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In this paper, we obtain sufficient conditions in terms of projective criteria under which the partial sums of a stationary process with values in H (a real and separable Hilbert space) admits an approximation, in L p (H), p > 1, by a martingale with stationary differences and we then estimate the error of approximation in L p (H). The results are exploited to further investigate the behavior of the partial sums. In particular we obtain new projective conditions concerning the Marcinkiewicz-Zygmund theorem, the moderate deviations principle and the rates in the central limit theorem in terms of Wasserstein distances. The conditions are well suited for a large variety of examples including linear processes or various kinds of weak dependent or mixing processes. In addition, our approach suits well to investigate the quenched central limit theorem and its invariance principle via martingale approximation, and allows us to show that they hold under the so-called Maxwell-Woodroofe condition that is known to be optimal.

Introduction

Since the seminal paper of Gordin [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] in 1969, approximation via a martingale is known to be a nice method to derive limit theorems for stochastic processes. For instance, the martingale method has been used successfully by Heyde [START_REF] Heyde | On the central limit theorem and iterated logarithm law for stationary processes[END_REF] and Gordin and Lifsic [START_REF] Gordin | Central limit theorem for stationary Markov processes[END_REF] to derive central limit theorems for the partial sums of a stationary sequence, and it has undergone substantial improvements. For recent contributions where the central limit theory and weak convergence problems are handled with the help of martingale approximations, let us mention the recent papers by Maxwell and Woodroofe [START_REF] Maxwell | C entral limit theorems for additive functionals of Markov chains[END_REF], Wu and Woodroofe [START_REF] Wu | Martingale approximations for sums of stationary processes[END_REF], Peligrad and Utev [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF], Merlevède and Peligrad [START_REF] Merlevède | On the weak invariance principle for stationary sequences under projective criteria[END_REF], Zhao and Woodroofe [START_REF] Zhao | On martingale approximations[END_REF] and Gordin and Peligrad [START_REF] Gordin | On the functional CLT via martingale approximation[END_REF]. In all these papers, conditions are then imposed to be able to implement the martingale method; namely, to approximate in a suitable way the partial sums of a stationary process by a martingale. However to derive many other kinds of limit theorems from the martingale method, more precise estimates of the approximation error of partial sums by a martingale may be useful. We refer to the recent papers by Wu [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF], Zhao and Woodroofe [START_REF] Zhao | Law of the iterated logarithm for stationary processes[END_REF], Cuny [START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF], Dedecker, Doukhan and Merlevède [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] and Merlevède, Peligrad and Peligrad [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] where almost sure behaviors of the partial sums process have been addressed with the help of estimates of this approximation error.

In order to say more about these papers and to present our results, let us first introduce the following notation giving a way to define stationary processes. 1 Notation 1.1 Let (Ω, A, P) be a probability space and let θ : Ω → Ω be a bijective bi-measurable transformation preserving the probability P. Let F 0 be a σ-algebra of A satisfying F 0 ⊆ θ -1 (F 0 ). We then define a non-decreasing filtration (F i ) i∈Z by F i = θ -i (F 0 ), and a stationary sequence (X i ) i∈Z by X i = X 0 • θ i where X 0 is a real-valued centered random variable (or possibly taking values in some real and separable Hilbert space). The sequence will be called adapted to the filtration (F i ) i∈Z if X 0 is F 0 -measurable. Define then the partial sum by S n = X 1 + X 2 + • • • + X n . The following notations will also be used:

F -∞ = i∈Z F i , F ∞ = i∈Z F i , E k (X) = E(X|F k ), P k (X) = E k (X) -E k-1 (X),
and when X is real-valued, its L p norm is denoted by X p = E(|X| p ) 1/p . We shall also use the notation a n b n to mean that there exists a numerical constant C not depending on n such that a n ≤ Cb n , for all positive integers n.

In all what follows the sequence (X i ) i∈Z is assumed to be stationary and adapted to (F i ) i∈Z and the variables are in L p , for some p > 1.

In [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] and [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], it is assumed that D = i≥0 P 0 (X i ) converges in L p , p > 1, and estimates of S n -M n p where M n = n i=1 D • θ i are provided involving either the terms k≥n P 0 (X k ) p (see [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF]) or the terms E 0 (S n ) p and k≥n P 0 (X k ) p (see [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]). Those estimates are then exploited to derive explicit rates in the almost sure invariance principle under projective conditions that are well adapted to a large variety of examples. The paper by Merlevède et al [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] addresses different questions about the almost sure behavior of S n such as quenched invariance principles or almost sure central limit theorems. Their proof is based under a precise estimate of the L 2 approximation error between the partial sums process and their constructed approximating stationary martingale, provided that the Maxwell-Woodroofe condition (1) holds. More precisely, in the case where p = 2, they proved that if

∞ k=1 E 0 (S k ) 2 k 3/2 < ∞ , (1) 
then there is a martingale M n with stationary and square integrable differences such that

S n -M n 2 n 1/2 k≥n E 0 (S k ) 2 k 3/2 . ( 2 
)
To implement a martingale method for other questions related to the behavior of the partial sums, as for instance rates in the strong laws of large numbers or in the central limit theorem in terms of Wasserstein distances, or also moderate deviations principles, the first question that our paper addresses is the construction of a stationary martingale M n in L p (p > 1) in such a way that an estimate of S n -M n p can be given in the spirit of [START_REF] Bradley | Introduction to strong mixing conditions[END_REF]. Our Theorem 2.3 is in this direction. When p ≥ 2, it states in particular that if

∞ k=1 E 0 (S k ) p k 1+1/p < ∞ , (3) 
then we can construct a stationary sequence (D k = D • θ k ) k∈Z of martingale differences in L p adapted to (F k ) k∈Z such that setting

M n = n k=1 D • θ k , S n -M n p n 1/2 k≥[n p/2 ] E 0 (S k ) p k 1+1/p . (4) 
While ( 4) and (2) coïncide when p = 2, our method of proof is different from the one used in [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF]. In Theorem 2.3, we shall consider also the case when p ∈]1, 2[. The main tools to prove the martingale approximation with the bound (4) being algebraic computations and Burkholder's inequality, the estimate also holds for variables taking values in a separable real Hilbert space. Hence Theorem 2.3 is stated in this setting. As we shall see, this martingale approximation result leads to new projective conditions allowing results concerning the moderate deviations principle or also estimates of Wasserstein distances in the CLT (see Sections 3.2 and 3.3). Notice that the projective conditions assumed all along the paper are general enough to contain a wide class of dependent sequences. Another interesting point of our approach and of the approximating martingale we consider here, is that they lead not only to a useful estimate of S n -M n p , but, together with a new ergodic theorem with rate (see Theorem 4.7), they allow also to show that, under the Maxwell-Woodroofe condition (1), E 0 [(S n -M n ) 2 ] = o(n) P-a.s. (see our Proposition 4.9). This allows to give a definitive positive answer to the question whether the quenched central limit theorem for n -1/2 S n holds true under [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF]. As we shall see, we can even say more since, using a maximal inequality from Merlevède and Peligrad [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF], we establish in Theorem 2.7 that the functional form of the quenched central limit theorem also holds under the Maxwell-Woodroofe condition.

Our paper is structured as follows. Section 2 contains our main results. More precisely, in Section 2.1 we construct an approximating martingale with stationary differences in L p that leads to estimates of the L p approximating error between the partial sums and the constructed martingale (see Theorem 2.3). In Section 2.2, we address the question of the quenched weak invariance principle under the Maxwell-Woodroofe's condition [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF]. Section 3 is devoted to some applications of the estimates given in Theorem 2.3 to various kind of limit behavior of the partial sums. In Section 4, we prove the results stated in Sections 2.1 and 2.2 and state a new ergodic theorem with rate (see Theorem 4.7) whose proof is postponed in Section A. Some technical results are given and proven in Section B.

Main results

In complement to Notation 1.1, we introduce additional notations used all along the paper. Notation 2.1 Let H be a real and separable Hilbert space equipped with the norm | • | H . For a random variable X with values in H, we denote its norm in L p (H) by X p,H = E(|X| H ) p 1/p , and we simply denote L p = L p (R). Notation 2.2 Let p = min(2, p), p = max(2, p) and q = p /p .

Martingale approximation in L p (H)

Let p > 1. In this section, we shall establish conditions in order for S n to be approximated by a martingale M n with stationary differences in L p (H) in such a way that the approximation error S n -M n p,H is explicitly controlled.

Let (X n ) n∈Z be an adapted stationary sequence in L p (H) in the sense of Notation 1.1. When

D = n≥0 k≥n P 0 (X k ) k + 1 , (5) 
converges in L p (H), then (D k = D • θ k ) k∈Z forms a stationary sequence of martingale differences in

L p (H) adapted to (F k ) k∈Z . Notice that, by Lemma 4.1, the series k≥0 P0(X k ) k+1
converges in L p (H) as soon as X 0 ∈ L p (H). In addition, note that the series in (5) converges in L p (H) as soon as the series k≥0 P 0 (X k ) does (see Lemma B.1).

Theorem 2.3 Let p > 1 and let (X n ) n∈Z be an adapted stationary sequence in L p (H) in the sense of Notation 1.1. Assume that

n≥1 E 0 (S n ) p,H n 1+1/p < ∞ . ( 6 
)
Then n≥1 | k≥n k -1 P 0 (X k-1 )| H converges in L p and setting M n = n k=1 D •θ k
where D is defined by (5), the following inequality holds:

S n -M n p,H n 1/p k≥[n q ] E 0 (S k ) p,H k 1+1/p . ( 7 
)
Remark 2.4 Let p > 1 and α ∈]0, 1/p ]. Let us introduce the following assumption:

n≥1 E 0 (S n ) p,H n 1+α < ∞ . ( 8 
)
Assume that (8) holds with α = min(1/2, 2/p 2 ). By combining [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF] with Corollary 22 of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] (with the norm | • | H replacing the absolute values) we have

max 1≤k≤n |S k -M k | H p = o(n 1/p ) . (9) 
Notice also that if p > 2 and (8) holds with α ∈]2/p 2 , 1/p], then [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF] combined with the maximal inequality [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF] of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] (with the norm | • | H replacing the absolute values) implies that

max 1≤k≤n |S k -M k | H p = o(n αp/2 ) .
The fact that the maximal inequality [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF] of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] is still valid when the variables take values in a Hilbert space comes from the fact that its proof is only based on chaining arguments (still valid in functional spaces by replacing the absolute values by the corresponding norms) and on Doob's maximal inequality that also holds in Hilbert spaces. Since Corollary 22 of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] is proved via their maximal inequality [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF], it is still valid in the Hilbert space setting.

Comment 2.5 Theorem 1 in [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] (still valid in the Hilbert space context) states the following martingale approximation: Let p > 1 and assume that E -∞ (X 0 ) = 0 P-a.s. and

k≥0 P 0 (X k ) p,H < ∞ . ( 10 
)
Then setting D = k≥0 P 0 (X k ) and

M n = n i=1 D • θ i , S n -M n p p,H n k=1 i≥k P 0 (X j ) p,H p . (11) 
The approximations [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF] and (11) cannot be compared and cover distinct classes of dependent sequences. Indeed, there exist examples of processes in L 2 satisfying one of the conditions (1) or [START_REF] Dedecker | Rio Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] but not the other one, see e.g. [START_REF] Durieu | Independence of four projective criteria for the weak invariance principle[END_REF].

Comment 2.6 Notice that the quantity E 0 (S k ) p,H can be estimated in a large variety of examples such as linear processes or mixing sequences. To give an example, let us consider p ≥ 2 and the so-called stationary ρ-mixing real sequences defined by the coefficient

ρ(n) = ρ(F 0 -∞ , F ∞ n ) where F j i = σ(X i , . . . , X j ) (12) 
and

ρ(B, C) = sup Cov(X, Y ) X 2 Y 2 : X ∈ L 2 (B), Y ∈ L 2 (C) .
Here L 2 (B) denotes the space of real-valued random variables in L 2 that are B-measurable. In the proof of Lemma 1 in [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF], it has been proven that for any p ≥ 2 and any k ≥ 0,

E 0 (S 2 k+1 ) p k i=0 2 i/2 ρ 2/p (2 i ) , (13) 
provided that k≥0 ρ 2/p (2 k ) < ∞. On an other hand, since E 0 (S n ) p n≥1 is a subadditive sequence, it follows from Lemma 2.7 in [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] that, for any α > 0, ( 8) is equivalent to k≥0 2 -αk E 0 (S 2 k ) p < ∞. By using [START_REF] Derriennic | The central limit theorem for Markov chains started at a point[END_REF], one can see that the latter convergence holds provided that, for α ∈]0, 1/2],

i≥0 2 i(1/2-α) ρ 2/p (2 i ) < ∞.
2.2 Martingale approximation under P 0 and the quenched (weak) invariance principle

Limit theorems for stochastic processes that do not start from equilibrium are timely and motivated by evolutions in quenched random environment. Recent discoveries by Volný and Woodroofe [START_REF] Volný | An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process, Dependence in analysis, probability and number theory[END_REF] show that many of the central limit theorems satisfied by classes of stochastic processes in equilibrium, fail to hold when the processes are started from a point. In this section, we address the question whether the Maxwell-Woodroofe condition (1) is sufficient for the validity of the quenched central limit theorem since this condition is known to be optimal (see e.g. [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] or [START_REF] Volný | Martingale approximation and optimality of some conditions for the central limit theorem[END_REF] where the optimality of this condition is discussed). This question starts with a result in Borodin and Ibragimov ([1], Ch 4) stating that if E 0 (S n ) 2 is bounded, then one has the CLT starting at a point in its functional form. Later, works by Derriennic and Lin (see [START_REF] Derriennic | The central limit theorem for Markov chains with normal transition operators, started at a point[END_REF], [START_REF] Derriennic | Fractional Poisson equations and ergodic theorems for fractional coboundaries[END_REF], [START_REF] Derriennic | The central limit theorem for Markov chains started at a point[END_REF]), Zhao and Woodroofe [START_REF] Zhao | Law of the iterated logarithm for stationary processes[END_REF], Cuny and Lin [START_REF] Cuny | Pointwise ergodic theorems with rate and application to the CLT for Markov chains[END_REF], Cuny [START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF], Merlevède, Peligrad and Peligrad [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] improved on this result by imposing weaker and weaker conditions on E 0 (S n ) 2 , but always stronger than [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF]. Let us mention that a result in Cuny and Peligrad [START_REF] Cuny | Central limit theorem started at a point for stationary processes and additive functional of reversible Markov chains[END_REF] shows that the condition

∞ k=1 E 0 (X k ) 2 /k 1/2 <
∞, is sufficient for the quenched CLT. It is also sufficient for the quenched weak invariance principle by a recent result of Cuny and Volny [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF].

As we shall see in the proof of Theorem 2.7 below, the approximating martingale that we defined in Section 2.1 also allows to show that, under (1), lim n→∞ n -1 E 0 (|S n -E 0 (S n ) -M n | 2 ) = 0 P-a.s. Combined with a new ergodic theorem with rate (see our Theorem 4.7) and a maximal inequality from Merlevède and Peligrad [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF], this implies that the quenched CLT in its functional form holds under the Maxwell-Woodroofe condition (1).

To state that result we need some further notations. Let us first assume the existence of a regular version of the conditional probability on A given F 0 , that is, we assume the existence of a transition probability K(•, •) on (Ω, A), such that for every A ∈ A, K(•, A) is a version of E(1 A |F 0 ). Then, we denote by E ω the expectation with respect to K(ω, •). We also define the Donsker process W n by

W n (t) = n -1/2 (S [nt] + (nt -[nt])X [nt]+1 ).
Theorem 2.7 let (X n ) n∈Z be an adapted stationary sequence in L 2 in the sense of Notation 1.1. Assume that (1) holds. Then n≥1 | k≥n k -1 P 0 (X k-1 )| converges in L 2 and setting M n = n k=1 D• θ k where D is defined by (5), the following holds:

E 0 (max 1≤k≤n |S k -M k | 2 ) n -→ n→+∞ 0 P-a.s. (14) 
In particular, (S n ) satisfies the following quenched weak invariance principle: there exists Ω 0 ∈ A with P(Ω 0 ) = 1 such that for every ω ∈ Ω 0 , for any continuous and bounded function

f from (C([0, 1]), . ∞ ) to R, lim n→∞ E ω (f (W n )) = f (z η(ω))W (dz) , (15) 
where

η = lim n→∞ n -1 E(S 2 n |I) = lim n→∞ n -1 E 0 (S 2 n ) in L 1
, and W is the distribution of a standard Wiener process. Here I is the invariant sigma field, i.e. I = {A ∈ A : θ -1 (A) = A}.

It follows from Comment 2.6 that if the ρ-mixing coefficients of (X n ) n∈Z satisfy k≥0 ρ(2 k ) < ∞, then the quenched invariance principle holds. Hence the CLT from Ibragimov [START_REF] Ibragimov | A remark on the central limit theorem for dependent random variables[END_REF] for ρ-mixing sequences that is known to be essentially optimal, is also quenched. A careful analysis of the proof of Theorem 2.7, shows that if the random variables are assumed to be in L 2 (H), then under ( 6) with p = 2, the almost sure convergence ( 14) still holds with the norm | • | H replacing the absolute values.

Theorem 2.7 has an interesting interpretation in the terminology of additive functionals of Markov chains. Let (ξ n ) n≥0 be a Markov chain with values in a Polish space S, so that there exists a regular transition probability P ξ1|ξ0=x . Let P be the transition kernel defined by P (g)(x) = P ξ1|ξ0=x (g) for any bounded measurable function g from S to R, and assume that there exists an invariant probability π for this transition kernel, that is a probability measure on S such that π(g) = π(P (g)) for any bounded measurable function g from S to R. Let then L 2 (π) be the set of functions from S to R such that π(g 2 ) < ∞. For g ∈ L 2 (π) such that π(g) = 0, define X i = g(ξ i ). In this setting the condition ( 1)

is n≥1 n -3/2 n k=1 P k (g) L 2 (π) < ∞.
In the context of Markov chain the conclusion of Theorem 2.7 is also known under the terminology of functional CLT started at a point. To rephrase it, let P x be the probability associated to the Markov chain started from x and let E x be the corresponding expectation. Then, for π-almost every x ∈ S, for any continuous and bounded function

f from (C([0, 1]), . ∞ ) to R, lim n→∞ E x (f (W n )) = f (z √ η x )W (dz) , (16) 
where η x := lim n E x (S 2 n )/n. Note that Theorem 2.7 improves Corollary 5.10 of [START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF] stated for Markov chains with normal Markov operator. Let us mention that the convergence ( 16) has also been obtained recently in Dedecker, Merlevède and Peligrad [START_REF] Dedecker | A quenched weak invariance principle[END_REF] under the condition: k≥0 π(|gP k (g)|) < ∞. The latter condition and (1) are of independent interests (see Section 5.2 of [START_REF] Dedecker | A quenched weak invariance principle[END_REF]).

Applications

As we mentioned in the introduction, having estimates of the approximation error of partial sums by a martingale can be useful to derive different kinds of limit theorems for the partial sums associated with a stationary process. For instance, starting from (2), Merlevède et al [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] have obtained sufficient projective conditions in order for the partial sums to satisfy either the law of the iterated logarithm or the almost sure central limit theorem. In this section, we shall use our estimate [START_REF] Cuny | A quenched invariance principle for stationary processes[END_REF], either to give new projective conditions under which the partial sums associated with a stationary process satisfy a moderate deviations type results, or to analyze the rates of convergence in the CLT in terms of Wasserstein distances. Before stating those results we provide a simple and direct application of our results, leading to new projective criteria to obtain rates in the SLLN.

Strong law of large numbers with rate

Our martingale approximation in L p for 1 < p < 2 combined with our new ergodic theorem with rate (see Theorem 4.7) allows us to derive very directly a projective condition for the Marcinkiewicz-Zygmund strong law of large numbers. Theorem 3.1 Let 1 < p < 2 and let (X n ) n∈Z be an adapted stationary sequence in L p (H) in the sense of Notation 1.1. Assume that

n≥2 log n E 0 (S n ) p,H n 3/2 < ∞ .
Then, there exists a stationary martingale

(M n ) n≥1 in L p (H), such that |S n -M n | H = o(n 1/p ) P-a.s.
In particular, we have

|S n | H = o(n 1/p ) P-a.s.
Proof of Theorem 3.1. Using Theorem 4.7, the first part of the result will follow if we can prove that n≥1 n -1-1/p S n -M n p,H < ∞. This convergence follows by using Theorem 2.3 to control S n -M n p,H . For the last part of the theorem, it suffices to notice that by the Marcinkiewicz-Zygmund strong law of large numbers for martingales |M n | H = o(n 1/p ) P-a.s. for any p ∈]1, 2[ as soon as the martingales are in L p (H) (see Woyczyński [START_REF] Woyczyński | Asymptotic behavior of martingales in Banach spaces[END_REF]).

Moderate deviations

The aim of this section is to obtain asymptotic expansions for probabilities of moderate deviation for stationary adapted real-valued processes under projective criteria; more precisely we want to study the asymptotic behavior of P(S n ≥ σ √ nr n ) where (r n ) is a sequence of positive numbers that diverges to infinity at an appropriate rate and σ = lim n→∞ S n 2 / √ n. Specifically, we aim to find the zone for x of the following moderate deviations principle:

P(S n ≥ xσ √ nr n ) 1 -Φ(x r n ) = 1 + o(1) , (17) 
where Φ(x) is the standard normal distribution function. If r n = r > 0 is fixed, then ( 17) is essentially the well-known central limit theorem. However, for the case when r = r n is allowed to tend to infinity, the problem of moderate deviation probabilities is to find all the possible speed of convergence of r n → ∞ such that (17) holds. It is a challenging problem to establish moderate deviations principle (MDP) for dependent variables. However starting from the deep results of Grama [START_REF] Grama | On moderate deviations for martingales[END_REF] and of Grama and Haeusler [START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF] for martingales, Wu and Zhao [START_REF] Wu | Moderate deviations for stationary processes[END_REF] showed that it is possible to obtain MDP results for a certain class of stationary processes such as functions of an iid sequence as soon as the partial sum process can be well approximated by a martingale. Using our Theorem 2.3, we shall give sufficient conditions for the MDP to hold that are different to the ones obtained by Wu and Zhao [START_REF] Wu | Moderate deviations for stationary processes[END_REF].

Let us first start with some notations and definitions. Let p ∈ [START_REF] Bradley | Introduction to strong mixing conditions[END_REF][START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF]. For x > 1, let r x > 0 be the solution to the equation

x = (1 + r x ) ν(p) exp(r 2 x /2) where ν(p) = p + 1 if 2 < p ≤ 3 3p -3 if 3 < p ≤ 4 .
The function ν(p) results from the martingale MDP as obtained in [START_REF] Grama | On moderate deviations for martingales[END_REF] and in [START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF] (see also Theorem 2 and Remark 5 in [START_REF] Wu | Moderate deviations for stationary processes[END_REF]). In addition, by Remark 1 in [START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF], as x → ∞, r x has the asymptotic expansion

r 2 x = 2 log x -2[ν(p) + o(1)] log(1 + √ 2 log x). Let τ n → ∞
be a positive sequence of numbers and (U n ) a sequence of real valued random variables such that U n → D N (0, 1). We shall say that (U n ) satisfies the moderate deviation principle (MDP) with rate τ n and exponent p > 0 if for every a > 0 there exists a positive constant C = C a,p depending neither on x nor on n such that max

P(U n ≥ r x ) 1 -Φ(r x ) -1 , P(U n ≤ -r x ) 1 -Φ(-r x ) -1 ≤ C x τ n 1/(1+p)
, holds uniformly in x ∈ [1, aτ n ]. Therefore τ n gives a range for which the MDP holds.

Theorem 3.2 Let 2 < p ≤ 4 and let (X n ) n∈Z be an adapted stationary sequence in L p in the sense of Notation 1.1. Assume that

n≥1 E 0 (S n ) p n 1+2/p 2 < ∞ and n≥1 1 n 2/p k≥n E -n (S k ) 2 k 3/2 < ∞ . ( 18 
)
Assume in addition that

n≥1 1 n 1+2/p E -n (S 2 n ) -E(S 2 n ) p/2 < ∞ . ( 19 
)
Then n -1 E(S 2 n ) converges to some non-negative number σ 2 and if σ > 0,

Sn σ √ n n≥1
satisfies the MDP with rate τ n = n p/2-1 and exponent p.

Proof. Analyzing the proof of Theorem 1 in [START_REF] Wu | Moderate deviations for stationary processes[END_REF], we infer that the theorem will be proven if we can show that there exists a L p stationary sequence (D i ) i∈Z of martingale differences with respect to

(F i ) i∈Z such that setting M n = n i=1 D i , S n -M n p = o(n 1/p ) (20) 
and

n i=1 E i-1 (D 2 i ) -E(D 2 i ) p/2 = O(n 2/p ) . ( 21 
)
According to Theorem 2.3 combined with Remark 2.4, the first part of condition ( 18) implies [START_REF] Heyde | On the central limit theorem and iterated logarithm law for stationary processes[END_REF]. On the other hand, since 1 < p/2 ≤ 2, according to Theorem 3 in [START_REF] Wu | Moderate deviations for stationary processes[END_REF] applied to the stationary sequence

(E i-1 (D 2 i ) -E(D 2 i )) i≥1 and using the fact that M n is a martingale, (21) holds if k≥0 1 2 2k/p E 0 (M 2 2 k ) -E(M 2 2 k ) p/2 < ∞ . (22) 
We notice now that since M n is a stationary martingale, for any r ≥ 1,

E 0 (M 2 2 k ) -E(M 2 2 k ) r = k-1 i=0 E -2 i (M 2 2 i ) -E(M 2 2 i ) • θ 2 i + E 0 (D 2 1 ) -E(D 2 1 ) r ≤ k-1 i=0 E -2 i (M 2 2 i ) -E(M 2 2 i ) r + E 0 (D 2 1 ) -E(D 2 1 ) r ≤ 2 k-1 i=1 E -2 i (M 2 2 i-1 ) -E(M 2 2 i-1 ) r + 2 E 0 (D 2 1 ) -E(D 2 1 ) r . (23) 
It follows that ( 22) is equivalent to:

k≥0 2 -2k/p E -2 k+1 (M 2 2 k ) -E(M 2 2 k ) p/2 < ∞. Due to the subadditivity of the sequence ( E -2n (M 2 n ) -E(M 2 n ) p/2 ) n≥1 , the latter condition is equivalent to n≥1 1 n 1+2/p E -2n (M 2 n ) -E(M 2 n ) p/2 < ∞ , (24) 
(see Lemma 2.7 in [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF]). Using now Proposition B.3, we infer that (24) holds if [START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF] and the second part of (18) do and if:

n≥1 n -(1+4/p 2 ) E 0 (S n ) 2 p < ∞.
To end the proof, it suffices to notice that since ( E 0 (S n ) p ) n≥1 is a subadditive sequence, the latter condition is satisfied provided the first part of ( 18) is (see item 3 of Lemma 37 in [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF]).

The quantities involved in conditions ( 18) and ( 19) can be handled by controlling norms of individual summands which involve terms such as E 0 (X i X j ) and E 0 (X i ). The latter quantities can be then in turn controlled by using various mixing or dependence coefficients (see e.g. [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]). For instance, as a corollary of Theorem 3.2, the following result holds (its proof is omitted since it follows the lines of the proof of Corollary 2.1 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]).

Corollary 3.3 Let 2 < p ≤ 4 and let (X n ) n∈Z be an adapted stationary sequence in L p in the sense of Notation 1.1. Assume that there exists γ ∈]0, 1] such that n>0

n (p-2)/(γp) n 1/p E 0 (X n ) p < ∞ and n>0 n γ n 2/p sup i≥j≥n E 0 (X i X j ) -E(X i X j ) p/2 < ∞ .
Then the conclusion of Theorem 3.2 holds with σ 2 = k∈Z Cov(X 0 , X k ).

As in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], this result may be used, for instance, to derive under which conditions the partial sum of a function f of the stationary Markov chain (ξ k ) k∈Z with transition

Kf (x) = 1 2 (f (x + a) + f (x -a)
), when a is irrational in [0, 1] and badly approximable by rationals, satisfy the conclusion of Theorem 3.2. For instance, one can prove that if f is three times differentiable, Sn(f )

σ(f ) √ n n≥1
satisfies the MDP with rate τ n = n and exponent 4 provided that σ(f

) > 0. Here S n (f ) = n k=1 f (ξ k ) -m(f ) where m is the Lebesgue-Haar measure and σ 2 (f ) = m((f -m(f )) 2 ) + 2 n>0 m(f K n (f -m(f ))).
Since in Theorem 3.2 the conditions are expressed in terms of the conditional expectation of the partial sum or of its square, it is also possible to obtain applications for mixing sequences. As an example, the following corollary gives conditions in terms of ρ-mixing coefficients as defined in Comment 2.6.

Corollary 3.4 Let 2 < p ≤ 4 and let p ≤ α ≤ 4. Let (X n ) n∈Z be an adapted stationary sequence in L α in the sense of Notation 1.1. Let (ρ(n)) n≥1 be its associated rho-mixing coefficients as defined in [START_REF] Derriennic | Fractional Poisson equations and ergodic theorems for fractional coboundaries[END_REF]. Assume that

n≥1 ρ 2/p (n) n 1/2+2/p 2 < ∞ and n≥1 ρ s (n) n 2/p < ∞ where s = 2(α -2)/α . ( 25 
)
Then the conclusion of Theorem 3.2 holds with rate τ n = n p/2-1 and exponent p.

Notice that if α = 4, condition [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] reduces to its first part.

Proof. Let us prove that the first part of (18) holds. With this aim, we first notice that, due to the subadditivity of the sequence ( E 0 (S n ) p ) n≥1 , this condition is equivalent to (see Lemma 2.7 in [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF])

k≥0 E 0 (S 2 k ) p 2 2k/p 2 < ∞ . (26) 
Since p > 2, (25) implies that k≥0 ρ 2/p (2 k ) < ∞. Therefore, by using [START_REF] Derriennic | The central limit theorem for Markov chains started at a point[END_REF], it follows that [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF] is satisfied as soon as k≥0 2 -2k/p 2 k i=0 2 i/2 ρ 2/p (2 i ) < ∞, which is equivalent to the first part of condition [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF].

We prove now that the second part of (18) holds. Due to the monotonicity of the sequence ≥n -3/2 E -n (S ) 2 n≥1 , the second part of ( 18) is equivalent to:

k≥0 2 k 2 2k/p j≥k 2 -3j/2 2 j+1 -1 =2 j E -2 k (S ) 2 < ∞ . ( 27 
)
To prove the above condition, we first notice that by stationarity, for any ∈ {2 j , . . . , 2 j+1 -1},

E -2 k (S ) 2 ≤ E -2 k (S -S 2 j ) 2 + E -2 k (S 2 j ) 2 ≤ E -2 k -2 j (S -2 j ) 2 + j-1 s=0 E -2 k -2 s (S 2 s ) 2 + E -2 k (X 1 ) 2 .
Since, for any positive integers r and t, E -r (S t ) 2 ρ(r) √ t, it follows that

2 j+1 -1 =2 j E -2 k (S ) 2 2 3j/2 ρ(2 j ) + 2 j ρ(2 k ) + 2 j j-1 s=0 2 s/2 ρ(2 k + 2 s ) .
So overall, since p > 2, we infer that

k≥0 2 k 2 2k/p j≥k 2 -3j/2 2 j+1 -1 =2 j E -2 k (S ) 2 k≥0 2 k(1-2/p) ρ(2 k ) . ( 28 
)
Noticing that [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] implies in particular that

ρ(2 k ) = o(2 -k(p 2 -4)/(4p) ) as k → ∞ , (29) 
and taking into account that p > 2, we then infer that the sums in the right-hand side of ( 28) are finite under [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF]. This ends the proof of ( 27), hence the second part of ( 18) holds.

It remains to show that ( 19) is satisfied. Note first that since p ∈]2, 4] and α ≥ p,

E -n (S 2 n ) -E(S 2 n ) p/2 ≤ E -n (S 2 n ) -E(S 2 n ) α/2 ≤ sup Z∈B α/(α-2) (F-n) Cov(Z, S 2 n ) ,
where B r (F -n ) stands for the set of F -n -measurable random variables such that Z r ≤ 1. Using then Theorem 4.12 in [START_REF] Bradley | Introduction to strong mixing conditions[END_REF], we get that

E -n (S 2 n ) -E(S 2 n ) p/2 ≤ 2 1-s ρ s (n) S 2 n α/2 = 2 1-s ρ s (n) S n 2 α ,
where s = 2(α -2)/α. Now the first part of (25) implies k>0 ρ 1/2 (2 k ) < ∞ (see also [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF]), therefore S n α n 1/2 (see [START_REF] Peligrad | Convergence rates of the strong law for stationary mixing sequences[END_REF] or [START_REF] Shao | Maximal inequalities for partial sums of -mixing sequences[END_REF]). Hence,

E -n (S 2 n ) -E(S 2 n ) p/2 nρ s (n) , (30) 
which proves that (19) holds as soon as the second part of ( 25) does. This ends the proof of the corollary.

Rates of convergence for Wasserstein distances in the CLT

Let L(µ, ν) be the set of probability laws on R 2 with marginals µ and ν. Let us consider the Wasserstein distances of order r ≥ 1 defined by W r (µ, ν) = inf |x -y| r P (dx, dy) 

1 n 3-p/2 E -n (S 2 n ) -E(S 2 n ) 1+γ < ∞ for some γ > 0 . (31) 
Assume in addition that

n≥1 E 0 (S n ) 2 p n 1+4/p 2 < ∞ , (32) 
and that

n≥1 E 0 (S n ) 2 n (5-p)/2 < ∞ if r ∈ [1, 2] and E 0 (S n ) r = O(n (3-p)/r ) if r ∈]2, p] . (33) 
Then n -1 E(S 2 n ) converges to some non-negative number σ 2 , and W r r

(P n -1/2 Sn , G σ 2 ) = O(n 1-p/2 ).
The above result improves Theorem 3.1 in Dedecker, Merlevède and Rio [START_REF] Dedecker | Rio Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] that imposes the series n>0 E(X n |F 0 ) to converge in L p instead of the weaker conditions ( 32) and [START_REF] Woyczyński | Asymptotic behavior of martingales in Banach spaces[END_REF]. When ρ-mixing sequences are considered, applying Theorem 3.5 we derive the following corollary (its proof is omitted since it uses similar bounds as those obtained in the proof of Corollary 3.4).

Corollary 3.6 Let 2 < p ≤ 3 and let p ≤ α ≤ 4. Let (X n ) n∈Z be a adapted stationary sequence in L α in the sense of Notation 1.1. Let (ρ(n)) n≥1 be its associated rho-mixing coefficients as defined in [START_REF] Derriennic | Fractional Poisson equations and ergodic theorems for fractional coboundaries[END_REF]. Assume that

n≥1 ρ s (n) n 2-p/2 < ∞ where s = 2(α -2)/α .
Then the conclusion of Theorem 3.5 holds for any 1 ≤ r ≤ 2.

Proof of Theorem 3.5. Notice first that (32) implies in particular that E 0 (S n ) p = o(n 2/p 2 ) (apply for instance Item 2 of Lemma 37 in [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] to the sequence ( E 0 (S n ) 2 p ) n≥0 ). Now, since p > 2, (32) then entails that (6) holds true. Therefore, by Theorem 2.3, D defined by ( 5) is in L p . In addition, since p > 2, (6) implies that n>0 n -3/2 E 0 (S n ) 2 < ∞ which is a sufficient condition for n -1 E(S 2 n ) to converge (see Theorem 1 in [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF]).

Let now

M n = n k=1 D • θ k and R n = S n -M n .
According to the proof of Theorem 3.1 in [10] and to their remark 2.1, the theorem will follow if we can prove that

R n r = O(n (3-p)/2 ) . (34) 
and also that k≥0

E 0 (M 2 2 k ) -E(M 2 2 k ) 1+γ 2 k(2-p/2)
< ∞ for a γ > 0 and

k≥0 E 0 (M 2 2 k ) -E(M 2 2 k ) p/2 2 2k/p < ∞ .
Using [START_REF] Maxwell | C entral limit theorems for additive functionals of Markov chains[END_REF] and the subadditivity of the sequence (

E -2n (M 2 n ) -E(M 2 n ) q ) n≥1
, for any q ≥ 1, we infer that the latter conditions are equivalent to

n≥1 E -2n (M 2 n ) -E(M 2 n ) 1+γ n 3-p/2
< ∞ for a γ > 0 and

n≥1 E -2n (M 2 n ) -E(M 2 n ) p/2 n 1+2/p < ∞ . (35) 
Using Proposition B.3 we infer that [START_REF] Wu | Martingale approximations for sums of stationary processes[END_REF] holds provided that ( 19) and ( 31) do, and that

n≥1 E 0 (S n ) 2 p n 1+4/p 2 < ∞ , n≥1 E 0 (S n ) 2 2(1+γ) n 1+(4-p)/(2+2γ) < ∞ and n≥1 E 0 (S n ) 2 n (5-p)/2 < ∞ . (36) 
Notice first that the third part of (36) holds provided that (33) does (notice that the second part of (33), for r > 2 implies the first part of ( 33)), whereas the first part of ( 36) is exactly condition [START_REF] Volný | An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process, Dependence in analysis, probability and number theory[END_REF]. Notice now that for any p ∈]2, 3[ and γ small enough, (4 -p)/(2 + 2γ) ≥ 4/p 2 and p ≥ 2 + 2γ. Therefore the second part of ( 36) is implied by condition [START_REF] Volný | An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process, Dependence in analysis, probability and number theory[END_REF]. It remains to prove [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF]. By Lemma 2.7 of [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF], the first part of [START_REF] Woyczyński | Asymptotic behavior of martingales in Banach spaces[END_REF] implies that E 0 (S n ) 2 = o(n (3-p)/2 ). Therefore by using Theorem 2.3, we infer that, since p > 2, for any r in [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF][START_REF] Bradley | Introduction to strong mixing conditions[END_REF], R n r ≤ R n 2 = o(n (3-p)/2 ) under the first part of [START_REF] Woyczyński | Asymptotic behavior of martingales in Banach spaces[END_REF]. Now, since p > 2, for any r in ]2, p], the second part of [START_REF] Woyczyński | Asymptotic behavior of martingales in Banach spaces[END_REF] implies that R n r = O(n (3-p)/2 ) by Theorem 2.3.

Proof of the martingale approximation results

In all the following lemmas, p > 1 and (X n ) n∈Z is an adapted stationary sequence in L p (H) in the sense of Notation 1.1.

Lemma 4.1 We have k≥0 (k + 1) -1 P 0 (X k ) p,H < ∞.
Proof. We first prove the case p ≥ 2. By Hölder's inequality, we have

k≥0 P 0 (X k ) p,H k + 1 p k≥0 P -k (X 0 ) p p,H k≥0 |P -k (X 0 )| p H 1/p p p k≥0 |P -k (X 0 )| 2 H 1/2 p p X 0 p p,H ,
where we used • p ≤ • 2 and Burkholder's inequality for H-valued martingales (see [START_REF] Burkholder | Sharp inequalities for martingales and stochastic integrals[END_REF]).

Let prove the case 1 < p < 2. By Hölder inequality

k≥0 P 0 (X k ) p,H k + 1 p k≥0 P -k (X 0 ) p p,H (k + 1) p/2 = E k≥0 |P -k (X 0 )| p H (k + 1) p/2 k≥0 |P -k (X 0 )| 2 H 1/2 p p X 0 p p,H ,
where we used again Hölder's inequality and Burkholder's inequality for H-valued martingales.

Lemma 4.2 Assume that

n≥1 k≥0 P 0 (S n • θ k-1 ) p,H (n + k) 2 < ∞ . ( 37 
)
Then n≥0 | k≥n P0(X k )
k+1 | H converges in L p and a.s. Moreover for any integer m ≥ 0,

n≥m k≥n P 0 (X k ) k + 1 p,H ≤ k≥m n≥1 P 0 (S n • θ k-1 ) p,H (n + k) 2 . ( 38 
)
Proof. By assumption, the series k≥0 n≥1

n-1 l=0 P 0 (X l+k ) (n + k)(n + k + 1) H converges a.s. and in L p . On the other hand, using Lemma 4.1 to invert the order of summation, we have

l≥k P 0 (X l ) l + 1 = l≥0 P 0 (X k+l ) k + l + 1 = l≥0 n≥l+1 P 0 (X k+l ) (k + n)(k + n + 1) = n≥1 n-1 l=0 P 0 (X l+k ) (n + k)(n + k + 1)
, which gives the desired convergence.

Lemma 4.3 For every integer r ≥ 0,

k≥r m≥1 P -k (S m ) p,H (m + k) 2 k≥r+1 E -r (S k ) p,H k 1+1/p . ( 39 
)
Proof. Let m be a positive integer. Assume first that p ≥ 2. By Hölder's inequality and using that . p ≤ . 2 , we have k≥r

P -k (S m ) p,H (m + k) 2 (m + r) -(1+1/p) k≥r P -k (S m ) p p,H 1/p (m + r) -(1+1/p) E k≥r |P -k (S m )| 2 H p/2 1/p E -r (S m ) p,H (m + r) 1+1/p ,
where we used Burkholder's inequality for H-valued martingales (see [START_REF] Burkholder | Sharp inequalities for martingales and stochastic integrals[END_REF]), in the last step. Assume now that 1 < p < 2. We use Hölder's inequality twice and once again Burkholder's inequality for H-valued martingales in the last step, to obtain k≥r

P -k (S m ) p,H (m + k) 2 1 (m + r) 1/p k≥r P -k (S m ) p p,H (m + k) p 1/p 1 (m + r) 1/p 1 (m + r) 3p/2-1 E k≥r |P -k (S m )| 2 H p/2 1/p E -r (S m ) p,H (m + r) 3/2 .
From the above computations, we then derive that k≥r m≥1

P -k (S m ) p,H (m + k) 2 m≥1 E -r (S m ) p,H (m + r) 1+1/p 1 (r + 1) 1/p max 1≤m≤r E -r (S m ) p,H + m≥r+1 E -r (S m ) p,H m 1+1/p .
The lemma then follows by using Lemma B.2 with γ = 1/p and = r.

Lemma 4.4 For every r ≥ 0,

X 0 = r k=0 l≥k P 0 (X l ) l + 1 - r k=0 l≥k E 0 (X l+1 ) -E -1 (X l ) l + 1 + (r + 1) l≥r E 0 (X l+1 ) (l + 1)(l + 2) . ( 40 
)
In particular, if we assume (6), letting r → ∞, we have

X 0 = k≥0 l≥k P 0 (X l ) l + 1 - k≥0 l≥k E 0 (X l+1 ) -E -1 (X l ) l + 1 . Proof. Let m ≥ k ≥ 0. We have m l=k P 0 (X l ) l + 1 = E 0 (X k ) k + 1 - E 0 (X m+1 ) m + 2 + m l=k E 0 (X l+1 ) l + 2 - m l=k E -1 (X l ) l + 1 . Hence m l=k P 0 (X l ) l + 1 = E 0 (X k ) k + 1 - E 0 (X m+1 ) m + 2 + m l=k E 0 (X l+1 ) -E -1 (X l ) l + 1 - m l=k E 0 (X l+1 ) (l + 1)(l + 2)
.

Notice that m -1 E 0 (X m ) p,H → 0 and that l≥0

E0(X l+1 ) p,H (l+1)(l+2)
< ∞. Hence, using Lemma 4.1, we may and do let m → ∞, to obtain

l≥k P 0 (X l ) l + 1 = E 0 (X k ) k + 1 + l≥k E 0 (X l+1 ) -E -1 (X l ) l + 1 - l≥k E 0 (X l+1 ) (l + 1)(l + 2)
.

Let r ≥ 0. We then deduce that r k=0 l≥k

P 0 (X l ) l + 1 = r k=0 E 0 (X k ) k + 1 + r k=0 l≥k E 0 (X l+1 ) -E -1 (X l ) l + 1 - r k=0 l≥k E 0 (X l+1 ) (l + 1)(l + 2)
.

Hence, interverting the order of summation in the last term, r k=0 l≥k

P 0 (X l ) l + 1 = X 0 + r k=0 l≥k E 0 (X l+1 ) -E -1 (X l ) l + 1 -(r + 1) l≥r E 0 (X l+1 ) (l + 1)(l + 2)
.

Assume [START_REF] Cuny | Central limit theorem started at a point for stationary processes and additive functional of reversible Markov chains[END_REF]. In view of Lemmas 4.2 and 4.3, we see that the series on the left converges in L p (H). On an other hand, Lemma B.2 (with γ = 1) implies that n -1 E 0 (S n ) p,H → 0. Therefore by Abel summation, (r + 1) l≥r E0(X l+1 ) (l+1)(l+2) p,H → 0, when r → ∞.

Proof of Theorem 2.3

The first assertion comes from Lemma 4.2 combined with Lemma 4.3. Now, by Lemma 4.4, we have

X 1 = D • θ - k≥0 l≥k+1 E 1 (X l+1 ) -E 0 (X l ) l .
Hence, using that E 1 (X l+1 ) = E 0 (X l ) • θ, we obtain that for any positive integer n,

S n -M n = - k≥0 l≥k+1 E 0 (X l ) • θ n -E 0 (X l ) l = - k≥0 l≥k+1 E n (X l+n ) -E 0 (X l ) l .
Let N be a positive integer, fixed for the moment. Then writing

V n,N = N -1 k=0 l≥k+1 E n (X l+n ) -E 0 (X l+n ) l , (41) 
and

W n,N = k≥N l≥k+1 E n (X l+n ) -E 0 (X l+n ) l . ( 42 
)
we obtain

S n -M n -E 0 (S n ) = - k≥0 l≥k+1 E n (X l+n ) -E 0 (X l+n ) l = -(V n,N + W n,N ) . (43) 
We first deal with V n,N . We have

V n,N = N l=1 E n (X l+n ) -E 0 (X l+n ) + N l≥N +1 E n (X l+n ) -E 0 (X l+n ) l = E 0 (S N ) • θ n -E 0 (S N • θ n ) + N l≥N +1 E n (X l • θ n ) -E 0 (X l • θ n ) l . (44) 
Let j ∈ {0, n}. By ( 6) and Lemma B.2 with γ = 1,

E 0 (S N ) p,H N l≥N E 0 (S l ) p,H l 2 = o(1). (45) 
Using Abel summation we have, for every s ≥ N + 1,

s l=N +1 E j (X l • θ n ) l = s l=N +1 E j (S l • θ n -S l-1 • θ n ) l = - E j (S N • θ n ) N + 1 + E j (S s • θ n ) s + 1 + s l=N +1 E j (S l • θ n ) l(l + 1) . Letting s → ∞, it follows from (45) that l≥N +1 E j (X l • θ n ) l = - E j (S N • θ n ) N + 1 + l≥N +1 E j (S l • θ n ) l(l + 1) . (46) 
Hence, starting from (44) and considering (46) and (45), we derive that

V n,N p,H ≤ 2 E 0 (S N ) p,H N + N l≥N +1 E n (S l • θ n ) -E 0 (S l • θ n ) p,H l(l + 1) N l≥N E 0 (S l ) p,H l 2 . ( 47 
)
It remains to deal with W n,N . Since E 0 (W n,N ) = 0, we have W n,N = n r=1 P r (W n,N ). Using that P r defines a continuous operator on L p (H) and that the series in (42) converges in L p (H), we infer that

W n,N = n r=1 k≥N l≥k+1 E r (X l+n ) -E r-1 (X l+n ) l . (48) 
But, by Burkholder's inequality for H-valued martingales (see [START_REF] Burkholder | Sharp inequalities for martingales and stochastic integrals[END_REF]),

W n,N p p,H n r=1 P r (W n,N ) p p,H . (49) 
Notice that for any r ∈ {1, . . . , n},

P r (W n,N ) = k≥N l≥1 P 0 (X l+k+n-r ) l + k • θ r . Now, using Lemma 4.1, l≥1 P 0 (X l+k+n-r ) l + k = l≥1 P 0 (X l+k+n-r ) m≥l 1 (m + k)(m + k + 1) = m≥1 P 0 (S m • θ k+n-r ) (m + k)(m + k + 1) .
Therefore,

k≥N l≥1 P 0 (X l+k+n-r ) l + k ≤ m≥1 k≥N |P 0 (S m • θ k+n-r )| (m + k) 2 . ( 50 
) Hence, with s = n -r, W n,N p,H n 1/p max 0≤s≤n-1 k≥N +s m≥1 P -k (S m ) p,H (m + k -s) 2 .
Now we take N = u n ≥ n. We then infer that

W n,un p,H n 1/p k≥un m≥1 P -k (S m ) p,H (m + k) 2 . ( 51 
)
Hence using ( 43), (47) with N = u n , and (51), we get that

S n -M n p,H E 0 (S n ) p,H + u n m≥un E 0 (S m ) p,H m 2 + n 1/p k≥un m≥1 P -k (S m ) p,H (m + k) 2 . (52) 
Next using Lemma B.2 with γ = 1, we derive that

E 0 (S n ) p,H ≤ max 1≤k≤un E 0 (S k ) p,H u n m≥un E 0 (S m ) p,H m 2 . ( 53 
)
Starting from (52) with u n = [n q ] and taking into account (53) and Lemma 4.3, Theorem 2.3 follows.

Proof of Theorem 2.7

Part of the proof relies on a new ergodic theorem with rate. Hence we first recall some facts from ergodic theory and state our ergodic theorem, while we give its proof in Section A.

Let T be a Dunford-Schwartz operator on Ω, i.e. T is a contraction of L 1 and L ∞ . Let T be the linear modulus of T (see e.g. Theorem 1.1, chapter 4 of [START_REF] Krengel | Ergodic theorems[END_REF]). Recall that T is a positive Dunford-Schwartz operator such that

|T f | ≤ T|f |, for every f ∈ L 1 and |T f | p ≤ T(|f | p ), for every f ∈ L p .
We will make use, for p ≥ 1, of the weak L p -spaces

L p,w := {f ∈ L 0 : sup λ>0 λ p P{|f | ≥ λ} < ∞} ,
where L 0 is the space of all A -B(R) measurable functions.

Recall that, when p > 1, there exists a norm • p,w on L p,w that makes L p,w a Banach space and which is equivalent to the "pseudo"-norm (sup λ>0 λ p P{|f | ≥ λ}) 1/p . We define, for every l ≥ 0, a maximal operator as follows. For any non-negative function h ∈ L 1 , let

M l (h) = sup n≥1 h + T 2 l h + . . . + (T 2 l ) n-1 h n .
By the Dunford-Schwartz (or Hopf) ergodic theorem (see e.g. Krengel [START_REF] Krengel | Ergodic theorems[END_REF], Lemma 6.1 page 51 and Corollary 3.8 p. 131), sup

λ>0 λP{M l (h) ≥ λ} ≤ h 1 .
In particular, for every p > 1, there exists C p > 0 such that, for every

f ∈ L p , (M l (|f | p )) 1/p p,w ≤ C p f p . (54) 
Let B be a Banach space with norm | • | B . For every p ≥ 1, we denote by L p (B) the Bochner space {f : Ω → B , |f | B ∈ L p }. When T is induced by a measurable transformation θ preserving P, M l (|f | B ) is well-defined for every f ∈ L 1 (B). We prove the following, where U n (f ) = f + . . . + T n-1 f . Proposition 4.5 Let T be a Dunford-Schwartz operator on (Ω, A, P) and f ∈ L 1 . We have

max 1≤n≤2 r |U n (f )| ≤ 2 r/p r k=0 M k (|U 2 k (f )| p ) 1/p 2 k/p .
When T is induced by a measure preserving transformation θ and B is a Banach space, the result holds also for

f ∈ L 1 (B), replacing | • | with | • | B .
Proof. The proof follows from the following lemma, using that Theorem 4.7 Let T be a Dunford-Schwartz operator on (Ω, A, P). Let f ∈ L p , p > 1. Let ψ be a positive non-decreasing function, such that there exists C > 1 such that ψ(2x) ≤ Cψ(x), for every

U 2 k m (f )-U 2 k (m-1) (f ) = T 2 k (m-1) f + . . . + T 2 k m-1 f = (T 2 k ) (m-1) U 2 k (f ).
x ≥ 1. Assume that n f + . . . + T n-1 f p ψ(n)n 1+1/p < ∞ . ( 56 
)
Then sup n≥1 |f +...+T n-1 f | ψ(n)n 1/p ∈ L p,w and |f +...T n-1 f | ψ(n)n 1/p → 0 P-a.s. If T is induced by a measure-preserving transformation and (B, | • | B ) is a Banach space, the result holds with | • | B instead of | • | for every f ∈ L p (B) such that n |f +...+T n-1 f | B p ψ(n)n 1+1/p < ∞.
Comment 4.8 Take ψ ≡ 1, which is the relevant case in our applications. Then, condition (56) is weaker than condition [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] in [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] and also (slightly) improves condition [START_REF] Dedecker | Rio Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] of [START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF] (obtained for p = 2). In [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] and [START_REF] Cuny | Pointwise ergodic theorems with rate and application to limit theorems for Markov chains[END_REF], only the case where T is induced by a transformation is considered.

We turn now to the proof of Theorem 2.7. It will follow from the next two propositions. Notice that the second one is a version of Corollary 22 of Merlevède-Peligrad [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] under E 0 . Proposition 4.9 Assume [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF].

Then E 0 [(S n -M n -E 0 (S n )) 2 ] = o(n) P-a.s. and E 0 (S n ) = o( √ n) P-a.s. In particular E 0 [(S n -M n ) 2 ] = o(n) P-a.s.
Proposition 4.10 Assume (1) and that E 0 (S 2 n ) = o(n) P-a.s. Then

E 0 ( max 1≤k≤n S 2 k ) = o(n) P-a.s. (57) 
Before proving the above propositions, we indicate how they lead to Theorem 2.7. Using Proposition 4.9, we apply Proposition 4.10 with S n -M n in place of S n . This proves [START_REF] Durieu | Independence of four projective criteria for the weak invariance principle[END_REF]. Now the convergence [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] follows from ( 14) together with the quenched weak invariance principle for martingales (see for instance Derriennic and Lin [START_REF] Derriennic | The central limit theorem for Markov chains with normal transition operators, started at a point[END_REF] for the ergodic case). To be more precise, if we define [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] holds with W n in place of W n , and η = E(D 2 |I). To end the proof, we first notice that by Theorem 1 of Peligrad and Utev (2005), 1) and ( 7),

D k = D • θ k and W n by W n (t) = n -1/2 (M [nt] + (nt -[nt])D [nt]+1 ), then
E(D 2 |I) = lim n→∞ n -1 E(S 2 n |I) in L 1 . It remains to prove that E(D 2 |I) = lim n→∞ n -1 E 0 (S 2 n ) in L 1 . But, by (
S 2 n -M 2 n 1 = o(n) . Hence it suffices to prove that E(D 2 |I) = lim n→∞ n -1 E 0 (M 2 n ) in L 1 .
With this aim, we will make use of the operator Q defined by

QZ = E 0 (Z • θ) ∀Z ∈ L 1 .
The operator Q is markovian, hence it is a Dunford-Schwartz operator. Notice that

Q n Z = E 0 (Z •θ n ).
Moreover, by Lemma 7.1 in [START_REF] Dedecker | A quenched weak invariance principle[END_REF], if Z is additionnally assumed to be in F ∞ , (QZ + . . . + Q n Z)/n converges P-a.s. and in L 1 to E(Z|I).

To conclude we take Z = D 2 and we notice that, by orthogonality,

E 0 (M 2 n ) = Q(D 2 )+• • •+Q n (D 2
). It remains to prove Propositions 4.9 and 4.10.

Proof of Proposition 4.9. The fact that E 0 (S n ) = o( √ n) P-a.s. under (1) comes directly from an application of Theorem 4.7 with T = Q. We prove now that under (1), the following convergence holds:

E 0 [(S n -M n -E 0 (S n )) 2 ] = o(n) P-a.s.
Let N be a positive integer fixed for the moment. By (43), we have

S n -M n -E 0 (S n ) = -(V n,N + W n,N ) , (59) 
where V n,N and W n,N are given respectively by ( 41) and (42).

Let ϕ N := E 0 (S N ) and

ψ N = l≥N +1 ϕ l l(l+1)
, where ψ N is well-defined in L 2 , by [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF]. Then, by (44) and (46),

|V n,N | |ϕ N • θ n | + |Q n ϕ N | + |ψ N • θ n | + |Q n ψ N | .
Hence, by using (58),

E 0 (V 2 n,N ) Q n (ϕ 2 N ) + Q n (ψ 2 N ) = o(n) P-a.s.
Then, using that E 0 (S n ) = o( √ n) P-a.s. and (59), we obtain lim sup

n E 0 ((S n -M n ) 2 ) n ≤ lim sup n E 0 (W 2 n,N ) n .
It remains to deal with W n,N . Recall that by (48),

W n,N = n r=1 P r (W n,N ) = n r=1 k≥N l≥1 P 0 (X l+k+n-r ) l + k • θ r .
Hence, by orthogonality,

E 0 (W 2 n,N ) = n r=1 E 0 (P r (W n,N ) 2 ) = n r=1 Q r k≥N l≥1 P 0 (X l+k+n-r ) l + k 2 .
But, using (50) and Cauchy-Schwarz's inequality, we have

k≥N l≥1 P 0 (X l+k+n-r ) l + k m≥1 1 (m + N ) 3/2 k≥0 |P -k (S m )| 2 • θ k 1/2
.

Let now g

N := m≥1 1 (m+N ) 3/2 ( k≥0 |P -k (S m )| 2 • θ k ) 1/2 . Then g N is in L 2 and g N 2 ≤ m≥1 E 0 (S m ) 2 (m + N ) 3/2 < ∞ .
In particular, g N 2 → 0, as N → ∞. So, finally, by using (58), we get that

E 0 (W 2 n,N ) n n r=1 Q r (g 2 N ) n -→ n→+∞ E(g 2 N |I) P-a.s.
Since E(g 2 N |I) 1 ≤ g 2 N 1 → 0, there exists a sub-sequence (N j ) such that E(g 2 Nj |I) → 0 P-a.s. as j → ∞ and the result follows.

To prove Proposition 4.10, we will make use of the following maximal inequality from Merlevède and Peligrad (2012). They did not state the result exactly in that context but it may be proved exactly the same way, applying Doob's maximal inequality conditionally, so the proof is omitted. Proposition 4.11 Let (X n ) n∈Z be a stationary sequence in L 2 in the sense of Notation 1.1 and adapted to the filtration (F n ). We have,

E 0 max 1≤i≤2 r |S i | 2 1/2 ≤ 2 E 0 (S 2 2 r ) 1/2 + 2 r-1 l=0 2 r-l -1 k=1 E 0 E k2 l (S (k+1)2 l ) -S k2 l 2 1/2 = 2 E 0 (S 2 2 r ) 1/2 + 2 r-1 l=0 2 r-l -1 k=1 Q k2 l (E 0 (S 2 l )) 2 1/2 P-a.s. ( 60 
)
Proof of Proposition 4.10.

Let v ≥ 0 be an integer, fixed for the moment. Let r > v. Then we have

max 1≤k≤2 r |S k | ≤ max 1≤s≤2 r-v |S s2 v | + 2 v max 1≤j≤2 r |X j |.

B Auxiliary results

Lemma B.1 Let B be a Banach space and (a n ) n≥1 a B-valued sequence. The following are equivalent:

(i) the series n≥1 a n converges, (ii) lim n→∞ n k≥n (k + 1) -1 a k = 0 and the series n≥1 k≥n (k + 1) -1 a k converges.

The proof is omitted since it follows from standard arguments based on Abel summation by part.

The next lemma is Lemma 19 in Merlevède, Peligrad and Peligrad [START_REF] Merlevède | Almost Sure Invariance Principles via Martingale Approximation[END_REF]. In their paper, the lemma is stated with = 0 and with H = R but with similar arguments as done in their proof, it works for any non-negative integer and for adapted stationary sequences with values in a normed space by replacing the absolute values by the corresponding norms.

Lemma B.2 Let p ≥ 1 and let (X n ) n∈Z be an adapted stationary sequence in L p (H) in the sense of Notation 1.1. For every γ > 0, n ≥ 1 and any integer ≥ 0, , 4] and let (X n ) n∈Z be an adapted and stationary sequence in L p in the sense of Notation 1.1. Assume that (6) holds. Then setting M n = n k=1 D • θ k where D is defined by (5), the following inequality holds: for any non-negative integers r and n,

1 n γ max 1≤k≤n E -(S k ) p,H ≤ 2 3γ+3 6n k=n+1 1 k γ+1 E -(S k ) p,H . Proposition B.3 Let p ∈ [2
E -r (M 2 n ) -E(M 2 n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + E -r (S 2 2n ) -E(S 2 2n ) p/2 +n k≥[n p/2 ] E 0 (S k ) p k 1+1/p 2 + n k≥n E -n (S k ) 2 k 3/2 .
In the statement of the proposition as well as in its proof, the constants arising from the symbol are independent from n and r.

Proof. Setting R n = S n -M n , we start with the following inequality:

E -r (M 2 n ) -E(M 2 n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + 2 R n 2 p + 2 E -r (S n R n ) -E(S n R n ) p/2 . (61)
Using Theorem 2.3 with p ≥ 2, we first get that

R n 2 p n k≥[n p/2 ] E 0 (S k ) p k 1+1/p 2 . (62) 
Now, starting from (43) and using the decompositions (41), ( 42), ( 44) and ( 46) with N = 2n, we write that

R n = E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 - E n (S 2n • θ n ) 2n + 1 -A n -B n , (63) 
where

A n = 2n l≥2n+1 E n (S l • θ n ) -E 0 (S l • θ n ) l(l + 1) , (64) 
and

B n = k≥2n l≥k+1 E n (X l+n ) -E 0 (X l+n ) l . (65) 
Notice first that

E -r S n E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 -E S n E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 p/2 ≤ 2 E 0 S n E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 p/2 ≤ 2 E 0 (S n ) 2 p + 2(2n + 1) -1 E 0 (S n ) p E 0 (S 2n ) p ,
which combined with (53) with u n = [n p/2 ] implies that

E -r S n E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 -E S n E 0 (S n ) + E 0 (S 2n • θ n ) 2n + 1 p/2 n k≥[n p/2 ] E 0 (S k ) p k 1+1/p 2 . ( 66 
)
Now writing that S 2n • θ n = S 2n • θ n -S n • θ n + S n • θ n and using the fact that S n is F n -measurable, we get

E -r S n E n (S 2n • θ n ) 2n + 1 -E S n E n (S 2n • θ n ) 2n + 1 p/2 ≤ n -1 E -r (S n (S 2n -S n )) -E(S n (S 2n -S n )) p/2 + n -1 E -r (S n E n (S 3n -S 2n )) p/2 . (67) 
Using the identity 2ab = (a + b) 2 -a 2 -b 2 and the stationarity, we first obtain that

2 E -r (S n (S 2n -S n )) -E(S n (S 2n -S n )) p/2 ≤ 2 E -r (S 2 n ) -E(S 2 n ) p/2 + E -r (S 2 2n ) -E(S 2 2n ) p/2 . (68) 
To bound up the second term in (67), we write C n := n -1 E n (S 3n -S 2n ) and we follow the lines of the proof of Theorem 2.3 in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] (see the displaylines between their equations (4.13) and (4.16)). Hence we first write that We consider now the term E -r (S n A n ) -E(S n A n ) p/2 . With this aim, we first define

E -r (S n C n ) p/2 ≤ E 1/2 -r (S 2 n )E 1/2 -r (C 2 n ) p/2 ≤ (E -r (S 2 n ) -E(S 2 n ))
A n = 2nE n (S n • θ n ) l≥2n+1 1 l(l + 1)
.

Since S n is F n -measurable,

E -r (S n A n ) -E(S n A n ) p/2 ≤ E -r (S n (S 2n -S n )) -E(S n (S 2n -S n )) p/2 .
Using then the identity 2ab = (a + b) 

D n := n k≥2n+1 E n (S k • θ n ) -E n (S n • θ n ) k(k + 1)
and notice that, by stationarity, 

E -r (S n (A n -A n )) -E(S n (A n -A n )) p/2 n E 0 (S n ) p k≥n+1 E 0 (S k ) p k 2 + E -r (S n D n ) p/2 . (75) 

Lemma 4 . 6

 46 Let (a n ) be a sequence in a Banach space B with norm | • | B . Write s n = a 1 + . . . + a n and s 0 = 0. Let p ≥ 1. For every r ≥ 0, we have max 1≤n≤2 r |s n | B ≤ r k=0 2 r-k m=1 |s 2 k m -s 2 k (m-1) We make the proof by induction on r ≥ 0. The result is obvious for r = 0. Let 1 ≤ n ≤ 2 r . We have |s 2n-1 | B ≤ |s 2n-2 | B + |a 2n-1 | B . Hence, writing ãn = a 2n-1 + a 2n and sn = n k=1 ãk = s 2n , we get that max 1≤l≤2 r+1 |s l | B ≤ max 1≤n≤2 r |s n | B +

  Let p ∈]2, 3[ and let (X n ) n∈Z be an adapted stationary sequence in L p in the sense of Notation 1.1. Denote by P Sn/n 1/2 the law of S n /n 1/2 and by G σ 2 the normal distribution N (0, σ 2 ) where σ 2 = lim n→∞ n -1 E(S 2 n ) provided the limit exists. Starting from Theorem 2.1 in[START_REF] Dedecker | Rio Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] and using our Theorem 2.3, we get the following result concerning the order of W r r (P n -1/2 Sn , G σ 2 ) where r ∈ [1, p]. Let 2 < p ≤ 3 and let 1 ≤ r ≤ p. Let (X n ) n∈Z be an adapted stationary sequence in L p in the sense of Notation 1.1. Assume that[START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF] holds and that

	Theorem 3.5 n≥1
	1/r

: P ∈ L(µ, ν) .

  1/2 E Notice that since (6) holds, by Theorem 2.3, we have in particular that S n 2= o(n 1/2 ) + M n 2 , implying that S n 2 n 1/2 . (69)Using (69) and the fact that the function x → |x| p/4 is concave, it follows thatE -r (S n C n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + C n 2 p + n 1/2 C n 2 . (70)By stationarity and using (53) with u n = [n p/2 ], we get thatC n p n -1 E -n (S n ) p,H n -1/2Therefore starting from (67) and using (68), (70), (71) and (72), we infer thatE -r S n E n (S 2n • θ n ) 2n + 1 -E S n E n (S 2n • θ n ) 2n + 1

					p/2	E -r (S 2 n ) -E(S 2 n ) p/2
						2		
	+ n -1 E -r (S 2 2n ) -E(S 2 2n ) p/2 + n -1	k≥[n p/2 ]	E 0 (S k ) p k 1+1/p	+ n 1/2	k≥n	E -n (S k ) 2 k 2	.	(73)
			1/2 -r (C 2 n ) p/2 + (E(S 2 n )) 1/2 E 1/2 -r (C 2 n ) p/2
	≤ E -r (S 2 n ) -E(S 2 n ) p/2 + C n	2 p + (E(S 2 n )) 1/2 E 1/2 -r (C 2 n ) p/2 .
					k≥[n p/2 ]	E 0 (S k ) p k 1+1/p .	(71)
	On another hand, by using once again stationarity and Lemma B.2,	
	C n 2	n -1 E -n (S n ) 2	k≥n	E -n (S k ) 2 k 2	.	(72)

  2 -a 2 -b 2 and stationarity, it follows that2 E -r (S n A n ) -E(S n A n ) p/2 ≤ 2 E -r (S 2 n ) -E(S 2 n ) p/2 + E -r (S 2 2n ) -E(S 2 2n ) p/2 .

	(74)
	Let now

  We bound now the second term in the right-hand side of (75). Proceeding as to get (70), we infer thatE -r (S n D n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + D nOverall, starting from (75) and considering the bounds (77), (78), (79) and (80), it follows thatE -r (S n (A n -A n )) -E(S n (A n -A n )) p/2 E -r (S 2 n ) -E(S 2 n ) p/2We consider now the termE -r (S n B n ) -E(S n B n ) p/2. Proceeding as to get (70), we infer thatE -r (S n B n ) -E(S n B n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + B n 2 p + n 1/2 B n 2 . (82)According to the bound (51) with u n = 2n, followed by an application of Lemma 4.3,To bound B n p , we use (63). By stationarity, we then infer thatB n p ≤ R n p + 3 E 0 (S n ) p + 2nStarting from (82) and using (83) and (84), we then obtain thatE -r (S n B n ) -E(S n B n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + nTaking into account the decomposition (63) together with the bounds (66), (73), (74), (81) and (85), we then derive thatE -r (S n R n ) -E(S n R n ) p/2 E -r (S 2 n ) -E(S 2 n ) p/2 + E -r (S 2 2n ) -E(S 2 2n ) p/2Starting from (61) and considering the inequalities (62) and (86), the proposition follows.

	Stationarity and inequality (76) imply that			
		D n p	n	k≥n	2	E -n (S k ) p k 2	n 1/2	k≥[n p/2 ]	E 0 (S k ) p k 1+1/p .	(79)
	On another hand, using once again stationarity, D n 2 n k≥n + n k≥[n p/2 ] E 0 (S k ) p k 1+1/p + n k≥n E -n (S k ) 2 k 2 E -n (S k ) 2 k 3/2 .	.	(80) (86)
									2		
		+ n	k≥[n p/2 ]	E 0 (S k ) p k 1+1/p	+ n 3/2	k≥n	E -n (S k ) 2 k 2	.	(81)
		B n 2	n 1/2	k≥n m≥1	P -k (S m ) 2 (m + k) 2	n 1/2	k≥n	E -n (S k ) 2 k 3/2	.	(83)
												2
		B n p		≥n+1 n 1/2	E 0 (S ) p 2 E 0 (S ) p n 2 1+1/p + n k≥n	E 0 (S k ) p k 2 E 0 (S ) p 2	,	.
	But, by using Lemma B.2 and the fact that p ≥ 2, ≥[n p/2 ]			≥n
	n which together with (76) implies that k≥n E 0 (S k ) p k 2 ≤ max 1≤k≤[n p/2 ] n p/2 k≥[n p/2 ] E 0 (S k ) p + n E 0 (S k ) p k 2 ≥[n p/2 ] B n p n 1/2 E 0 (S ) p k≥[n p/2 ] n 1/2 k≥[n p/2 ] E 0 (S k ) p k 2 k 1+1/p . E 0 (S k ) p 1+1/p .	(76) (84)
	Therefore	n E 0 (S n ) p	≥n+1	E 0 (S ) p 2	n	k≥[n p/2 ]	k 1+1/p k≥[n p/2 ] E 0 (S k ) p	2	. E 0 (S k ) p k 1+1/p	2	(77)
							+ n	k≥n	E -n (S k ) 2 k 3/2	.	(85)

Using (53) with u n = n, we first get that

n E 0 (S n ) p ≥n+1 E 0 (S ) p 2 .

Hence using Theorem 2.3 and inequality (53) with u n = n, we get that

p + n 1/2 D n 2 .(78)
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Let K ≥ 1, be fixed for the moment. We have max 1≤j≤2 r |X j | 2 ≤ K 2 + 2 r j=1 |X j | 2 1 {|Xj |≥K} . Hence, applying Proposition 4.11 to the stationary sequence (S (k+1)2 v -S k2 v ) k≥0 adapted to the filtration (F k2 v ) k≥0 , we obtain (with the convention that S 0 = 0)

By assumption E 0 (S 2 2 r ) = o(2 r ) P-a.s. By (58), (

Hence taking the lim sup r and letting j → ∞, we obtain

To finish the proof, it suffices to prove that the random variable defined by the series in the right-hand side is P-a.s. finite. But it is in L 2,w since, by [START_REF] Borodin | Limit theorems forfunctionals of random walks[END_REF],

A Proof of Theorem 4.7

We make the proof for T Dunford-Schwartz and f real-valued since the proof in the case where f is

Write U n (f ) = f + . . . + T n-1 f . Since ψ is monotonic, it follows from the subadditivity of ( U n (f ) p ) (see for instance [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] Lemma 2.7 and [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF] equation (92)) that ( 56) is equivalent to

We proceed now as in the proof of Proposition 4.10, namely: we consider dyadic blocs. Let us give the hints. Let v ≥ 0 be an integer. For r > v, write that We finish the proof by using arguments developped in the proof of Proposition 4.10.