr(9)(2).
Let A1(R) be the set of functions from R to R that are 1-Lipschitz and let A;(R?) be the set of functions
h from R? to R such that

1 1
|h(z1,y1) — h(z2,92)| < §¢x1-x2|+-§|y1——yzh

Denote by || - |oo,, the essential supremum norm with respect to v. Assume that there exist C' > 0 and
p €]0,1] such that for any (i, j) € N2,

sup [[K*(g9) = v(9)]loo,y < Cp' and sup sup [[K* 0 Q;(h) — v(Q;(h))lloc,y < Cp'. (3.4)
geAL(R) 3>0 heA1(R?)

Theorem 3.7 Let T be a map from [0,1] to [0,1] preserving a probability v on [0,1] and let (Y;);>0 be
a stationary Markov chain with invariant measure v and transition Kernel K defined by (1.2). Assume
that condition (3.4) is satisfied. Let f from R to R such that | f(x) — f(y)| < c(|x —y|), for some concave
and non-decreasing function c satisfying

1

t

/ log €2/ V] 10g10g(2t‘1)|3%)dt <o0. (3.5)
0

Then the conclusion of Theorem 3.5 holds.



Note that (3.5) holds if ¢(t) < D|log(t)|~" for some D > 0 and some 7 > 1 + 2/+/3. Therefore Theorem
3.7 applies to the functions from [0, 1] to R which are a-Holder for some a €]0, 1].

Dedecker and Prieur [9, Section 7.2, Example 4.4] have shown that condition (3.4) is satisfied for a
large class of uniformly expanding maps such as those considered in [2]. The conditions imposed on the
class of the expanding maps they consider are slightly more restrictive than those considered in Definition
3.1. In particular they are defined by mean of finite partitions of [0, 1].

4 A general ASIP result for a class of weakly dependent se-
quences

Let (2, A,P) be a probability space, and let 6 : Q — Q be a bijective bimeasurable transformation
preserving the probability P. Let Fy be a sub-c-algebra of A satisfying 7y C 6~ !(F,). Define the
nondecreasing filtration (F;);cz by F; = 07(Fy). We shall sometimes denote by E; the conditional
expectation with respect to F;, and we shall set P;() = E;(-) — E;—1(+).

Definition 4.1 For any integrable random variable X, let us write X(©) = X — E(X). For any random
variable Y = (Y1, -+, Yz) with values in R* and any o-algebra F, let

E(ﬁ(lnm)(o)’f)

j=1

(0)
O(F,Y) = sup H
(z1,...,z) ERK

o0

For a sequence Y = (Y;)icz, where Y; = Yy o 0% and Yy is an Fo-measurable and real-valued random
variable, let
ok, y(n) = max sup  &(Fo, (Yiy,...,Y5)).

1<ISE p<ip<...<jy

Theorem 4.2 Let X; = f(Y;)—E(f(Y:)), where Y; = Y00 and Yy is an Fo-measurable random variable.
Let Py, be the distribution of Yo and p €]2,4]. Assume that f belongs to Mong (M, Py,) for some M >0
and that

STRVVIT20 8 (k) < oo ifp€]2,4] and Y (log k) K V3¢ v (k) < oo ifp=4 . (4.1)
k>1 k>2

Then, enlarging our probability space if necessary, there exists a sequence (Z;);>o of iid Gaussian random
variables with mean zero and variance o? defined by the absolutely converging series

o =" Cov(Xo, Xz) (4.2)
kEZ
such that
k
o(n/?(logn)'=2/?) a.s. if p €]2,4]
su Xl — Z1 = .
1§k2n i:l( ) { O(n'/*(logn)/?(loglogn)'/*) a.s. if p=4.

Notice that an application of Corollary 2.1 in [4] would give a rate of convergence of order o(n'/?(logn)(*+1/2)
with ¢ > 2/p. As we shall see in the proof of the above theorem, the improvement of the power in the
logarithmic term is achieved via some truncation arguments.

The proof makes use of the following lemma (see Lemma 5.2 in Dedecker, Gouézel and Merlevede [6]).

Lemma 4.3 Let Y = (Y;)icz, where Y; = Y00 and Yy is an Fo-measurable random variable. Let f and
g be two functions from R to R which are monotonic on some interval and null elsewhere. Let p € [1,00].
If | f(Yo)llp < oo, then, for any positive integer k,

IECf (Vi) | Fo) = E(f(Yi))llp < 2261,y () @~V £ (o), -

If moreover p > 2 and ||g(Yo)||, < oo, then for any positive integers i > j > k,

IECS(Y2) P 9(Y) @1 Fo) — E(S (YD) P g(Y)) D)llp/2 < 842y (k)22 (Yo)lpllg(Yo) I -



4.1 Proof of Theorem 4.2 for 2 < p <4
Let f € Mony, (M, Py,). We shall first prove that } - [[Eo(X¢)|, < oo provided that } -, gZ)g]f;l)/p(k) <

oo (notice that this condition is implied by (4.1)). This will entail that dy := 3, Po(X,) and
o 1= Zzz1 Eo(X,) are well defined and that we have the martingale-coboundary decomposition Xy =

do + 79061 —ry. Then the series 02 = > kez Cov(Xo, X) will converge absolutely and we will have
lim,, 0o nE(S2(f)) = o2
Since f € Mony, (M, Py, ), by definition, there exists a sequence of functions

L
fo= Zak,Lfk,La (4.3)

k=1

with fx,r, belonging to Mon, (M, Py, ) and Zﬁ:l lak,r| < 1, such that fr, converges in LP(Py,) to f. Hence,

Bo(Xo)llp = timp oo [Eo(fr(Ye) = B(f1(Ye))llp < lminfr oo Sopy la, o] [Bo(fr, 2 (Ye) = E(fx,z(Y0))llp-
Next, by Lemma 4.3, we have ||Eo(fx.r(Ye) — E(frr(Yo)|l, < 2(2¢1v(k))P~D/PM. This shows that

> >0 IEo(Xe)lp < 00 as soon as 37, -, (ﬁgzj;l)/p(k) < 0.
We shall define random variables by truncating the functions fj 1 defined in (4.3). Let j be a positive

integer and ‘
gj(x) = 21 5)<.(;) Where c(j) = 23/”]’_2/17.

Define then
L
frj= Z ak,L 95 © fr,L - (4.4)
k=1

By assumption and by construction, for any integers j, L, fr ; has a variation bounded by 4¢(j). Hence, by
Lemma 2.1 of [6], (fL,;)z admits a subsequence, say (f,(1),;) converging in L'(Py,), hence in L?(Py,)),
say to f;. Then, f — f; is the limit in L?(Py,) of

(L)
For) = Fotn)i = D Ahp(n)T; © fr, where G = o1j45e()
k=1
Define then for any integer £,
X0 = [;(Yo) = B(f;(Ye)) and X;0:= (f — f5)(Y)) = B((f = [;)(Y2)), (4.5)

and

Xjn = Fo(r)i(Ye) = E(f(r) 5 (Ye) and X 1o = (forr) = For) ) (Ye) = E((forr) = Fo(r).s) (Y2)) - (4.6)

We define also a sequence of martingale differences, (d;¢)e>1, with respect to the non-decreasing sequence
of o-algebras (Fy)e>1, as follows:

dje =Y Por(X;x) . (4.7)

k>0

Notice that by assumption (4.1), the series Y-, P (X;x) converges in L* as shown by the following
claim whose proof is given later. a

Claim 1 Let j be fized. Assume that Y~ ¢1,v(k) < co. Then Y <o |Eo (Xjk) |l < 00, and the
sequence (dj¢)e>1 defined by (4.7) forms a stationary sequence of martingale differences in L> with
respect to the non-decreasing sequence of o-algebras (Fg)e>1.-

We define now some non stationary sequences (X;) ¢>1 and (dy) ¢>1 as follows:
Czl = (Zl,l 5 Xl = Xl,l 5 (48)
and, for every j > 0 and every £ € {27 +1,...,27F1}

dy == gj,b X, = Xje. (4.9)



For every positive integer n, we then define

With these notations, the following decomposition is valid: for any positive integer k,

Sk(f) = (Sk(f) = Sk(f)) + (Sk(f) — Mi(f)) + Mi(f).

Therefore, the theorem will follow if we can prove that

sup | Sk(f) — Sk(f)’ = o(n'/?(logn)'~2/P) almost surely, (4.10)
1<k<n

sup | Sk(f) — Mi(f)| = o(n'/?P(logn)'~2/P) almost surely, (4.11)
1<k<n

and if, enlarging our probability space if necessary, there exists a sequence (Z;);>¢ of iid Gaussian random
variables with mean zero and variance o2 such that

k —
(di — Zy)
=1

= o(n*/?(logn)'~2/P) almost surely. (4.12)

sup
1<k<n

PROOF OF (4.10). For any non negative integer j, let

_ k+27 k+2/
Dj:= sup | > (Xe=Xo)|= swp | Y X,
1SkS2 ygita 1SkSY pogita
where XM is defined by (4.5). Let N € N* and let k €]1,2"]. We first notice that l~?j > |Z?:21]+1 )?j7g|,
so if K is the integer such that 2K-1 « | < 2K then
K-1
|Sk(f) = Se(f)| < 1X1 — X1+ Z Dj.
§=0
Consequently since K < N,
N-1 _
sup [Sk(f) — Sk(f)| < X1 — Xa| + ZDJ" (4.13)
1<k<2N =
Therefore, (4.10) will follow if we can prove that
k427
sup Z ijg’ = o(jlfz/p 2j/p) a.s.
1Sk pgitn
By stationarity, this will hold true as soon as
k¥ 2
| Supj<g<2i ’ ZZ:l Xj,€| Il
> = <. (4.14)
i>1
This is achieved by the following claim whose proof is given later.
Claim 2 Assume that o
STETV2615 (k) < . (4.15)

k>1

Then (4.14) holds.



PROOF OF (4.11). For any non negative integer j, let

k+27 k27
Dj:= sup Z (Xe— dz)’ = sup Z (Xje — dj,t’)‘~
1=k<27 0y oit1 1=k=<27 7y oit1

Following the beginning of the proof of (4.10), we get that

N-1
sup |Sk(f) = My(f)| < |X1 —da|+ > D
1<k<2N o
Therefore we infer that (4.11) will hold if
k+27 - 4
sup Z (Xj0 — dj,E)‘ = 0(j1_2/p 23/”) a.s.
1Sk it

By stationarity, this will hold true as soon as

H SUpPj<g<2i | Z?:l(le - JM)‘ Hi
Z 24j/p j4(1-2/p)

< 00. (4.16)
Jj=1
This is achieved by the following claim whose proof is given later.
Claim 3 Assume that »
SRR (k) < . (4.17)

k>1
Then (4.16) holds.

PROOF OF (4.12). Let a,, = n?*/P(logn)'~*/P. The result will follow from the following claim.

Claim 4 Assume that

Zaz (|de*) < o0 for some 1 <v <2, (4.18)
£>1
and that N
> (Eioa(d?) — E(d?)) = o(an) a.s. (4.19)
i=1

Then (4.12) holds.

It remains to show that (4.18) and (4.19) are satisfied.
PROOF OF (4.18). We show it for v = 2. Notice first that

9i+1 2i+1

1
—2
Zae (Idel*) Z Z 7 CE(|dj ) <<Zm Z E(|djel*),
>2 7>00=2i+1 0=2i+1
where d; ¢ is defined in (4.7). By stationarity and Lemma 5.1 in [4],
Idjella <Y NPy (Xje) lla <D (€ +1) 74 Eg (Xjie) la- (4.20)
>0 £>0

Using the arguments at the beginning of the proof of Claim 1, we first observe that (X]"L’g)L21 defined
n (4.6) converges in L* to X ,. Hence

1Eo (Xje) la = Jim [[Eo (X;,z.0) lla- (4.21)
Next

w(L)

Bo (Xj2.6) lla < Y okl IEo (95 0 frpy(Ye)) = E (g5 © frup(r)(Ye)) lla-
k=1

10



Applying Lemma 4.3, we then derive that

(L)
o (Xj..0) lla < 221,v (0)** > lakon)llg5 © Frpiry(Yo)la-
k=1
Therefore starting from (4.20), we get that
o(L)
1djella < lim inf Z ko) 195 © Fropzy) Yo)lla D €74 (d1v (k)P
£>0
Since Z}f(:Ll) lak, oy <1, Jensen’s inequality leads to
w(L) 4
Idjells < hmmf Z |k, o) |195 © frp(r) (Yo ||4(Zf 4 ,Y(f))3/4) .
£>0

Hence, using condition (4.1) and Fubini, there exists a positive constant C' not depending on L such that
) 9it1
ZW@ ;1E |d;, o)
(L) 2]'
< lim inf Z | (2)] 2;) WE(f?,w(m(Yo)1|fk,g,(m(mﬂszj/pr?/p)
— i

(L) 2/p
< lim inf Z |ak,o(1)] Z (23/p> (ffcl,go(L)(Y0)1|fk,¢<L>(Yo)|§2-7’/Pj—2/17>
sa(L)
< Climint /; | o (2) || fron) Yo) I < CMP. (4.22)

This ends the proof of (4.18).

PROOF OF (4.19). For any non negative integer j, let

2944 - - 2944 - -
Aji= sup | Y (Bia(d®) —E(d?)] = sup | > (Bi1(d};) —E(d}))],
1620 9 1620 i1

9J+1 -

where d; ; is defined in (4.7). Let N € N* and let k €]1,2"]. We first notice that A; > [ Y7, o, 1 (Ei—1(d?;)—
IE(JJQZ))L so if K is the integer such that 261 < k < 2K then

k N—-1
1S T (Bi(dP) - E(dD))] < [Bo(d}) —E(dD)| + > 4;.
i=1 j=0
Consequently since K < N,
k B B B B N—-1
sup [ > (Biea(dF) — E(dD)] < [Bo(df) ~E(@P)| + 3 45 (4.23)
SRS i=1 j=0

Therefore to prove (4.19), it is enough to show that

k427
Sup Z (Ei-1(df;) — E(Jj%i))‘ < 22/pji=4lr g s,
TSk<27 0y oitq

In particular, it suffices to prove that

HSUP1<1¢<2J |Zz 1( i— 1(d“ J7 |H
24j/p j2(1—4/p)

(4.24)

Jj=1

11



Observe now that, by Claim 1 and condition (4.1), (d;;)icz forms a stationary triangular sequence of
martingale differences in L4. Let
n
My = dj;.
i=1

Applying Proposition 2.3 in [22] and using the martingale property of the sequence (M;,)n>1, we get
that

o _ _ 2

i1 ||EO(M]2,21<) - ]E(Mfgk)”2>

b _ _ 2 .
sup E;_1(d?;) — E(d?; H < 27||d?||3 + 27
| s, I3 2@ B, < 21505 > 5

Noticing that [[d3 |15 = ||d;,1|

1, and using the computations made in (4.22), we get that

27||d?, |3
s ZWRE
24i/p2(1-4/p)

Jjz1
Therefore to prove (4.24), it remains to prove that
2 = —k/2 72 2 2
> m(z2 IBo(M250) — E(M25)2) " < oo
§>1 k=0

Setting Sj, = Y.i X;; and R, = Sj, — M, n, according to the proof of Theorem 2.3 in [4], this will
hold provided that

27 -1 _ _ _ 2
Zm(ZQ WHEo(Sizk)*E(Sf,gk)Hz) < o0, (4.25)
jz1 k=0
2j - —k/2 D 2 2
ZW(ZQ /HRj,2k||4> <00, (4.26)
Jj=1 k=0

and -
27 IZ _ 2
Zm(z2k/2 > ||P0(Xj,€)||2) < oo. (4.27)
T =0 (o

According to the proof of Claim 3,

@(L)
1R 2k lla < (;(¢1,Y(€))3/4) lim inf ; |ai o195 © fispr)(Yo)lla-

Therefore, since Zf:uf) |lai,p(r)| < 1, using Jensen’s inequality and condition (4.1),

¥ = —k/2) D 2\?
Zm(Xﬁ \|R4,2k||4)
j>1 k=0

@ (L)
- 27 4
< hgr_l}l(gf Zl |aiv‘P(L)| ; 24j/pj2(174/p)E(fia‘P(L) <YO)1\fi.¢(L>(Y0)|§2j/”j’2/”) )
= 12

which together with an application of Fubini show (4.26). We turn to the proof of (4.27). According to
Lemma 5.1 in [4],

223 P (Kp)le < D2 IEo(X;0)ll-
0>2k (=281

Since [Eo(X;.0)ll> < lminfs o0 525 as o Bo(5 0 fiptry (Ye)) — BL05 0 fi gty (Ye))llps by Lemma 4.3
and using the fact that Zf:(f) lai ()] < 1, we derive that

[Bo(X0)ll2 < M(¢1x ()17

12



Since p < 4, we then infer that (4.27) will hold if " ,o; ¢1,v(£))P~D/P < 0o which is satisfied if (4.1) is
It remains to show that (4.25) holds true. Since

2k 2k _m
Eo(S206) —E(S70)ll2 <2 > IBo(XjmXjmie) = B(XjmXjmo)ll2

m=1 (=0

we infer that there exists C' > 0 such that

Jj—1
22_’“/2||Eo(5j2-,2k) —E(S} 202
k=

27 27

Z Z +€ 1/2 ‘]EO(Xj,ij,erl) — E(Xj,ij,m+£)”2

m=1 =

2J [m ] 1 2] 2] 1
<C ———v;i(Fo,m, {) + C A (Foym,l).
- ~ (m+€)1/2%( 0,m, £) + mzu%ﬂ (m—!—ﬁ)l/Q%( 0,m, )

where - - - -
¥j(Fo, m, £) := [Bo(XjmXjmre) = E(XjmXjmie)ll2 and vy € (0,1].

Bounding up v;(Fo, m,¥) in two ways as done in the proof of Corollary 2.1 in [4], we infer that, for any
€ (0,1] (to be chosen later), there exists a positive constant B such that

j—1 ) . )
(Z 272 || Bo (82 5) — E(szk)llz) < BI} + BI} (4.28)
where
2 m7 _
h=3 —p S [[Eo XjoXjk) = E(XeX;0) 2
m=1
K1/(27)

fgz(z B (X))

We shall proceed by using some arguments developed in [6] to get their bound (5.7). Arguing as in the
proof of Claim 3, we obtain that

E1/(27) 3/4 o) 1/2
L<sva(y oy (k) ) hmmf(zhw@ B ) Vo) Lig iy <o) - (4:29)
k>0 =1

We bound now I;. According to the proof of Claim 1, XJ ¢ is the limit in L* of (X j.L.0)L, where XJ Lt
is defined in (4.6). Therefore,

o (X6 X k) = B(X e X2 = M [[Bo(Xr,eXj0,0) = B(X L, X062
Applying Lemma 4.3, for £ > k > m,

IEo(X,L.eX;,0.k) — B(XL,0X5.0.0) 2

(L) (L)
<1602,y (M) lavpw)lllg; © fopwyYolla > larpmlllgs © frpr) (Yo)lla-
=1 k=1
It follows that
279 mY w(L) 1/2
I < (16 > W@,Y(m)w) lim inf ( > e B (Yo)1\fz,¢<m<yoﬂgc<j>)) . (430)
m=1 =1

13



Let v = 1/4/3. If the condition (4.1) holds, then

LV3/2 ml/V3
> L1/4 o1y (k) < oo and Z i 2 (m)'/? < oo,
k>0 m>0

We infer from (4.28), (4.29) and (4.30) that, if (4.1) holds, there exists a positive constant Cy(¢) such
that

j—1 - - 9 (L)
(Z 27k/2H]EO(SJZ72k) - ]E(SJQ,Qk)”2) < C4(¢) thiio%f Z |a€,tp(L)|E(fgl,gp(L)(YO)1|f2,¢(L)(Y0)|§C(j)) : (4'31)
— =1

Using this last bound, Fatou’s lemma together with Fubini, we then infer that (4.25) holds true. This
ends the proof of (4.12). O

End of the proof Theorem 4.2 for p €]2,4[. To finish the proof of Theorem 4.2 for p €]2,4], it
remains to prove our claims.

Proof of Claim 1. Notice that (X} 1 ¢) converges in L” to X, and [|X; 1 ¢[lcc < 2¢(j). Therefore, we
infer that || X /|lec < 2¢(j). It follows that X, = lim o X ¢ in LY for any ¢ € [1,00[. Next, by
Lemma 4.3 and the fact that Zf(fl) lak, oy <1, we get that

(L)
Bo (Xj.2.6) llg < Y lakpwyl o (g5 © frpry(Ye)) = E (5 © frup(r)(Y2)) llso

k=1
@(L)
<4h1y (0 Y akpm)lllgs © frpw)(Yo)lloo < 4e(i)dr v ().
k=1

Therefore [[Eq (Xj,¢) [lq < 4¢(j)é1,y (£). This proves the claim. O

Proof of Claim 2. Let S’j Lk = Ze 1 X 1,0 where XjﬁL)g is defined by (4.6). Recall that )?M is the

limit in L? of X ;.1¢. Clearly, to prove (4.14), it suffices to prove that, there exists some positive constant
K, such that for any positive integer L,

|| supy < <25 |S.L.x] 13
; =T <K. (4.32)
12

To prove (4.32), we use the maximal inequality of Peligrad and Utev (2006). Therefore, by stationarity,

J ~ 2
| masx 15 0lll3 < 21X 50l +27 (327 Bo(S) .20l
=0

< 2| XL,

o
'(Zkﬂ/ﬂmoo}xak)llzf- (4.33)
k=1

2
Notice that || X snoll3 < 4(25 1 apo)llgi o foor)(Yo)lle ) . Therefore, since Z£:1|GZ7L| < 1, by

Jensen’s inequality,
(L)

I1X5.L.013 <4 larpmlF; © frpw) (Yo)ll3 - (4.34)
/=1

Now
w(L)

B0 (Xj.L.0)ll2 < D lagem)lIIBo(F o fepr)(Ye) = E@ 0 fopw)(¥i))llz-
=1

Applying Lemma 4.3, [[Eo(g; © fop(r)(Ya)) = E(G5 © fepn)(Ya))ll2 < 2(201,v (k)25 © fe.p(r)(Yo)l2-
Hence by Jensen’s inequality,

»(L)
(Zk V2E(K 1)) < 8( SRR 0) Y e 1 o frawm (I3 (435)
k>1 (=1

14



Therefore, using (4.33) together with the upper bounds (4.34) and (4.35), we derive that

~ (L)
| max; <j<oi |Sj,L,k|||2 Qj(p 2)/p 1/2 2 N
Z 227j/;j274/p j20-2)/p (Z k2 ) Z o) 1195 © feom) (Yo)l13 -
=1 —

Now, via Fubini, there exists a positive constant C' not depending on L such that

2i(p—2)/p p—2)/p
a7 193 © Feonr (%) I3 = ZW (fw IO LTIy 2/p)
>0
< CHfé,w(L)(Yo)Hg < OMP.

Using condition (4.15) and the fact that Z}f’:(?) lag, o)l < 1, (4.32) follows. This ends the proof of the
claim. [J

Proof of Claim 3. For any positive integer k, let S, ;, = Ze LV Xjoy M = Z§:1 dj, and

Rjk = Sjr— My, . (4.36)

) )

By stationarity, and since for any k& > 1, EO(J\Z/j,k) = 0, according to Corollary 3 in Merlevede and
Peligrad [20],

Hlsup 1Rkl lla < |IR;, 2JH4+23/422 V| Eo(S20) |4
=0
2J

< ||Rjp,2slla + 277 2571/4\|]E0(Xj,€)||4 .
=1

Now according to item 2 of Proposition 2.1 in [4] applied with N = 221 we get that

22
1R;2slla <Y IBo(Xj0)lla+277% > 1 Po(Xj0)la-
£=1 £>227

Using then Lemma 5.1 in [4], it follows that

92j+1
IR 2illa < > IBo(Xjo)lla+27% D k™4 Eo(X0)la-
=1 £>22d
So overall,
| sup Ryl [la
1<k<2i
92j+1 27
<Y E(X o)l 4272 > ETVHE(X e)lla + 274 A Eo(X;0)la
=1 0>22i =1
27
< 2NV E(X o) la+ 2772 D B (X ) la - (4.37)
=1 0>22i

We handle now the quantity ||Eo(X;.)|l4. We first observe that by Lemma 4.3,

(L)

1o (Xj.z.e) la < 415 (0)** D lan oy lllg5 © Frp(ry (Yol
k=1

where X 1. ¢ is defined in (4.6). Taking into account (4.21), (4.37) and the condition (4.17), we then infer
that
9i p(L)

24705 D/p hfgmf ( Z:l ak,o)l1195 © fr.or)(Yo)lla )

| sup Rl I3 <
1<k<2i
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Since, Zf:(? lag,o(r)| < 1, by Jensen’s inequality

j w(L)
23
| 1<SI?P2 Rl [l < 24370 4 2)/p lim inf Z lako)l1195 © frp(z) (Yo -
= k=1

Now, via Fubini, there exists a positive constant C' not depending on L such that

2 2 .
Zm”gg From @i = WE(&,@(L)(YEJ)l\few(L)(Yo)|§2j/pj—2/p)
7> 7>0

2i/p\ p—4 4
< g <12ﬁ> E(fz,w(L)(Y0)1|f,3,q,(L)(YO)|§2J/pjf2/p) <Ol fe,pry(Yo)lly < CMP,
J

which combined with the fact that Zfiﬁ) |lag,o(1)] < 1 prove the claim. [J
Proof of Claim 4. We first prove that

o? = lim n || M, (f)|3- (4.38)

n—oo

Recall that (4.1) entails in particular that Y, < [|Po(Xk)||2 < co. We then define dy = >~ ,~ Po(f(Y0)06")
and for any integer ¢, dy = do o 0°. Let M, (f) = Y y—q de. Since Y <0 [|Po(Xk)|2 < 00, using item 2 of
Theorem 1 in [29],

150 (f) = M (f)ll2 = o(v/n). (4.39)
Since 02 = lim,,_, 00 271 S, (f) |3, it follows from (4.39) and stationarity that o? = n=t| M, (f)||3 = E(d3).
We show now that

1M (f) = Ma(f)ll2 = o(n'/?). (4.40)

Let N be the positive integer such that 2¥—! < n < 2V, By the martingale property of M, (f) — M, (f)
and stationarity, we have that

1M () = Mo (F)lI5 =D E((de — dp)?) < E((dr — d1)?) + Z VE((dy —dj1)?).  (4.41)
/=1

But dy —dj1 = 2621 P (f(j,g). Then, by Lemma 5.1 in [4] (see also the proof of Corollary 2 in [23]),

ldi = djalla < D IPo(Xje)ll2 < D (4 1) Eo(Xj0) o
£>0 >0

Let )?ijyg be defined in (4.6). Applying Lemma 4.3,

(L)

[Bo(Xj.L.0)ll2 < 2V2(¢1,v (€)' D koG5 © frpr)(Yo)ll2 -
k=1

Since Z}:(:Ll) lak,or)l <1 and fi 2y belongs to Mon, (M, Py, ), it follows that
o (X5z.0)ll2 < 2V2MP/2(c(j)) 772 (¢1,v (k)2

Since ||Eo(Xj.¢)ll2 = limp o [Eo(Xj.z.6)ll2 and, by condition (4.1), 3, k2,5 (k) < oo, we get
overall that

M (f) = Mo (£)]3 < Z 29 (c(j))2P < 22N/P N2(1-2/p)
7=0

proving (4.40). Combining the fact that 0% = n=1||M,,(f)||3 with (4.40), it follows that (4.38) holds.

Then, according to Theorem 2.1 in [26], we see that, enlarging our probability space if necessary, one
may find a sequence (Z;)¢>1 of independent Gaussian random variables with zero mean and variance
E(Zg)Q = E(dg)z = (5’@)2 such that

sup

k
My — Z Z@‘ = 0(&,1/2 (log n)1/2) almost surely, as n — oo. (4.42)
1<k<n

(=1
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Let (0x)k>1 be a sequence of iid Gaussian random variables with mean zero and variance o2, independent
of the sequence (Z¢)e>1. We now construct a sequence (Z;)¢>1 as follows. If 5o = 0, then Z; = dy, else
Zy = (0/5¢) Zs. By construction, the Z,’s are iid Gaussian random variables with mean zero and variance

2. Let Gy = — Z; and note that (Ge)e>1 is a sequence of independent Gaussian random variables
with mean zero and variances Var(Gy) = (0 — 54)?. Assume that we can prove that
E(G?
> (1 n) o (4.43)
= anlogn

Then by the Kolmogorov theorem (or Lemma 6.2), it will follow that the series ang (anTog 172 COnVerges

Gy
logn)
P-a.s. Hence, Kronecker lemma will imply that ", G¢ = o((a, logn)'/?) P-a.s. Therefore starting from
(4.42), we will conclude that if (4.18) and (4.19) hold then (4.12) does. Let us prove (4.43). With this

aim, we first notice that

— 2 —
E(G7) = (ldnll2 = lldnll2)” < lldn — dall3

Next
1 2J+1 2]
<oy R
Z 1ogn < Z w2 Bdi= i) =) s B — dia)?).
> >1 £=27+1 jz1
Using the computations as done to prove (4.40), we infer that under condition (4.1),
] (L)
E(Gz) 97 ®
2 alogn < hmmfz m( Z k(01195 © Fro(r) (Yo) 2 )

n>3

Since Z}f(:Ll) lak, oy < 1, Jensen’s inequality leads to

i (L)

E(G2) 2K ~

D g <D oy D kw13 © frony (VOIE-
n>3 " j>1 k=1

Hence, by Fubini theorem, there exists a positive constant C' not depending on L such that

(L)

E(G?) 2 _ 9
2 m < hmmfz W ; |k, o) 1G5 © fror)(Yo)ll2
2i/p\ p—2
< hmmf Z |a;€ (L) | Z ( 2/p) (f}iw(L)(}/())1|ka¢@)(§/0)\>Qj/pj—2/p)

j>1
p(L)
< Climinf Z |k, o) | fro () (Yol < CMP.

This ends the proof of (4.43) and of Claim 4. O

4.2 Proof of Theorem 4.2 for p =14

In this case, no truncation is needed. The beginning of the proof of Theorem 4.2 for 2 < p < 4 also
works for p = 4. In particular, if f € Mong(M, Py, ), condition (4.1) implies that >, [|Eo(X¢)|l4 < oco.
Therefore the series 02 = Y, ., Cov(Xo, Xj) converges absolutely and lim, o n 'E(S2(f)) = ¢%. In
addition the series Y, Py (X)) converges in L* and the sequence (dg)¢cz defined by:

do = Pr(Xy) (4.44)

k>¢

forms a stationary sequence of martingale differences in L* with respect to the non-decreasing sequence
of g-algebras (Fy)ecz. Hence, setting for every positive integer n,

=> dy and S,(f):=)_ Xy,
£=1 £=1
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the conclusion of Theorem 4.2 when p = 4 will follow if we can prove that

12{2 1S (f) = Mn(f)| = nt/*(logn)/?(loglogn)/*) almost surely, (4.45)

and if, enlarging our probability space if necessary, there exists a sequence (Z;);>0 of iid Gaussian random
variables with mean zero and variance o2 such that

&
sup Z(d —
i=1

1<k<n i—

)| = O (logn)/?(loglogn)'/*) almost surely. (4.46)

To prove (4.45), it suffices to notice that since ), [[Eo(X¢)|l4 < oo, we have the coboundary decom-
position S,,(f) = M, (f) + ro — ro 0 0™ with |ro|ls < co. So (4.45) follows directly from the fact that
(ro — 19 00™)/n/* — 0 P-a.s. To prove (4.46), we shall use Remark 2.9. Therefore we need to show that

Z d2|Fe_1) — E(d2)) = O(n/?(loglog n)*/?) P-a.s.
k=1

This condition follows directly from Theorem 12 of [19] together with the fact that (dy)ren is a martingale
differences sequence provided that

5 L8 i (2) — E(A2) 5 < oo wa7)
n>2

According to the proof of Theorem 2.3 and Corollary 2.1 in [4], this will hold true provided that there
exists v €]0, 1] such that

> " (logn)*n7 ¥ {|Eo(X,) 3 < oo, (4.48)
n>0
and
> (logn)*n* sup IEo(X:X;) — E(X:X;)||3 < co. (4.49)
12)=2n

n>0

Notice that [Eo(Xp)lla = imp e [Eo(f(Ya) = E(fL(Yn)lla < liminfr oo S5y an o] [Eo(fr.r(Ya) —
E(fr,.(Yn))|la- Next, by Lemma 4.3, |Eo(fr,2(Yn) — E(fie,. (Yn))]la < 2M(2¢1’Y(n))3/4. On the other
hand,

L L
[Eo (X X;) — E(X; Xj)l2 <

L(Yi) fo.r(Ys) = E(fe,o(Ya) fe.L (Y52,

k=1/4=1

and by Lemma 4.3
sup [|Eo(fi.L(Ys) fo.L(Y;) — E(fr,L (V) fe (V3)ll2 < 16M%(¢oy (n))'/2.

i2j2n

Hence condition (4.1) (for p = 4) implies that (4.48) and (4.49) hold for v = 1/4/3. The proof of Theorem
4.2 is therefore complete. [

5 Proof of the results of Section 3

5.1 Proof of Theorem 3.4 on uniformly expanding maps

Item 1 follows directly from Theorem 4.2. Indeed since T is uniformly expanding, it follows from Section
6.3 in [8] that

o2y (n) = O(p") for some pe (0,1). (5.1)

To prove Item 2 we proceed as follows. We start by the case p €]2,4[. Since f € Mon;,(M7 V), we

consider the function f; and the random variables X ; and X .k defined in the beginning of the proof of
Theorem 4.2. In addition we set

Fr=0Yi,i <k) and Gy = o(T",i > k). (5.2)

18



As in the proof of Theorem 4.2, we define a sequence of martingale differences, (ij[) ¢>1, with respect to
the non-decreasing sequence of o-algebras (F¢)s>1, as follows:

djo =Y (B(XjklFe) —B(XjulFer)) =D P (Xyu)

k>0 k>t

and we recall that by Claim 1 and by (5.1), the series > k>0 (X J, k) converges in L°°. Notice now that
by the Markovian property of (Y;);>0, we have that

die = (E(X;x[Ye) —E(X;,

k>0

1)) =m(Ye, Y1), (5-3)

where m(-,-) is a measurable function from R? to R. Define now
fe=m(TN T (5.4)

Notice then that dj , is G,—1-measurable. Moreover, since on the probability space ([0,1],v), the random
vector (T,T?,...,T") is distributed as (Y, Y,_1,...,Y1), we have that

(5 e|Ge)llr = IE(d5 (| T) 1 = IE(djel Ye-1)lIl = 0,

it follows that E(d},|Ge) = 0 v-a.s.
We define now some non stationary sequences (X;)¢>1 and (d})¢>1 as follows:

di=dj,, X{=fioT—v(fioT), (5.5)
and, for every j > 0 and every £ € {27 +1,..., 2771}
di ==d,, X;=fioT" —v(fjoT"). (5.6)

For every positive integer n, we then define

Zde and S ( )-:i e
(=1

Therefore, Item 2 of Theorem 3.4 will follow if we can prove that

k

sup | Y (foT' —v(f)) = Si(f)] = o(n'/?(logn)' ~/?) v-as., (5.7)
1<k<n 5]
sup |Si(f) — Mi(f)| = o(n'/P(logn)'~*/?) v-as., (5.8)
1<k<n

and if, enlarging our probability space if necessary, there exists a sequence (Z});>¢ of iid Gaussian random
variables with mean zero and variance o2 such that

k
sup | > (df — Z})
i=1

1<k<n i

(n*/?(logn)*=%/P) v-as. (5.9)

According to the proof of Theorem 4.2, (5.7) will hold if

3 2—2j/pj—2+4/p’ max

1<k<2i

S (- e —wti- 5|, < 510
=1

3>0

But, since on the probability space ([0, 1], v), the random vector (T, T?,...,T™) is distributed as (Y, Y;,_1, . . .

according to the inequality (4.1) in [5], we have

k
X.
1<k<n Z gt

1 - (=1

M=

((f_fj)ng_V(f—fj)))‘ >Z‘) S]P’(Q max

-4,

Z/( max
1<k<n

o~
Il
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Therefore (5.10) follows from Claim 2.
We turn now to the proof of (5.8). According to the proof of Theorem 4.2, (5.8) will hold if

_ 4
22 4]/17 —4(1-2/p) H max ,OT€ v(fj) — ;5)” < 00 (5.11)
’ 4,v

1<k<27
3>0

But, as before, since on the probability space ([0, 1],v), the random vector (T,T?,...,T™) is distributed
as (Yn7 Yn—la s 7Y1)a

Mw

<1gllca<xzz|z fioT  —v(f;) — )|>x)<]P’(2 max (Xj0—dje) ’>x)

1<k<n
Z:l

Therefore (5.11) follows from Claim 3.
To prove (5.9), we shall proceed as for the proof of (4.12) with the difference that Theorem 2.3 is
used instead of Theorem 2.1 in [26]. So we have to prove that

n

Y (BT —E((d))?) = olan) ass.,

i=1
where a,, = n?/?(logn)*~*/?. But following the proof of (4.19), this will follow if we can prove that

Z 2*4j/pj*4(1*2/p)
>0

2
z d* 2
12}%@ ’Z |T ]z) )) |’ 2w < (5.12)

But using again the fact that, on the probability space ([0,1],7), the random vector (T,T?,...,T") is
distributed as (Y,,,Y,—1,..., Y1), we have that

k
(121:35(2] ‘ Z |TH = E((d;,)%) | > x) < IP’(Q 12:?{2] ‘ ; (Ei—1(d?) —E(d})) | > x) .

Therefore (5.12) follows by the fact that (4.24) holds true. This ends the proof of Item 2 of Theorem 3.4
when p €]2,4].

We turn now to the proof of Item 2 when p = 4. Let X; = f(Y;) — v(f). According to the beginning
of the proof of Theorem 4.2, (5.1) implies that ), < [[E(X|Fo)|l4a < co. We define a sequence (dy)¢>1 of
stationary martingale differences with respect to the non-decreasing sequence of o-algebras (F;)¢>1 and

that are in L* as follows:

dg=> Py (Xy)

k>t
By the Markovian property of (Y;)i>o,
do = (B (X5|Ye) = E(XgYeo1) ) := m(Ye, Y1),
k>0

where m(, ) is a measurable function from R? to R. We define now

dy =m(T1 T .

As before, notice that dj is G,—1-measurable and satisfies E(d} ,[G;) = 0 v-a.s. According to Corollary
2.7, the result will then follow if we can prove that

Z )2Gr) — E((d})?)) = O(n/?(loglog n)*/?) v-a.s. (5.13)
k=1
But E((d})?|Gk) = E((d})?|T*) := h(T*) v-a.s. where h(-) is a measurable function such that v(h?) < oco.
Let h = h — v(h). Assume that we can prove that
h+Kh+--+ K" h|2,
> (logn)? | — low _ o (5.14)

n>1
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- .
This condition implies in particular that ) -, ”thKhjL'?;;r/é{ blzr o5, By Lemma 2 of [19] (and its

proof), it follows that ¢(Yp, Y1) = lim, 2 327 Y274 (K*A(Y1) — K*h(Yp)) exists in L2 and M, (o) =
Yor_q ©(Yi—1,Ys) is a martingale with stationary increments such that

~ ~ ht Kh+ -+ KF1h,,
IR + -+ h(Va) = M@)o < v 3 | . 2
k> k3
Since the random vectors (Id,T,T?,...,7" 1) and (Y,,Y,_1,...,Y1) have same distribution, we can

write M () == Sp_, @(TF, TF1) = Sl o(T=*, T"=*=1). Then (M}) is a sum associated to a
stationary sequence of reverse martingale differences and

S R KR4t K1
-+ ho T = My (@) 20 < VY [ht Kbt 2w (5.15)
k>n k /
Therefore, by Corollary 4.2 of [3] with b(n) = logn, if
1 ~ ~
S+ R0 T - M), < oo, (5.16)

n

then _ _
ht-+hoT" 1 — My(yp)
vnloglogn
Using (5.15), it is easy to see that (5.16) holds as soon as (5.14) is satisfied. Using then Corollary 2.5

to observe that M (¢) = O(v/nloglogn) v-a.s., we conclude that (5.13) (and then Item 2 when p = 4)
holds as soon as (5.14) does. Notice now that (5.14) can be rewritten as

S (logn)? | Sy (B(d2] Fo) — E(d2))]13

n2

—0 v-a.s.

< o0,
n>1

that is exactly condition (4.47). O

5.2 Proof of Theorem 3.5

The proof follows directly by analyzing the proof of Theorem 3.4 when p = 4. Indeed, the proof reveals
that if the conditions (4.48) and (4.49) hold for X; = f(Y;)—v(f), then the strong approximation principle
holds for both 3°7"  (f(Yi) — v(f)) and .1, (f o T% — v(f)) with rate O(n'/*(logn)'/?(lognlogn)*/*).
The condition (3.2) (resp. (3.3)) is exactly the condition (4.48) (resp. (4.49)) rewritten with the help of
the transition operator K. [l

5.3 Proof of Theorem 3.7 on uniformly expanding maps

It suffices to verify the assumptions of Theorem 3.5. Using the first part of Condition (3.4) and the fact
that | f(z) — f(y)| < ¢(|x — y|) where ¢ is a concave and non-decreasing function, it follows from Lemma
17 in [7] that [|[K"(f) — v(f)]lcor < c(Cp™). Therefore, (3.2) is satisfied with v = 1/+/3 as soon as (3.5)
is. To verify now the condition (3.3) of Theorem 3.5, we shall use similar arguments as those developed
in the proof of Corollary 3.12 in [4]. From Section 7 in [9], we know that for ¢ and j positive integers,
there exists (Y, Y}") distributed as (Y;,Y;) and independent of Yy such that

1
5 [B(Y: = Y77[[Y0) + E(1Y; = Y7 [IYo)|[, = sup - [|B(R(Y:, Y))[Yo) — B(h(Y:, V7))l -
heA(R?)

Notice now that for ¢ > j > 0, by using the second part of Condition (3.4),

sup |[E(h(Y;, Y))[Yo) — E(h(Yi,Y)))|| o = sup [|K7 0 Qi—j(h) — v(Qi—j(h))lloc, < Cp’ .
heA1(R2) heA;(R2)
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On an other hand, we clearly have that
IK7(FE(f) = v(FE (D)) lloon = BV F(Y5) = FOG) LYY
= |E((f(Y2) = FOY7)F(YV)Yo) = E(F(YT)(F(Y]) = F(Y3)[Y0) ||
Since f is continuous on a compact set, there exists a positive constant R such that || f|jcc < R. Hence,
IK7(FE(f) = v(FE (F)lloo < R|[E((e(Y; = Y7 ))[Y0)|| o, + RI[E((e(|Y; = Y;"DIYo)|| . -
Since c is concave and and non-decreasing function, it follows that

T (FETI() = v(FE ())lloow < Rl e(B(Y; = Y7[[Y0)) || + Rl|e(B(Y; — Y71Y0)) ||
< Re(|[B(Y: - ¥7[[Y0) [|o) + Re(|[E(Y; — Y7 ¥0)][)
< 2Re(5|[EY: = ¥71%) . + QY — 1%, )

So overall, _ o o
sup K7 (FKI() = I ()l < 2RACH")
(e e 1]

implying that (3.3) is satisfied with v = 1/1/3 as soon as (3.5) is. This ends the proof of the theorem. [J

6 Proofs of the reverse martingale’s results
We start by recalling the following estimate of Hanson and Russo [12, Theorem 3.2A]

Lemma 6.1 Let (By)i>0 be a standard Brownian motion. Then

Biys — B
lim sup sup |Bits d

=1 P-a.s. 6.1
LS S Gallog(t + a)/a)) + logloga]) /2 (6.1)

We also recall the following convergence result for reverse martingales.

Lemma 6.2 Let (§,)n>1 be a sequence of variables in LP, 1 < p < 2, adapted to a non-increasing

filtration (Gn)n>1. Assume that E(&,|Gni1) = 0 and Y, < E(|§,|P) < oo. Then -, -, &, converges
P-a.s.and in LP. - -

Proof of Lemma 6.2. The result is clear when p = 1, hence we assume p > 1. Notice that for every
n>1, O . i &k)o<i<n—1 is a (Gn_i)o<i<n—1-martingale. Hence, by Burkholder inequality and using
that = — |2[P/? is subadditive, it follows that the exists a positive constant C, such that, for every
1< r<n,

E( mas | Z ar) <ce((a)") <o Y Ear). 62)
k=r k=r

So, (Zy) :== (>_p_, &) is Cauchy in LP, hence converges in L?, say to Z. Moreover, letting n — oo in
(6.2), we see that for every r > 1

(maX|Z —ZPP) < Cp Y E(|&),
k>r

which implies the desired result. O

6.1 Proof of Proposition 2.1.

The L? and a.s. convergence of >, & follows from Lemma 6.2. By Theorem 2 of Scott and Huggins
[25], enlarging our probability space if necessary, there exists a Brownian motion (B;)¢>¢, a non-increasing
filtration (H,)nen and a non-increasing process (7, )nen adapted to (Hy,)nen, such that

R, =B, P-a.s.
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Moreover, writing t,, := 7, — Tp+1 > 0 P-a.s., we have

IE(t’rL|,7Lln-i-1) = E(§121|gn+1) P-as., (63)
E(t2?[Hps1) < CoE(|€n|P|Gnr1)  P-as. foreveryp>1 . (6.4)

Hence, using (6.3) twice,

Tn — E(1) = T, — (5721 = Z (tk — E(tk|Hk+1)) + Vn2 — 5721 P-a.s.
k>n
But it follows from (2.2) and (6.4) that ) -, a,”E(t;)) < oo which implies, by Lemma 6.2, that
S o1 g (t — E(tg|Hpy1)) converges P-a.s.. Then, by an analogue to the Kronecker lemma (see e.g.
Heyde [14, Lemma 1]), >, <, (tx — E(tx|Hi+1)) = o(ay,) P-a.s. Together with (2.1), this implies in par-
ticular that 7, — 62 = o(a,) P-a.s.

For every t > 0 define Et = 1By, and Eo = 0. It is well-known that (Et)@o is a standard Brownian
motion. We have B, — Bjs: = T,L(El/Tn - El/gi) + (0 — 6%)§1/512L. By the law of the iterated logarithm
for (Et)t>0 (or using that the supremum in (6. 1) is greater than what we have for t = 0 and s =
1/62), we see that 31/52 = 0(5; ' (loglog(1/6,))"/?) P-a.s.Hence since o, = O(62), (1, — 5721)51/5;1 =

o((a, loglog(1/a,))/?) P-a.s.
Let us deal now with Tn(Bl/.,- Bl/gz) With this aim, we shall use (6.1). Since a,, = O(42) and

T — 02 = o(a,) P-a.s., we have |1/7, — 1/52\ =o(1/ay) P-a.s. Define u, := a, /(1,02), €, := max (|62 —
Tn|/an,un1/2) Sp \1/7’n—1/52| Up 1= Eplin and Up 1= mln(l/én7 1/7,). Notice that a,, — oo, £, — 0,
Vp + sp = max(1/62,1/7,) and |Bl/Tn - Bl/52| = |By, +s, — By, |. By (6.1), we have

|§vn+sn — E'U'n
(2a,[log((vyn + an)/ay) + loglog a,])t/?
|Biys — Et\

<sup sup —1 P-a.s.

120 0<s<a, (2an[log((t + an)/an)) +loglogan])'/>

In particular, we have |Bl/Tn - Bl/52| = O([enun(]1og(62/(anen))| + loglog(unen))]t/?) P-a.s. Then,
using that |log(62 /(anen))| < |log(62/ay)| + |loge,| and that €,u, loglog(e,u,) = o(u, loglogu,), we
obtain B _

Tn(Bi/r, — Biys2) = o([on(| log(67 /)| + log log(cn /02)]*/?) P-a.s., (6.5)

which proves the result, since 1/5% = O(1/a2). O
Remark 6.3 It follows from the proof that the assumption (2.2) may be replaced by »_ .~ (tk—E(tp|Hit1)) =
o(ay,) P-a.s. B
6.2 Proof of Theorem 2.3.

Define &, := X,,/02. Then, since E(¢?) = (07 — 0,%71)0,;4, by comparing sums and integrals, it follows
that >, -, E(£?) < co. Using the notations V,2 = ZkZH(E(fﬂng) and §2 = dksn E(£2), and writing
Ty =3 (B(XZ|Grs1) — E(X7)), we have

Vg—aizz ~The ZTk( )—T;Lj.

O'
k>n k k>n k+1 n

Using (2.4) and that (0,)nen and (a,/02),en are respectively non-decreasing and non-increasing, we
obtain ) )
Qn Qn An
o) (o) ()=o)
We want to apply Proposition 2.1 to (&,) with a,, := a, /0. Using (2.5), we have

Do E(E) = ) ar E(XP) < oo

i>1 n>1
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hence condition (2.2) holds. It remains to prove that a,, = O(62) and that a,,/d} — co. With this aim,
we first notice that

R Z / - dx

k>n

Hence, using that sup,, E(X2) < oo, it follows that o, = O(0,,—_1) and

—531<ZE(X13)<(,£1—(71’%) :O<Z%> :0(2).

n—1 k>n k— k>n k

0<

a

In particular, since §2 = O(0,,2,) = O(0;2) and |0,%2 — 0,,2,| = O(c;*), we have

- O(Ué) . (6.6)

n

— 52

1
2 n
0-71

Since a,0;,2 is non-increasing, (6.6) implies that a,, = O(62). In addition since a,, is tending to infinity,
(6.6) entails also that /5 — occ.

By Proposition 2.1, enlarging our probability space if necessary, there exists a standard Brownian
motion (By)¢>o, such that (2.3) holds with 62 = 3, (07 — o7_,)o;*. Now, for every t > 0 define

B, = tB; /¢, and By = 0 (recall that (Et)tZO is a standard Brownian motion). Notice that
Bijo2 — B2 = 0,2 (Byz — Bys2) + (07,2 — 02)Bys2 -
By (6.6) and the law of the iterated logarithm for (B;)¢o, we derive that

(an(loglogay)) 1/2 P
e _a.s.

(072 — 82)B1 52 = O (loglog(0,))?) = (

To deal now with o, Q(E,ﬁ - B /52 ), we use the same arguments as the ones used to derive (6.5) (with

—2 replacing 7,,). Hence we infer that

2
0n

= 5 o (| log(02 /a,)| + loglog a,,))
0,.%(Boz = Bi/s2) :0((a ([log(on/an)] +loglog ax)) ) P-a.s.

So, overall, it follows that

(an(|log(02 /an)| + loglog an))1/2>
P-a.s.,

2

‘Rn _Bl/ofb‘ _O( pu (67)

where R,, = >+, X, /02.
Write Z,, := J,%(Bl/gg1 — Bl/02+1)' By independence of the increments, (Zn) is a sequence of indepen-
dent centered Gaussian variables. Notice that, by stationarity of the increments E(Z,Ql) =o2E(X2)/02 ;.
We have

33 2= R Bug) P~ B,
k=1 k=1 k=1

)-

n+1

= Z(Rk - Bl/ag)(ai - ‘71%—1) + U%(Rl - Bl/af) - UTQL(RnH B o2

Using that (0,,), (62 /a,), (an/oy) and (a,,) are non-decreasing, and taking into account (6.7), we deduce
that

2

ZXk_ZZk (( 7 (| log(o n/a;)z—i—loglogan))uz)27L:UIE(TI%>(T?’§4_1

k=2

= o((an(| log(a2 /ay)| + loglog an)1/2> ;
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2
where we used that >, _, (07 — o7_,)(02)7%/* = O(fy" da/x%/*).

Finally, deﬁBe Dy 1= Znanﬂ/an. Notice that |Z, — Zn\ < C’|Zn|/an for some C > 0. Hence
> ons1 E((Zn = Zn)?) Jan < 32,51 (07 —0n_1) /0 < 00. So, by the Kolmogorov theorem (see also Lemma
6.2), >,51(Zn — Zy)/+/an converges P-a.s., and (2.6) follows from the Kronecker lemma. O

6.3 Proof of Corollary 2.5.

Assume that E(X?) # 0, otherwise there is nothing to prove. We start by the proof of Corollary 2.5.
Notice first that by stationarity and Fubini theorem,

E(|Xn|1fx,>va}) 1
> " =E(|X:] Y —=)<CEX})<oo.
n>1 \/ﬁ ( 1<n<X? \/ﬁ)

Hence,

Zn_1/2|Xn|1{\Xn|>\/ﬁ} < oo P-as. and Zn_l/QE(|Xn|1{‘Xn|>\/ﬁ}|gn+1) <oo P-as. (6.8)

n>1 n>1

and by the Kronecker lemma,

D Xkl x, s vy = 0(Vn) P-as. and > E( Xkl y, 5 vmy|Gri1) = o(vn) P-as. (6.9)
k=1 k=1

Define Yy, := X, 1{x, <y} f]E(an{‘Xn|S\/5}|gn+1). Then, by the above, using that E(X,|G,+1) =0
a.s., we see that it suffices to prove (2.7) with (X,,) replaced with (Y,,).

We want to apply Theorem 2.3 to (V) with a,, = 02 = n. We have to prove conditions (2.4) and

(2.5). Let us prove (2.4). Clearly, (E(Y?) +---+E(Y,?))/n — E(X?). Hence, we only need to prove that
(E(YZ|Ga) + -+ + B(Y2Gns1))/n — E(X?)  P-as. (6.10)

We first prove that
(E(Y?]G2) + -+ + E(VF|Gns1)) — (Y + -+ V) =o(n)  P-as. (6.11)

By Kronecker lemma, this will follow from the convergence of the series > (E(Y,?|G,41) — Y,2)/n. By
Lemma 6.2, this last convergence will hold true provided that > E(Y,})/n* < co. But, by stationarity
and Fubini theorem, we have

> ]E(n);ﬁ) = 16E(Xil > : ) < CE(X}) < c. (6.12)

n2
n>1 n>Xx2

Therefore (6.11) is proved. Now, by the ergodic theorem we have

n_ X21 n X2
lim sup 21 XiLixil< vy < lim 2= Xk _ E(X?)  P-as.,
n

n n n

and for any A fixed,

T X1 noox2q
lim inf Zk;,l k{1 Xk |<VE} > lim Zk=1 kH{IXk|<A} — E(
n n n n

X121{|X1\§A}) P-a.s.
Letting A — oo, we see that the liminf and the lim sup above are equal to E(X?). Hence

n 2
D k=1 Xk1{|Xk|§\/E} = E(
n

On an other hand using the fact that E(Xy|Gi+1) = 0 a.s. together with (6.9), we get that

X3)  P-as. (6.13)

n n
nT Y Bk, vy |Gr1)” <072 TR(I XL x5 vy Ghe1) = 0(1)  Pas. (6.14)
k=1 k=1
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Combining (6.13), (6.14) and (6.11), we see that (6.10) holds, which proves (2.4).

The fact that (2.5) holds with v = 2 follows from (6.12). By Theorem 2.3, there exists a sequence
of independent centered Gaussian variables (Z,),>1 such that E(Z2) = E(Y2) = E(X?) + o(1) and
Yi+--Y, - (Zl + et Zn) = o(y/nloglogn) P-a.s. Let (Jx)r>1 be a sequence of iid Gaussian random
variables with mean zero and variance E(X?%), independent of the sequence (Zn)nzL We now construct
E(X3)
E(Z2)"

a sequence (Z,)n>1 as follows. If IE(ZEL) = 0, then Z, = §,, else Z, = anL where ¢, =

construction, the Z,’s are iid Gaussian random variables with mean zero and variance E(X?). Write
Gy, :=Zn — Zy and v2 :=>"_ E(G?). By Lévy’s inequality (see for instance Proposition 2.3 in [16]),

2

ﬁ) . (6.15)

IP’( max
1<k<2r

) < 2exp ( —
Hence taking z = 2vo-(loglog 27)*/2, we get that
k
ZIP’( max
1<k<or
r>0 - =1

Therefore sup; ;<o Zz 1 Gy ‘ = O(v2r(loglog 2’“)1/2) almost surely. P-a.s. This ends the proof of
Corollary 2.5 since v2 = o(n). O

-(log log 2r)1/2> < 00.

6.4 Proof of Corollary 2.7.
Define Yn = an{an‘Snl/p} - E(an{‘xn’|gn1/p}|gn+1). Since E(Xn|gn+1) =0 a.s.,
E|X (| Xk|1 1/p
Z | X% — 22 E(|Xk[1yx, <k })

1 1
k>1 k /;D k>1 k /r

Hence by stationary and Fubini theorem, >, -, k™ Y/PE| X} —Y}| < oo, implying via the Kronecker lemma
that -

Z | Xk — Y| = o(n'/?) P-a.s.
k=1

Let us prove now that (V;,),>; satisfies the conditions of Theorem 2.3 with a,, = n?/Pb(n) and 2 = n.
With this aim, we first notice that since E(X,|G,,+1) =0 a.s.,

E(X7|Gk+1) — B(X}?) — E(YZ|Gk11) + (YY) = B(XP1{ x> p103 1 Grr1) — E(X L x5 00/0)) -

Since by stationarity and Fubini theorem, ), ., k’Q/pIE(lelﬂxkbkl/p}) < oo, we conclude via the
Kronecker lemma that -

3 B(XGisn) = BOKE) — BOEGi) + EOF)| = o) Peas
Together with condition (2.8), this implies that
Z (Y2Grt1) — E(Y2)) = o(n?*?b(n)) P-a.s.
k=1

Notice now that by stationarity and Fubini theorem,

4
> E(z/”) <16E(X) > 41 < CLE(]X1]P) < oo,
n /p /p

n>1 n>|X1|P

Therefore (Y,,)n>1 satisfies (2.5) with v = 2. Applying Theorem 2.3, we conclude that enlarging our
probability space if necessary, there exists a sequence a sequence of independent centered Gaussian
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variables (En)n21 such that E(Z2) = E(Y2) and Y1+ Yy — (Z1+ - -+ Zn) = 0o(n'/?\/b(n) logn) P-a.s.
We consider now the sequence of iid centered Gaussian variables (Z,,),>1 with variance E(X?) as defined
in the proof of Corollary 2.5. Notice then that

5 2
E(Zk — Z1)* = (I1Xkll2 = 1Yell2)™ < 1X5 = Yall3 < E(XZ1x, 5 00/ry)
where for the last inequality, we have used the fact that E(X,|G,+1) = 0 a.s. Hence by stationarity

S EB(Zn - Zn)? /PP <E(XT Y 1/n?/P) < CE(IX1|P) < oo

n>1 1<n<[Xq|P

Therefore by the Kolmogorov theorem (or Lemma 6.2), >°, -, (Zn — Zyn)/n?/P converges P-a.s.and by the

Kronecker lemma Z7 + ...+ Z,, — (21 + ...+ Zl) = o(n'/?\/loglogn) P-a.s. This achieves the proof of
Corollary 2.7. O

6.5 Proof of Corollary 2.8.

The proof relies more deeply on the construction of Scott and Huggins [25]. We want to use Theorem
2.3 without condition (2.5). Now the proof of Theorem 2.3 relies on Proposition 2.1 and (2.5) is used to
ensure that condition (2.2) holds for an auxiliary process. Instead of (2.5) we will make use of Remark
6.3. We define a reverse martingale (R,,),>1, by R, = >_;~,, X&/k. Notice that R,, is well defined in L?
by Lemma 6.2. _ _ _ o

For every n < —1 define Ry, := R_,,, X,, := X_,, and G, := G_,,. Then (R,,Gn)n<_1 is a martingale.

Enlarging our probability space if necessary, we may consider a countable set of standard Brownian
motions (B,E”) )i>0, n < —1 that are independent of each others and of ()~(n)n§_1. Notice that the process

(f(n, (Bgn))tzo)ng_l with values in R x RE" | is stationary.

We now define a filtration (ﬁt)tg—l as follows. For n < —1 an integer, write Hp =G V U{Bt(j), 0<
t < 00, —00 < j < n}. For every t < —1, not an integer, write H, = ﬁ[t] VA{R41 + B;[(tgl), 0<s<
t — [t]}, where [t] stands for the largest negative integer, not exceeding ¢, and ¢ is defined on ]0,1] by
@(s) :=1/s — 1. Then, we define a continuous martingale with respect to (ﬁt)tg,l interpolating (ﬁn),

by Et = E(E[t]+1|7-[t), for every t < —1. Notice that

= - E(X_a[He)

Using Theorem A of [25] as done page 451 of [25], there exists a continuous non-decreasing process
(Tt)t<—1 and a Brownian motion (B;);>0 such that R, = B a.s. and (E? —T¢)i<—1 is a martingale with
respect to (ﬁt)tg,l. In particular, (7;):<_1 must be the quadratic variation of (Ry) on | — oo, t].

For every n > 1, define 7,, := 7_,,, H, = 7-L_n. These are exactly the quantities involved in the
proof of Proposition 2.1. Then ¢, = 7, — 7,41 is nothing else but the quadratic variation of (Et) on
[—n — 1, —n]. But it follows from (6.16) that (n*¢,),>1 is a stationary and ergodic process.

By Remark 6.3 we need to prove

Z(tk —E(tp|Hit1)) = O(n_3/2\/log logn) P-a.s. (6.17)

k>n

Since (n?ty,),>1 is a stationary and ergodic sequence in L2, it follows from Corollary 2.5 that Y ;'_, k*(tx—
E(tp|Hr+1)) = O(v/nloglogn) P-a.s., which proves (6.17) by an Abel summation.
(]
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