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Abstract

In this paper, we obtain sufficient conditions in terms of projective criteria under which the partial
sums of a stationary process with values in H (a real and separable Hilbert space) admits an approx-
imation, in Lp(H), p > 1, by a martingale with stationary differences and we then estimate the error
of approximation in Lp(H). The results are exploited to further investigate the behavior of the par-
tial sums. In particular we obtain new projective conditions concerning the Marcinkiewicz-Zygmund
theorem, the moderate deviations principle and the rates in the central limit theorem in terms of
Wasserstein distances. The conditions are well suited for a large variety of examples including linear
processes or various kinds of weak dependent or mixing processes. In addition, our approach suits
well to investigate the quenched central limit theorem and its invariance principle via martingale ap-
proximation, and allows us to show that they hold under the so-called Maxwell-Woodroofe condition
that is known to be optimal.
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1 Introduction

Since the seminal paper of Gordin [13] in 1969, approximation via a martingale is known to be a nice
method to derive limit theorems for stochastic processes. For instance, the martingale method has
been used successfully by Heyde [18] and Gordin and Lifsic [14] to derive central limit theorems for
the partial sums of a stationary sequence, and it has undergone substantial improvements. For recent
contributions where the central limit theory and weak convergence problems are handled with the
help of martingale approximations, let us mention the recent papers by Maxwell and Woodroofe [21],
Wu and Woodroofe [33], Peligrad and Utev [26], Merlevède and Peligrad [22], Zhao and Woodroofe
[35] and Gordin and Peligrad [15]. In all these papers, conditions are then imposed to be able to
implement the martingale method; namely, to approximate in a suitable way the partial sums of a
stationary process by a martingale. However to derive many other kinds of limit theorems from the
martingale method, more precise estimates of the approximation error of partial sums by a martingale
can be useful. We refer to the recent papers by Wu [32], Dedecker, Doukhan and Merlevède [7] and
Merlevède, Peligrad and Peligrad [24] where almost sure behaviors of the partial sums process have
been addressed with the help of estimates of this approximation error.

In order to say more about these papers and to present our results, let us first introduce the
following notation giving a way to define stationary processes.
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Notation 1.1 Let (Ω,A,P) be a probability space and let θ : Ω 7→ Ω be a bijective bi-measurable
transformation preserving the probability P. Let F0 be a σ-algebra of A satisfying F0 ⊆ θ−1(F0). We
then define a nondecreasing filtration (Fi)i∈Z by Fi = θ−i(F0), and a stationary sequence (Xi)i∈Z
by Xi = X0 ◦ θi where X0 is a real centered random variable (or possibly taking values in some real
and separable Hilbert space). The sequence will be called adapted to the filtration (Fi)i∈Z if X0 is
F0-measurable. Define then the partial sum by Sn = X1 + X2 + · · · + Xn. The following notations
will also be used: Ek(X) = E(X|Fk), Pk(X) = Ek(X)−Ek−1(X), and when X is real its Lp norm is

denoted by ‖X‖p =
(
E(|X|p)

)1/p
. We shall also use the notation an � bn to mean that there exists a

numerical constant C not depending on n such that an ≤ Cbn, for all positive integers n.

In what follows the sequence (Xi)i∈Z is assumed to be stationary and adapted to (Fi)i∈Z and the
variables are in Lp.

In [32] and [7], it is assumed that D =
∑
i≥0 P0(Xi) converges in Lp, p > 1, and estimates of

‖Sn −Mn‖p where Mn =
∑n
i=1D ◦ θi are provided involving either the terms

∑
k≥n ‖P0(Xk)‖p (see

[32]) or the terms ‖E0(Sn)‖p and ‖
∑
k≥n P0(Xk)‖p (see [7]). They are then exploited to derive explicit

rates in the almost sure invariance principle under projective conditions that are well adapted to a
large variety of examples. The paper by Merlevède et al [24] addresses different questions about
the almost sure behavior of Sn such as quenched invariance principles or almost sure central limit
theorems. Their proof is based under a precise estimate of the L2 approximation error between the
partial sums process and their constructed approximating stationary martingale, provided that the
Maxwell-Woodroofe condition (1) holds. More precisely, in the case where p = 2, they proved that if

∞∑
k=1

‖E0(Sk)‖2
k3/2

<∞ , (1)

then there is a martingale Mn with stationary and square integrable differences such that

‖Sn −Mn‖2 � n1/2
∑
k≥n

‖E0(Sk)‖2
k3/2

. (2)

To implement a martingale method for other questions related to the behavior of the partial sums,
as for instance rates in the strong laws of large numbers or in the central limit theorem in terms
of Wasserstein distances, or also moderate deviations principles, the first question that our paper
addresses is the construction of a stationary martingale Mn in Lp (p > 1) in such a way that an
estimate of ‖Sn−Mn‖p can be given in the spirit of (2). Our Theorem 2.4 is in this direction. When
p ≥ 2, it states in particular that if

∞∑
k=1

‖E0(Sk)‖p
k1+1/p

<∞ , (3)

then we can construct a stationary sequence (Dk = D◦θk)k∈Z of martingale differences in Lp adapted
to (Fk)k∈Z such that setting Mn =

∑n
k=1D ◦ θk,

‖Sn −Mn‖2 � n1/2
∑

k≥[np/2]

‖E0(Sk)‖p
k1+1/p

<∞ where p′′ = max(p, 2) . (4)

Our approach is different than the one used in [24] to prove (2). In Theorem 2.4 we shall consider also
the case when p ∈]1, 2[. The main tools to prove the martingale approximation with the bound (4)
being algebraic computations and Burkholder’s inequality, the estimate also holds for variables taking
values in a separable real Hilbert space. Hence Theorem 2.4 is stated in this setting. As we shall see,
with the help of a new ergodic theorem (Theorem 4.7), it will give us new projective conditions to
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obtain rates in the strong law of large numbers. An application of this result is given to get rates in
the almost sure convergence of some statistic tests based on the empirical process (see Section 3.1.1).
Theorem 2.4 is also used to get new projective conditions allowing results concerning the moderate
deviations principle or also estimates of Wasserstein distances in the CLT (see Sections 3.2 and 3.3).
Notice that the projective conditions assumed all along the paper are general enough to contain a
wide class of dependent sequences.

Another interesting point of our approach and of the approximating martingale we consider here,
is that they lead not only to a useful estimate of ‖Sn−Mn‖p, but, together with our ergodic theorem
(see Theorem 4.7), they allow also to show that, under the Maxwell-Woodroofe condition (1), E0[(Sn−
Mn)2] = o(n) P-a.s. (see our Proposition 4.9). This allows to give a definitive positive answer to the
question whether the quenched central limit theorem for n−1/2Sn holds true under (1). As we shall
see, we can even say more since, using a maximal inequality from Merlevède and Peligrad [23], we
establish in Theorem 2.8 that the functional form of the quenched central limit theorem also holds
under Maxwell-Woodroofe condition.

Our paper is structured as follows. Section 2 contains our main results. More precisely, in Section
2.1 we construct an approximating martingale with stationary differences in Lp that leads to estimates
of the Lp approximating error between the partial sums and the constructed martingale (see Theorem
2.4). In Section 2.2, we address the question of the quenched weak invariance principle under the
Maxwell-Woodroofe’s condition (1). Section 3 is devoted to some applications of the estimates given
in Theorem 2.4 to various kind of limit behavior of the partial sums. In Section 4, we prove the results
stated in Sections 2.1 and 2.2 and state a new ergodic theorem with rates (see Theorem 4.7) whose
proof is postponed in Section A. Some technical results are given and proven in Section B.

2 Main results

In complement to Notation 1.1, we introduce additional notations used all along the paper.

Notation 2.1 Let H be a real and separable Hilbert space equipped with the norm | · |H. For a random

variable X with values in H, we denote its norm in Lp(H) by ‖X‖p,H =
(
E(|X|H)p

)1/p
, and we simply

denote Lp = Lp(R).

Notation 2.2 Let p′ = min(2, p), p′′ = max(2, p) and q = p′′/p′.

2.1 Martingale approximation in Lp(H)
Let p > 1. In this section, we shall establish conditions in order for Sn to be approximated by
a martingale Mn with stationary differences in Lp(H) in such a way that the approximation error
‖Sn −Mn‖p,H is explicitly controlled. Let us adopt the following definition:

Definition 2.3 Let (rn)n≥1 be a nondecreasing sequence of positive numbers and let p > 1. Let
(Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense of Notation 1.1. We say that
(Xn)n∈Z admits a (stationary) martingale approximation in Lp(H) with rate rn if there exists D ∈
Lp(H) such that Mn =

∑n
k=1D ◦ θk is a martingale adapted to (Fn)n≥1 and

‖Sn −Mn‖p,H = o(rn) .

Notice that to get a martingale approximation in Lp(H) with rate rn, the following minimal
condition is needed:

‖E0(Sn)‖p,H = o(rn) .
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Let (Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense of Notation 1.1. When

D =
∑
n≥0

∑
k≥n

P0(Xk)

k + 1
, (5)

converges in Lp(H), then (Dk = D ◦ θk)k∈Z forms a stationary sequence of martingale differences in
Lp(H) adapted to (Fk)k∈Z. Notice that the series in (5) converges in Lp(H) as soon as the series∑
k≥0 P0(Xk) does.

Theorem 2.4 Let p > 1 and let (Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense
of Notation 1.1. Assume that ∑

n≥1

‖E0(Sn)‖p,H
n1+1/p′′

<∞ . (6)

Then
∑
n≥1 |

∑
k≥n k

−1P0(Xk−1)|H converges in Lp and setting Mn =
∑n
k=1D◦θk where D is defined

by (5), the following inequality holds:

‖Sn −Mn‖p,H � n1/p
′ ∑
k≥[nq ]

‖E0(Sk)‖p,H
k1+1/p′′

, (7)

let (Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense of Notation 1.1. Assume that
where we recall that q = p′′/p′.

Remark 2.5 Let p > 1 and α ∈]0, 1/p′′]. Let us introduce the following assumption:∑
n≥1

‖E0(Sn)‖p,H
n1+α

<∞ . (8)

Assume that (8) holds with α = min(1/2, 2/p2). By combining (7) with Corollary 22 of [23] (with the
norm | · |H replacing the absolute values) we have

‖ max
1≤k≤n

|Sk −Mk|H‖p = o(n1/p) . (9)

Notice also that if p > 2 and (8) holds with α ∈]2/p2, 1/p], then (7) combined with the maximal
inequality (7) of [23] (with the norm | · |H replacing the absolute values) implies that

‖ max
1≤k≤n

|Sk −Mk|H‖p = o(nαp/2) . (10)

The fact that the maximal inequality (7) of [23] is still valid when the variables take values in a Hilbert
space comes from the fact that its proof is only based on chaining arguments (still valid in functional
spaces by replacing the absolute values by the corresponding norms) and on the Doob’s inequality that
also holds in Hilbert spaces. Since Corollary 22 of [23] is proved via their maximal inequality (7), it
is still valid in the Hilbert spaces setting.

Comment 2.6 Theorem 1 in [32] (still valid in the Hilbert space context) states the following mar-
tingale approximation: Let p > 1 and assume that

∑
k≥0 ‖P0(Xk)‖p,H < ∞. Then setting D =∑

k≥0 P0(Xk) and Mn =
∑n
i=1D ◦ θi,

‖Sn −Mn‖p
′

p,H �
n∑
k=1

(∑
i≥k

‖P0(Xj)‖p,H
)p′

. (11)

The approximations (7) and (11) cannot be compared and cover distinct classes of dependent sequences.
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Comment 2.7 Notice that the quantity ‖E0(Sk)‖p,H can be estimated in a large variety of examples
such as linear processes or mixing sequences. To give an example, let us consider p ≥ 2 and the
so-called stationary ρ-mixing real sequences defined by the coefficient

ρ(n) = ρ(F0
−∞,F∞n ) where F ji = σ(Xi, . . . , Xj) (12)

where

ρ(A,B) = sup
{Cov(X,Y )

‖X‖2‖Y ‖2
: X ∈ L2(A), Y ∈ L2(B)

}
.

Here L2(A) denotes the space of real-valued random variables in L2 that are A-measurable. In the
proof of Lemma 1 in [27], it has been proven that for any p ≥ 2 and any k ≥ 0,

‖E0(S2k+1)‖p �
k∑
i=0

2i/2ρ2/p(2i) , (13)

provided that
∑
k≥0 ρ

2/p(2k) <∞. On an other hand,
(
‖E0(Sn)‖p

)
n≥1 being a subadditive sequence, it

follows from Lemma 2.7 in [26] that, for any α > 0, (8) is equivalent to
∑
k≥0 2−αk‖E0(S2k)‖p <∞.

By using (13), one can see that this last convergence holds provided that
∑
i≥0 2i(1/2−α)ρ2/p(2i) <∞.

2.2 Martingale approximation under P0 and the quenched (weak) invari-
ance principle

Limit theorems for stochastic processes that do not start from equilibrium are timely and motivated
by evolutions in quenched random environment. Recent discoveries by Volný and Woodroofe [30] show
that many of the central limit theorems satisfied by classes of stochastic processes in equilibrium, fail
to hold when the processes are started from a point. In this section, we address the question whether
the Maxwell-Woodroofe condition (1) is sufficient for the validity of the quenched central limit theorem
since this condition is known to be optimal (see e.g. [26] or [29] where the optimality of this condition
is discussed). This question starts with a result in Borodin and Ibragimov ([1], Ch 4) stating that if
‖E0(Sn)‖2 is bounded, then one has the CLT starting at a point in its functional form. Later, works
by Derriennic and Lin (see [10], [11], [12]), Zhao and Woodroofe [35], Cuny [4], Merlevède, Peligrad
and Peligrad [24] improved on this result by imposing weaker and weaker conditions on ‖E0(Sn)‖2,
but always stronger than (1). Let us mention that a result in Cuny and Peligrad ([5]) shows that the
condition

∑∞
k=1 ‖E0(Xk)‖2/k1/2 < ∞, is sufficient for the quenched CLT. It is also sufficient for the

quenched weak invariance principle by a recent result of Cuny and Volny [6].
As we shall see in the proof of Theorem 2.8 below, the approximating martingale that we defined

in Section 2.1 also allows to show that, under (1), limn→∞ n−1E0(|Sn − E0(Sn) −Mn|2) = 0 P-a.s.
Together with a new ergodic theorem with rate (see our Theorem 4.7) and a maximal inequality from
Merlevède and Peligrad [23], this implies that the quenched CLT in its functional form holds under
Maxwell-Woodroofe condition (1).

Theorem 2.8 let (Xn)n∈Z be an adapted real stationary sequence in L2 in the sense of Notation
1.1. Assume that (1) holds. Then

∑
n≥1 |

∑
k≥n k

−1P0(Xk−1)| converges in L2 and setting Mn =∑n
k=1D ◦ θk where D is defined by (5), the following holds:

E0(max1≤k≤n |Sk −Mk|2)

n
−→

n→+∞
0 P-a.s. . (14)

In particular, (Sn) satisfies the following quenched invariance principle: for any continuous and
bounded function f on D([0, 1]) (the space of càdlàg functions on [0, 1]) endowed with uniform topology,

E0(f(S[nt]/
√
n))→ E(f(

√
ηW (t))) P-a.s. (15)
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where η = limn→∞ E(n−1S2
n|I) in L1 and W is a standard Brownian motion on [0, 1] independent of

η. Here I is the invariant sigma field, i.e. I = {A ∈ A : θ−1(A) = A}.

Theorem 2.8 also improves Corollary 5.10 of [4] stated for Markov chains with normal Markov operator.
It follows from Comment 2.7 that if the ρ-mixing coefficients of (Xn)n∈Z satisfy

∑
k≥0 ρ(2k) <∞, then

the quenched invariance principle holds. Hence the CLT from Ibragimov [19] for ρ-mixing sequences
that is known to be essentially optimal, is also quenched.
A careful analysis of the proof of Theorem 2.8, shows that if the random variables are assumed to be
in L2(H), then under (6) with p = 2, the almost sure convergence (14) still holds with the norm | · |H
replacing the absolute values.

3 Applications

3.1 Strong laws of large numbers with rate

Let p > 1 and (Xn)n∈Z be an adapted and centered stationary sequence in Lp(H) in the sense of
Notation 1.1. From our ergodic Theorem 4.7, it follows that if there exists D ∈ Lp(H) such that
Mn =

∑n
k=1D ◦ θk is a martingale adapted to (Fn)n≥1, then the condition∑

n≥2

‖Sn −Mn‖p,H
n1+1/p

<∞ , (16)

implies that |Sn−Mn|H = o(n1/p) a.s. When p is in ]1, 2[, together with the Marcinkiewicz-Zygmund
strong law of large numbers for martingales (see [31]), this implies that |Sn|H = o(n1/p) a.s. Therefore,
using the approximations (7) and (11), to take care of (16), we derive the following corollary:

Corollary 3.1 Let p ∈]1, 2[. Assume that∑
n≥2

log n
‖E0(Sn)‖p,H

n3/2
<∞ or

∑
n≥2

log n‖P0(Xn)‖p,H <∞ . (17)

Then (Xn) admits a martingale approximation in Lp(H) with rate n1/p. In addition |Sn|H = o(n1/p)
a.s.

Proof. To prove that (16) holds under the first part of (17) is direct by using (7). To prove that (16)
holds under the second part of (17), we first notice that by (11), (16) is satisfied provided that

∑
k≥0

2−k/p
( 2k∑
j=1

(∑
`≥j

‖P0(Xn)‖p,H
)p)1/p ≤∑

k≥0

2−k/p
( k∑
j=0

2j
( ∑
`≥2j
‖P0(Xn)‖p,H

)p)1/p
<∞ .

Now, using the subadditivity of x 7→ x1/p, this last condition holds if the second part of (17) does. �

Notice that the second part of (17) is weaker than the condition required in Corollary 1 of [32].

Remark 3.2 Notice that∑
n≥2

log n‖P0(Xn)‖p,H �
∑
`≥1

`

2`+1−1∑
k=2`

‖P−k(X0)‖p,H �
∑
`≥1

`2`/2‖
( 2`+1−1∑
k=2`

|P−k(X0)|2H
)1/2‖p .

Therefore using Burkholder’s inequality for H-valued martingales (see [3]), one see that both conditions
in (17) are satisfied as soon as: ∑

n≥2

(log n)
‖E0(Xn)‖p,H

n1/2
<∞ .
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3.1.1 Application to the empirical process

Let X0 be a real-valued random variable and Xi = X0 ◦ θi. Let F be the distribution function of X0

and define the empirical distribution

Fn(t) =
1

n

n∑
i=1

1Xi≤t .

Let µ be a σ-finite measure on R and suppose that F satisfies∫
R−

(F (t))2µ(dt) +

∫
R+

(1− F (t))2µ(dt) <∞. (18)

Under this assumption, (Fn − F ) may be seen as a sequence of (centered) random variable taking
values in the Hilbert space L2(µ). Define then

Dn(µ) =
(∫

(Fn(t)− F (t))2µ(dt)
)1/2

.

When µ = dF , Dn(µ) is known as the Cramér-von Mises statistics, and is commonly used for testing
goodness of fit.

Let us first define the dependence coefficients which naturally appear in this context.

Definition 3.3 Let (Ω,A,P) be a probability space, let X be a real-valued random variable and let F
be a sub-σ-algebra of A. Denote by PX the distribution of X and by PX|F a regular distribution of
X given F . Let FX(t) = PX(] −∞, t]) and FX|F (t) = PX|F (] −∞, t]). For 1 ≤ p ≤ ∞, define the
coefficient

τµ,2,p(F , X) =
∥∥∥(∫ |FX|F (t)− FX(t)|2µ(dt)

)1/2∥∥∥
p

:=
∥∥ ‖FX|F − FX‖2,µ∥∥p .

Corollary 3.4 Assume that the distribution function F of X0 satisfies (18). Define the function Fµ
by: Fµ(x) = µ([0, x[) if x ≥ 0 and Fµ(x) = −µ([x, 0[) if x ≤ 0. Let 1 < p < 2 and assume that
E(|Fµ(X0)|)p/2 <∞ and that ∑

n≥2

log n
τµ,2,p(F0, Xn)

n1/2
<∞ . (19)

Then nDn(µ) = o(n1/p) almost surely.

We refer to [8] for examples of models for which the coefficients τµ,2,p(F0, Xn) have been evaluated.

Proof of Corollary 3.4. Define the variable Zi = {t → 1Xi≤t − F (t), t ∈ R} which belongs to
H = L2(µ) as soon as (18) holds. In addition ‖Z0‖p,H < ∞ as soon as E(|Fµ(X0)|)p/2 < ∞ (see the
proof of Theorem 2 in [8]). To prove Corollary 3.4, it suffices then to apply Corollary 3.1 by taking
into account Remark 3.2 and by noticing that ‖E0(Zi)‖p,H = τµ,2,p(F0, Xk). �

3.2 Moderate deviations

The aim of this section is to obtain asymptotic expansions for probabilities of moderate deviations
for stationary adapted real processes under projective criteria; more precisely we want to study the
asymptotic behavior of P(Sn ≥ σ

√
nrn) where (rn) is a sequence of positive numbers that diverges to

7



infinity at an appropriate rate and σ = limn→∞ ‖Sn‖2/
√
n. Specifically, we aim to find the zone for

x of the following moderate deviations principle:

P(Sn ≥ xσ
√
nrn)

1− Φ(x)
= 1 + o(1) , (20)

where Φ(x) is the standard normal distribution function. If rn = r ≥ 0 is fixed, then (20) becomes the
well-known central limit theorem. However, for the case when r = rn is allowed to tend to infinity, the
problem of moderate deviation probabilities is to find all the possible speed of convergence of rn →∞
such that (20) holds. It is a challenging problem to establish moderate deviations principle (MDP)
for dependent variables. However starting from the deep results of Grama ([16]) and of Grama and
Haeusler ([17]) for martingales, Wu and Zhao ([34]) showed that it it possible to obtain MDP results
for a certain class of stationary processes such as functions of an iid sequence as soon as the partial
sum process can be well approximated by a martingale. Using our approximation theorem 2.4, we
shall give alternative conditions to the ones obtain by Wu and Zhao [34], in order for the MDP to
hold.

Let us first start with some notations and definitions.
Let p ∈ (2, 4]. For x > 1, let rx > 0 be the solution to the equation

x = (1 + rx)ν(p) exp(r2x/2) where ν(p) =

{
p+ 1 if 2 < p ≤ 3
3p− 3 if 3 < p ≤ 4 .

The function ν(p) results from the martingale MDP as obtained in Grama ([16]) and of Grama and
Haeusler ([17]) (see also Theorem 2 and Remark 5 in [34]).

Let τn →∞ be a positive sequence of numbers and (Un) a sequence of real valued random variables
such that Un →D N (0, 1). We shall say that (Un) satisfies the moderate deviations principle (MDP)
with rate τn and exponent p > 0 if for every a > 0 there exists a positive constant C = Ca,p not
depending on x neither on n such that

max

{∣∣∣P(Un ≥ rx)

1− Φ(rx)
− 1
∣∣∣, ∣∣∣P(Un ≤ −rx)

1− Φ(−rx)
− 1
∣∣∣} ≤ C( x

τn

)1/(1+p)
,

holds uniformly in x ∈ [1, aτn]. Therefore τn gives a range for which the MDP holds.

Theorem 3.5 Let 2 < p ≤ 4 and let (Xn)n∈Z be a real adapted stationary sequence in Lp in the sense
of Notation 1.1. Assume that∑

n≥1

‖E0(Sn)‖p
n1+2/p2

<∞ and
∑
n≥1

1

n2/p

∑
k≥n

‖E−n(Sk)‖2
k3/2

<∞ . (21)

Assume in addition that ∑
k≥0

1

22k/p
‖E0(S2

2k)− E(S2
2k)‖p/2 <∞ . (22)

Then n−1E(S2
n) converges to some nonnegative number σ2 and if σ > 0,

(
Sn

σ
√
n

)
n≥1

satisfies the MDP

with rate τn = np/2−1 and exponent p.

Proof. Analyzing the proof of Theorem 1 in [34], the theorem will be proven if we can show that
there exists a Lp stationary sequence (Di)i∈Z of martingale differences with respect to (Fi)i∈Z such
that setting Mn =

∑n
i=1Di,

‖Sn −Mn‖p = o(n1/p) (23)
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and
n∑
i=1

‖Ei−1(D2
i )− E(D2

i )‖p/2 = O(n2/p) . (24)

According to Theorem 2.4 combined with Remark 2.5, the first part of condition (21) implies (23). On
the other hand, since 1 < p/2 ≤ 2, according to Theorem 3 in [34] applied to the stationary sequence
(Ei−1(D2

i )− E(D2
i ))i≥1 and using the fact that Mn is a martingale, (24) holds if∑

k≥0

1

22k/p
‖E0(M2

2k)− E(M2
2k)‖p/2 <∞ . (25)

Using now Proposition B.2, we infer that (25) holds if (22) does and if∑
n≥1

‖E0(Sn)‖2p
n1+4/p2

<∞ and
∑
k≥0

2k

22k/p

∑
`≥2k

‖E−2k(S`)‖2
`3/2

<∞ . (26)

To end the proof, it suffices to notice that since (‖E0(Sn)‖p)n≥1 is a subadditive sequence, the first
part of (21) implies the first part of (26) (see item 3 of Lemma 37 in [23]) and that due to the
monotonicity of the sequence

(∑
`≥n `

−3/2‖E−2k(S`)‖2
)
n≥1, the second part of (26) is equivalent to

the second part of (21). �

Comment 3.6 Theorem 3.5 also holds if condition (22) is replaced by∑
n≥1

1

n1+2/p
‖E0(S2

n)− E(S2
n)‖p/2 <∞ . (27)

Even if these two conditions cannot be compared (there is no subadditivity or monotonicity property
of the sequence (‖E0(S2

n) − E(S2
n)‖p/2)n≥1), this comes from the fact that condition (22) is assumed

in order to prove that (25) holds. However condition (25) is equivalent to∑
n≥1

1

n1+2/p
‖E0(M2

n)− E(M2
n)‖p/2 <∞ . (28)

To see this it suffices to notice that by stationarity and since Mn is a martingale, the sequence
(‖E0(M2

n) − E(M2
n)‖p/2)n≥1 is subadditive and to apply Lemma 2.7 in [26]. Therefore, by using

Proposition B.2, we then infer that (28) holds as soon as (27) and (21) do. This proves the fact that
in Theorem 3.5, (22) can be replaced by (27). Notice however that condition (22) is more tractable
than (27) when we want to prove that it holds in the context of mixing sequences as it is done in the
forthcoming corollary 3.8.

The quantities involved in conditions (21) and (27) can be handled by controlling norms of indi-
vidual summands which involve terms such as E0(XiXj) and E0(Xi). The latter quantities can be
then in turn controlled by using various mixing or dependent coefficients (see [7] for instance). For
instance, as a corollary of Theorem 3.5, the following result holds (its proof is omitted since it follows
the lines of the proof of Corollary 2.1 in [7]).

Corollary 3.7 Let 2 < p ≤ 4 and let (Xn)n∈Z be a real adapted stationary sequence in Lp in the
sense of Notation 1.1. Assume that there exists γ ∈]0, 1] such that∑

n>0

n(p−2)/(γp)

n1/p
‖E0(Xn)‖p <∞ and

∑
n>0

nγ

n2/p
sup
i≥j≥n

‖E0(XiXj)− E(XiXj)‖p/2 <∞ .

Then the conclusion of Theorem 3.5 holds with σ2 =
∑
k∈Z Cov(X0, Xk).

9



As in [7], this result can be used, for instance, to derive under which conditions the partial sum of a
function f of the stationary Markov chain (ξk)k∈Z with transition Kf(x) = 1

2 (f(x + a) + f(x − a)),
when a is irrational in [0, 1] and badly approximable by rationals, satisfy the conclusion of Theorem

3.5. For instance, one can prove that if f is three times differentiable,
(
Sn(f)
σ(f)
√
n

)
n≥1

satisfies the MDP

with rate τn = n and exponent 4 provided that σ(f) > 0. Here Sn(f) =
∑n
k=1 f(ξk)−m(f) where m

is the Lebesgue-Haar measure and σ2(f) = m((f −m(f))2) + 2
∑
n>0m(fKn(f −m(f))).

Since in Theorem 3.5 the conditions are expressed in terms of the conditional expectation of
the partial sum or of its square, it is also possible to obtain applications for mixing sequences. As
an example, the following corollary gives conditions in terms of ρ-mixing coefficients as defined in
Comment 2.7.

Corollary 3.8 Let p ∈]2, 4] and r ≥ p. Let (Xn)n∈Z be a real adapted stationary sequence in Lr in
the sense of Notation 1.1. Let (ρ(n))n≥1 be its associated rho-mixing coefficients as defined in (12).
Assume that∑

k≥0

2k(1/2−2/p
2)ρ2/p(2k) <∞ and

∑
k≥0

2k(1−2/p)ρs(2k) <∞ where s = min(1, 2(r − 2)/r) . (29)

Then the conclusion of Theorem 3.5 holds with rate τn = np/2−1 and exponent p.

Notice that if r ≥ 4, condition (29) reduces to its first part.

The proof, being of technical nature is left to the appendix.

3.3 Rates of convergence for Wasserstein distances in the CLT

Let L(µ, ν) be the set of the probability laws on R2 with marginals µ and ν. Let us consider the
Wasserstein distances of order r ≥ 1 defined by

Wr(µ, ν) = inf
{(∫

|x− y|rP (dx, dy)
)1/r

: P ∈ L(µ, ν)
}
.

Let p ∈]2, 3[ and let (Xn)n∈Z be an adapted stationary sequence in Lp in the sense of Notation
(1.1). Denote by PSn/n1/2 the law of Sn/n

1/2 and by Gσ2 the normal distribution N (0, σ2) where

σ2 = limn→∞ n−1E(S2
n) provided the limit exists. Starting from their Theorem 2.1 that gives upper

bounds, under suitable conditions, for Wr(PSn/n1/2 , Gσ2) when Sn is a martingale, and next using a
coboundary decomposition, Dedecker, Merlevède and Rio ([9]) have proven in particular that if for
p ∈]2, 3[, (27) holds, and if∑

n≥1

n−3+p/2‖E0(S2
n)− E(S2

n)‖1+γ <∞ for some γ > 0 , (30)

and ∑
n>0

E(Xn|F0) converge in Lp , (31)

then n−1E(S2
n) converges to σ2 =

∑
k∈Z Cov(X0, Xk), and for any r ∈ [1, p],

W r
r (Pn−1/2Sn

, Gσ2) = O(n1−p/2) . (32)

Notice that in their Theorem 3.1, Dedecker, Merlevède and Rio stated the result by assuming stronger
conditions than (27) and (30), but following their proof and taking into account their remark 2.1, their
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result also holds under the weaker conditions (27) and (30) replacing their condition (3.2). We would
like also to mention that the conditions (27) and (30) are imposed in order to verify that the same are
true with the approximating martingale Mn replacing Sn. According to Remark 2.6 in [9], it follows
that (32) also holds if (27) and (30) are respectively replaced with (22) and∑

k≥0

2−k(2−p/2)‖E0(S2
2k)− E(S2

2k)‖1+γ <∞ for some γ > 0 . (33)

Using our Theorem 2.4, we shall prove that condition (31) can be weakened and that the following
result holds:

Theorem 3.9 Let p ∈]2, 3[ and let (Xn)n∈Z be an adapted stationary sequence in Lp in the sense of
Notation 1.1. Assume that (27) and (30) (or (22) and (33)) hold. Assume in addition that∑

n≥1

‖E0(Sn)‖2p
n1+4/p2

<∞ , (34)

and that ∑
n≥1

‖E0(Sn)‖2
n(5−p)/2

<∞ if r ∈]1, 2] and ‖E0(Sn)‖r = O(n(3−p)/r) if r ∈]2, p] . (35)

Then n−1E(S2
n) converges to some nonnegative number σ2 and for any r ∈ [1, p], the bound (32) holds

true.

When ρ-mixing sequences are considered, the above result gives the following corollary (its proof is
omitted since it uses similar bounds as those obtained in the proof of Corollary 3.8, see the Appendix).

Corollary 3.10 Let p ∈]2, 3[ and r ≥ p. Let (Xn)n∈Z be a real adapted stationary sequence in Lr in
the sense of Notation 1.1. Let (ρ(n))n≥1 be its associated rho-mixing coefficients as defined in (12).
Assume that ∑

k≥0

2k(p−2)/2ρs(2k) <∞ where s = min(1, 2(r − 2)/r) .

Then the conclusion of Theorem 3.9 holds.

Proof of Theorem 3.9. Notice first that (34) implies in particular that ‖E0(Sn)‖p = o(n2/p
2

) (apply
for instance Item 2 of Lemma 37 in [23] to the sequence (‖E0(Sn)‖2p)n≥0). Now, since p > 2, (34)
then entails that (6) holds true. Therefore, by Theorem 2.4, D defined by (5) is in Lp. In addition,
since p > 2, (6) implies that

∑
n>0 n

−3/2‖E0(Sn)‖2 <∞ which is a sufficient condition for n−1E(S2
n)

to converge (see Theorem 1 in [26]).
Let now Mn =

∑n
k=1D ◦ θk and Rn = Sn−Mn. According to the proof of Theorem 3.1 in [9], the

theorem will follow if we can prove that

‖Rn‖r = O(n(3−p)/2) . (36)

and also that∑
n≥1

‖E0(M2
n)− E(M2

n)‖1+γ
n3−p/2

<∞ for a γ > 0 and
∑
n≥1

‖E0(M2
n)− E(M2

n)‖p/2
n1+2/p

<∞ , (37)

or equivalently to (37),∑
k≥0

‖E0(M2
2k)− E(M2

2k)‖1+γ
2k(2−p/2)

<∞ for a γ > 0 and
∑
n≥1

‖E0(M2
2k)− E(M2

2k)‖p/2
22k/p

<∞ . (38)
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Using Proposition B.2 we infer that (37) (resp. (38)) holds provided that (27) and (30) do (resp. (22)
and (33)) and that

∑
n≥1

‖E0(Sn)‖2p
n1+4/p2

<∞ ,
∑
n≥1

‖E0(Sn)‖22(1+γ)
n1+(4−p)/(2+2γ)

<∞ and
∑
n≥1

‖E0(Sn)‖2
n(5−p)/2

<∞ . (39)

Notice first that the third part of (39) holds provided that (35) does (notice that the second part
of (35), for r > 2 implies the first part of (35)), whereas the first part of (39) is exactly condition
(34). Notice now that for any p ∈]2, 3[ and γ small enough, (4− p)/(2 + 2γ) ≥ 4/p2 and p ≥ 2 + 2γ.
Therefore the second part of (39) is implied by condition (34).

It remains to prove (36). By Lemma 2.7 of [26], the first part of (35) implies that ‖E0(Sn)‖2 =
o(n(3−p)/2). Therefore by using Theorem 2.4, we infer that for r ∈ [1, 2], ‖Rn‖r ≤ ‖Rn‖2 = o(n(3−p)/2)
under the first part of (35) . Now, for r ∈]2, p], the second part of (35) implies that ‖Rn‖r =
O(n(3−p)/2) by Theorem 2.4. �.

4 Proof of the martingale approximation results

We begin with some lemmas.

Lemma 4.1 Let X0 ∈ Lp(H), p > 1, then
∑
k≥0(k + 1)−1‖P0(Xk)‖p,H <∞.

The proof using similar arguments are those developped in the proof of Lemma 4.3 below is therefore
omitted.

Lemma 4.2 Let p > 1 and let (Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense of
Notation 1.1. Assume that ∑

n≥1

∑
k≥0

‖P0(Sn ◦ θk−1)‖p,H
(n+ k)(n+ k + 1)

<∞. (40)

Then
∑
n≥0 |

∑
k≥n

P0(Xk)
k+1 |H converges in Lp and a.s. Moreover for all integer m ≥ 0,∥∥∥ ∑

n≥m

∑
k≥n

P0(Xk)

k + 1

∥∥∥
p,H
≤
∑
k≥m

∑
n≥1

‖P0(Sn ◦ θk−1)‖p,H
(n+ k)(n+ k + 1)

. (41)

Proof.
By assumption, ∑

k≥0

∣∣∣∑
n≥1

∑n−1
l=0 P0(Xl+k)

(n+ k)(n+ k + 1)

∣∣∣
H

converges a.s. and in Lp. On the other hand, using Lemma 4.1, we have

∑
n≥1

∑n−1
l=0 P0(Xl+k)

(n+ k)(n+ k + 1)
=
∑
l≥0

∑
n≥l+1

P0(Xk+l)

(k + n)(k + n+ 1)
=
∑
l≥0

P0(Xk+l)

k + l + 1
=
∑
l≥k

P0(Xl)

l + 1
,

which gives the desired convergence. �

Lemma 4.3 For every integer r ≥ 0,∑
k≥r

∑
m≥1

‖P−k(Sm)‖p,H
(m+ k)2

�
∑
k≥r+1

‖E−r(Sk)‖p,H
k1+1/p′′

. (42)
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Proof.
Let m be a positive integer. Assume first that p ≥ 2. By Hölder inequality and using that ‖.‖`p ≤ ‖.‖`2 ,
we have ∑

k≥r

‖P−k(Sm)‖p,H
(m+ k)2

� (m+ r)−(1+1/p)
(∑
k≥r

‖P−k(Sm)‖pp,H
)1/p

� (m+ r)−(1+1/p)
(
E
(∑
k≥r

|P−k(Sm)|2H
)p/2)1/p

� ‖E−r(Sm)‖p,H
(m+ r)1+1/p

,

where we used Burkholder’s inequality for H-valued martingales (see Burkholder [3]), in the last step.
Assume now that 1 < p < 2. We use Hölder inequality twice and once again the Burkholder’s

inequality for H-valued martingales in the last step, to obtain

∑
k≥r

‖P−k(Sm)‖p,H
(m+ k)2

� 1

(m+ r)1/p

(∑
k≥r

‖P−k(Sm)‖pp,H
(m+ k)p

)1/p

� 1

(m+ r)1/p

(
1

(m+ r)3p/2−1
E
(∑
k≥r

|P−k(Sm)|2H
)p/2)1/p

� ‖E−r(Sm)‖p,H
(m+ r)3/2

.

From the above computations, we then obtain that∑
k≥r

∑
m≥1

‖P−k(Sm)‖p,H
(m+ k)2

�
∑
m≥1

‖E−r(Sm)‖p,H
(m+ r)1+1/p′′

� 1

(r + 1)1/p′′
max

1≤m≤r
‖E−r(Sm)‖p,H +

∑
m≥r+1

‖E−r(Sm)‖p,H
m1+1/p′′

.

The lemma then follows by using Lemma B.1 with γ = 1/p′′ and ` = r. �

Lemma 4.4 For every r ≥ 0,

X0 =

r∑
k=0

∑
l≥k

P0(Xl)

l + 1
−

r∑
k=0

∑
l≥k

E0(Xl+1)− E−1(Xl)

l + 1
+ (r + 1)

∑
l≥r

E0(Xl+1)

(l + 1)(l + 2)
. (43)

In particular, if we assume (6), letting r →∞, we have

X0 =
∑
k≥0

∑
l≥k

P0(Xl)

l + 1
−
∑
k≥0

∑
l≥k

E0(Xl+1)− E−1(Xl)

l + 1
.

Proof.
Let m ≥ k ≥ 0. We have

m∑
l=k

P0(Xl)

l + 1
=

E0(Xk)

k + 1
− E0(Xm+1)

m+ 2
+

m∑
l=k

E0(Xl+1)

l + 2
−

m∑
l=k

E−1(Xl)

l + 1
.
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Hence

m∑
l=k

P0Xl

l + 1
=

E0(Xk)

k + 1
− E0(Xm+1)

m+ 2
+

m∑
l=k

E0(Xl+1)− E−1(Xl)

l + 1
−

m∑
l=k

E0(Xl+1)

(l + 1)(l + 2)
.

Since ‖E0(Xm)‖p,H ≤ ‖X0‖p,H, ‖E0(Xm)‖p,H → 0 and the series
∑
l≥0

E0(Xl+1)
(l+1)(l+2) converges in Lp(H).

Hence, using Lemma 4.1, we may and do let m→∞, to obtain∑
l≥k

P0(Xl)

l + 1
=

E0(Xk)

k + 1
+
∑
l≥k

E0(Xl+1)− E−1(Xl)

l + 1
−
∑
l≥k

E0(Xl+1)

(l + 1)(l + 2)
.

Let r ≥ 0. We then deduce that

r∑
k=0

∑
l≥k

P0(Xl)

l + 1
=

r∑
k=0

E0(Xk)

k + 1
+

r∑
k=0

∑
l≥k

E0(Xl+1)− E−1(Xl)

l + 1
−

r∑
k=0

∑
l≥k

E0(Xl+1)

(l + 1)(l + 2)
.

Hence, interverting the order of summation in the last term,

r∑
k=0

∑
l≥k

P0(Xl)

l + 1
= X0 +

r∑
k=0

∑
l≥k

E0(Xl+1)− E−1(Xl)

l + 1
− (r + 1)

∑
l≥r

E0(Xl+1)

(l + 1)(l + 2)
.

Assume (6). In view of Lemmas 4.2 and 4.3, we see that the series on the left converges in Lp(H).
On an other hand, Lemma B.1 (with γ = 1) implies that n−1‖E0(Sn)‖p,H → 0. Therefore by Abel

summation, ‖(r + 1)
∑
l≥r

E0(Xl+1)
(l+1)(l+2)‖p,H → 0, when r →∞. �

4.1 Proof of Theorem 2.4

By Lemma 4.4, we have

X1 = D ◦ θ −
∑
k≥0

∑
l≥k+1

E1(Xl+1)− E0(Xl)

l
.

Hence, using that E1(Xl+1) = E0(Xl) ◦ θ, we obtain that for any positive integer n,

Sn −Mn = −
∑
k≥0

∑
l≥k+1

E0(Xl) ◦ θn − E0(Xl)

l
= −

∑
k≥0

∑
l≥k+1

En(Xl+n)− E0(Xl)

l
.

Let N be a positive integer, fixed for the moment. Then writing

Vn,N =

N−1∑
k=0

∑
l≥k+1

En(Xl+n)− E0(Xl+n)

l
, (44)

and

Wn,N =
∑
k≥N

∑
l≥k+1

En(Xl+n)− E0(Xl+n)

l
. (45)

we obtain

Sn −Mn − E0(Sn) = −
∑
k≥0

∑
l≥k+1

En(Xl+n)− E0(Xl+n)

l
= −(Vn,N +Wn,N ) . (46)
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We first deal with Vn,N . We have

Vn,N =

N−1∑
k=0

∑
l≥k+1

En(Xl+n)− E0(Xl+n)

l

=

N∑
l=1

En(Xl+n)− E0(Xl+n) +N
∑

l≥N+1

En(Xl+n)− E0(Xl+n)

l

= E0(SN ) ◦ θn − E0(SN ◦ θn) +N
∑

l≥N+1

En(Xl ◦ θn)− E0(Xl ◦ θn)

l
. (47)

Let j ∈ {0, n}. By (6) and Lemma B.1 with γ = 1,

‖E0(SN )‖p,H
N

�
∑
l≥N

‖E0(Sl)‖p,H
l2

= o(1). (48)

Hence, using Abel summation (notice that the ”end” term vanishes by (48)), we derive∑
l≥N+1

Ej(Xl ◦ θn)

l
=

∑
l≥N+1

Ej(Sl ◦ θn − Sl−1 ◦ θn)

l

= −Ej(SN ◦ θn)

N + 1
+
∑

l≥N+1

Ej(Sl ◦ θn)

l(l + 1)
. (49)

Hence, using (48),

‖Vn,N‖p,H ≤ 2
‖E0(SN )‖p,H

N
+N‖

∑
l≥N+1

En(Sl ◦ θn)− E0(Sl ◦ θn)

l(l + 1)
‖p,H

� N
∑
l≥N

‖E0(Sl)‖p,H
l2

. (50)

It remains to deal with Wn,N . Since E0(Wn,N ) = 0, we have

Wn,N =

n∑
r=1

Pr(Wn,N ) =

n∑
r=1

∑
k≥N

∑
l≥k+1

Er(Xl+n)− Er−1(Xl+n)

l
. (51)

But, by Burkholder’s inequality for H-valued martingales (see Burkholder [3]),

‖Wn,N‖p
′

p,H �
n∑
r=1

‖Pr(Wn,N )‖p
′

p,H . (52)

Notice that for any r ∈ {1, . . . , n},

Pr(Wn,N ) =

( ∑
k≥N

∑
l≥1

P0(Xl+k+n−r)

l + k

)
◦ θr .

Now, using Lemma 4.1,∑
l≥1

P0(Xl+k+n−r)

l + k
=
∑
l≥1

P0(Xl+k+n−r)
∑
m≥l

1

(m+ k)(m+ k + 1)

=
∑
m≥1

P0(Sm ◦ θk+n−r)
(m+ k)(m+ k + 1)

,
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so ∣∣∣ ∑
k≥N

∑
l≥1

P0(Xl+k+n−r)

l + k

∣∣∣ ≤∑
m≥1

∑
k≥N

|P0(Sm ◦ θk+n−r)|
(m+ k)2

. (53)

Hence, with s = n− r,

‖Wn,N‖p,H � n1/p
′

max
0≤s≤n−1

∑
k≥N+s

∑
m≥1

‖P−k(Sm)‖p,H
(m+ k − s)2

.

Now we take N = un ≥ n. We then obtain

‖Wn,un
‖p,H � n1/p

′ ∑
k≥un

∑
m≥1

‖P−k(Sm)‖p,H
(m+ k)2

. (54)

Hence using (46) and (50) with N = un, we get that

‖Sn −Mn‖p,H � ‖E0(Sn)‖p,H + un
∑
m≥un

‖E0(Sm)‖p,H
m2

+ n1/p
′ ∑
k≥un

∑
m≥1

‖P−k(Sm)‖p,H
(m+ k)2

. (55)

Next using Lemma B.1 with γ = 1, we derive that

‖E0(Sn)‖p,H ≤ max
1≤k≤un

‖E0(Sk)‖p,H � un
∑
m≥un

‖E0(Sm)‖p,H
m2

. (56)

Starting from (55) with un = [nq] and taking into account (56) and Lemma 4.3, Theorem 2.4 follows.
�

4.2 Proof of Theorem 2.8

Part of the proof relies on a new ergodic theorem with rate. Hence we first recall some facts from
ergodic theory and state our ergodic theorem, while we leave its proof to the appendix.

Let (Ω,A,P) be a probability space and T be a Dunford-Schwartz operator on X, i.e. T is a
contraction of L1 and L∞. Let T be the linear modulus of T (see e.g. Theorem 1.1, chapter 4 of [20]).
Recall that T is a positive Dunford-Schwartz operator such that |Tf | ≤ T|f |, for every f ∈ L1 and
|Tf |p ≤ T(|f |p), for every f ∈ Lp.

We will make use, for p ≥ 1, of the weak Lp-spaces

Lp,w := {f ∈ L1 : sup
λ>0

λpP{|f | ≥ λ} <∞}.

Recall that, when p > 1, there exists a norm ‖ · ‖p,w on Lp,w that makes Lp,w a Banach space and
which is equivalent to the ”pseudo”-norm (supλ>0 λ

pP{|f | ≥ λ})1/p.
We define, for every l ≥ 0, a maximal operator as follows. Let h ∈ L1 be non-negative

Ml(h) = sup
n≥1

h+ T2lh+ . . .+ (T2l)n−1h

n
.

By the Dunford-Schwartz (or Hopf) ergodic theorem (see e.g. Krengel [20], Lemma 6.1 page 51 and
Corollary 3.8 p. 131)

sup
λ>0

λP{Ml(h) ≥ λ} ≤ ‖h‖1 .
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In particular, for every p > 1, there exists Cp > 0 and such that for every f ∈ Lp

‖(Ml(|f |p))1/p‖p,w ≤ Cp‖f‖p . (57)

Let B be a Banach space with norm | · |B. For every p ≥ 1, we denote Lp(B) the Bochner space
{f : Ω → B , |f |B ∈ Lp}. When T is induced by a measurable transformation θ preserving P,
Ml(|f |B) is well-defined for every f ∈ L1(B). We prove the following, where Un(f) = f + . . .+Tn−1f .

Proposition 4.5 Let T be a Dunford-Schwartz operator on (Ω,A,P) and f ∈ L1. We have

max
1≤n≤2r

|Un(f)| ≤ 2r/p
r∑

k=0

[
Mk(|U2k(f)|p)

]1/p
2k/p

.

When T is induced by a measure preserving transformation θ and B is a Banach space, the result
holds also for f ∈ L1(B), replacing | · | with | · |B.

Proof. The proof follows from the following lemma, using that U2km(f)−U2k(m−1)(f) = T 2k(m−1)f+

. . .+ T 2km−1f = (T 2k)(m−1)U2k(f). �

Lemma 4.6 Let (an) be a sequence in a Banach space B with norm | · |B. Write sn = a1 + . . .+ an.
Let p ≥ 1. For every r ≥ 0, we have

max
1≤n≤2r

|sn|B ≤
r∑

k=0

( 2r−k∑
m=1

|s2km − s2k(m−1)|
p
B

)1/p
. (58)

Proof. We make the proof by induction on r ≥ 0. The result is obvious for r = 0. Let 1 ≤ n ≤ 2r. We
have (with the convention that s0 = 0) |s2n−1|B ≤ |s2n−2|B+|a2n−1|B. Hence, writing ãn = a2n−1+a2n
and s̃n =

∑n
k=1 ãk = s2n, we have

max
1≤l≤2r+1

|sl|B ≤ max
1≤n≤2r

|s̃n|B +
( 2r∑
n=1

|a2n−1|pB
)1/p

,

and the result follows. �

Theorem 4.7 Let T be a Dunford-Schwartz operator on a probability space (Ω,A,P). Let f ∈ Lp,
p > 1. Let ψ be a positive non-decreasing function, such that there exists C > 1 such that ψ(2x) ≤
Cψ(x), for every x ≥ 1. Assume that∑

n

‖f + . . .+ Tn−1f‖p
ψ(n)n1+1/p

<∞ . (59)

Then supn≥1
|f+...+Tn−1f |
ψ(n)n1/p ∈ Lp,w and |f+...Tn−1f |

ψ(n)n1/p → 0 P-a.s.

If T is induced by a measure-preserving transformation and B is a Banach space the result holds with

| · |B instead of | · | for every f ∈ Lp(B) such that
∑
n
‖f+...+Tn−1f‖p,B

ψ(n)n1+1/p <∞.

Comment 4.8 Take ψ ≡ 1, which is the relevant case in our applications. Then condition (59)
is weaker than condition (8) in [32] and also (slightly) improves condition (10) of [4] (obtained for
p = 2). In [32] and [4], only the case where T is induced by a transformation is considered.

We turn now to the proof of Theorem 2.8. It will follow from the next two propositions. Notice
that the second one is a version of Corollary 22 of Merlevède-Peligrad [23] under E0.
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Proposition 4.9 Assume (1). Then E0[(Sn −Mn − E0(Sn))2] = o(n) P-a.s. and E0(Sn) = o(
√
n)

P-a.s. In particular
E0[(Sn −Mn)2] = o(n) P-a.s.

Proposition 4.10 Assume (1) and that E0(S2
n) = o(n) P-a.s. then

E0( max
1≤k≤n

S2
k) = o(n) P-a.s. (60)

Before proving the above propositions, we indicate how they lead to Theorem 2.8. Using Proposi-
tion 4.9, we apply Proposition 4.10 with Sn−Mn in place of Sn. This proves (14). Now the convergence
(15) follows from (14) together with the fact that by the quenched weak invariance principle for martin-
gales (see for instance Deriennic and Lin [10] for the ergodic case) (15) holds for Mn with η = E(d20|I).
Now it is proven in Theorem 1 of Peligrad and Utev (2005) that E(d20|I) = limn→∞ E(n−1S2

n|I) in
L1.

It remains to prove Propositions 4.9 and 4.10. With this aim, we will make use of the operator Q
(also used in Cuny-Volný [6]) defined by

QZ = E0(Z ◦ θ) ∀Z ∈ L1 .

The operator Q is markovian, hence it is a Dunford-Schwartz operator. Notice that QnZ = E0(Z◦θn).

By the Dunford-Schwartz ergodic theorem, for every f ∈ L1, (Qf + . . .+Qnf)/n converges P-a.s.
and in L1 to some g ∈ L1. Here g = E(f |I), as we shall prove now. Indeed by the usual ergodic
theorem, (f ◦ θ + . . . + f ◦ θn)/n converges P-a.s. and in L1 to E(f |I). Now E(f |I) = E0(E(f |I))
(see Bradley [2]). Therefore ‖n−1

∑n
i=1 E0(f ◦ θi) − E(f |I)‖1 ≤ ‖n−1

∑n
i=1 f ◦ θi − E(f |I)‖1 which

converges to zero. This proves that g = E(f |I).

Let us prove Proposition 4.9. The fact that E0(Sn) = o(
√
n) P-a.s. under (1) comes directly from

an application of Theorem 4.7 with T = Q. We prove now that under (1), we have E0[(Sn −Mn −
E0(Sn))2] = o(n) P-a.s.

Let N be a positive integer fixed for the moment. Recall that by (46), we have

Sn −Mn − E0(Sn) = −(Vn,N +Wn,N ) , (61)

where Vn,N and Wn,N are given respectively by (44) and (45).

Let ϕn := E0(Sn) and ψN =
∑
l≥N

ϕl

l(l+1) , where ψN is well-defined in L2, by (1).

Then, by (47) and (49)

|Vn,N | � (|ϕN ◦ θn|+ |QnϕN |+ |ψN ◦ θn|+ |QnψN | .

Hence,
E0(V 2

n,N )� Qn(ϕ2
N ) +Qn(ψ2

N ) = o(n) P-a.s.,

by the ergodic theorem for Q. Then, using that E0(Sn) = o(
√
n) P-a.s. and (61), we obtain

lim sup
n

E0((Sn −Mn)2)

n
≤ lim sup

n

E0(W 2
n,N )

n
. (62)

It remains to deal with Wn,N . Recall that by (51)

Wn,N =

n∑
r=1

Pr(Wn,N ) =

n∑
r=1

( ∑
k≥N

∑
l≥1

P0(Xl+k+n−r)

l + k

)
◦ θr .
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and, by orthogonality,

E0(W 2
n,N ) =

n∑
r=1

E0(Pr(Wn,N )2) =

n∑
r=1

Qr
( ∑
k≥N

∑
l≥1

P0(Xl+k+n−r)

l + k

)2

.

But, using (53) and Cauchy-Schwartz, we have∣∣∣ ∑
k≥N

∑
l≥1

P0(Xl+k+n−r)

l + k

∣∣∣ ≤∑
m≥1

1

(m+N)3/2
(∑
k≥0

|P0(Sm ◦ θk)|2
)1/2

=
∑
m≥1

1

(m+N)3/2
(∑
k≥0

|P−k(Sm)|2 ◦ θk
)1/2

.

Let gN :=
∑
m≥1

1
(m+N)3/2

(
∑
k≥0 |P−k(Sm)|2 ◦ θk)1/2. Then gN is in L2 and

‖gN‖2 ≤
∑
m≥1

‖E0(Sm)‖2
(m+N)3/2

<∞ .

In particular, ‖gN‖2 → 0, as N →∞.
Finally, we have

E0(W 2
n,N )

n
≤
∑n
r=1Q

r(g2N )

n
−→

n→+∞
E(g2N |I) P-a.s.

by the ergodic theorem for Q. Since ‖E(g2N |I)‖1 ≤ ‖g2N‖1 → 0, there exists a sub-sequence (Nj) such
that E(g2Nj

|I)→ 0 P-a.s. as j →∞ and the result follows.

To prove Proposition 4.10, we will make use of the following maximal inequality from Merlevède
and Peligrad (2012). They did not state the result exactly in that context but it may be proved
exactly the same way, applying Doob’s maximal inequality conditionally, so the proof is omitted.

Proposition 4.11 Let (Xn)n∈Z be a stationary sequence in L2 adapted to the filtration (Fn). We
have,

(E0( max
1≤i≤2r

|Si|2))1/2 ≤ 2(E0(S2
2r ))1/2 + 2

r−1∑
l=0

(

2r−l−1∑
k=1

E0((Ek2l(S(k+1)2l)− Sk2l)2)1/2

= 2(E0(S2
2r ))1/2 + 2

r−1∑
l=0

(

2r−l−1∑
k=1

Qk2
l

(E0(S2l))
2)1/2 P-a.s. (63)

Proof of Proposition 4.10.

Let v ≥ 0 be an integer, fixed for the moment. Let r > v. Then we have

max
1≤k≤2r

|Sk| ≤ max
1≤s≤2r−v

|Ss2v |+ 2v max
1≤j≤2r

|Xj |.

Let K ≥ 1, be fixed for the moment. We have max1≤j≤2r |Xj |2 ≤ K2 +
∑2r

j=1 |Xj |21{|Xj |≥K}.

Hence, applying Proposition 4.11 to the stationary sequence (S(k+1)2v − Sk2v )k≥0 adapted to the
filtration (Fk2v )k≥0, we obtain (with the convention that S0 = 0)

E0( max
1≤i≤2r

|Si|2)� 4vK2 + 4v
2r∑
j=1

Qj(|X0|21{|X0|≥K}) + E0(S2
2r ) +

( r−v−1∑
l=0

(

2r−v−l−1∑
k=1

Qk2
l+v

(E0(S2l+v ))2)1/2
)2

� 4vK2 + 4v
2r∑
j=1

Qj(|X0|21{|X0|≥K}) + E0(S2
2r ) + 2r

( r−v−1∑
l=0

(
Ml+v(E0(S2l+v ))2

)1/2
2(l+v)/2

)2

.
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By assumption E0(S2
2r ) = o(2r) a.s. and by the ergodic theorem (

∑2r

j=1Q
j(|X0|21{|X0|≥K}))/2

r →
E(|X0|21{|X0|≥K}|I) P-a.s. Since ‖E(|X0|21{|X0|≥K}|I)‖1 ≤ ‖X2

01{|X0|≥K}‖1 → ∞, there exists a
sub-sequence (Kj) such that E(|X0|21{|X0|≥Kj}|I) → 0 P-a.s. as j → ∞. Hence taking the lim supr
and letting j →∞, we obtain

lim sup
r

E0(max1≤i≤2r |Si|2)

2r
�
(∑
l≥v

(
Ml(E0(S2l))

2
)1/2

2l/2

)2

P-a.s.

To finish the proof, it suffices to prove that the random variable defined by the series in right-hand
side is a.s. finite. But it is in L2,w since∥∥∥∑

l≥0

(
Ml(E0(S2l))

2
)1/2

2l/2

∥∥∥
2,w
≤
∑
l≥0

‖
(
Ml(E0(S2l))

2
)1/2‖2,w

2l/2

�
∑
l≥0

‖E0(S2l)‖2
2l/2

<∞ .

A Proof of Theorem 4.7

We make the proof for T Dunford-Schwartz and f real-valued since the proof in the case where f is
B-valued is identical, replacing | · | with | · |B when necessary.

Write Un(f) = f + . . . + Tn−1f . Since ψ is monotonic, it follows from the subadditivity of
(‖Un(f)‖p) (see for instance [26] Lemma 2.7 and [23] equation (92)) that (59) is equivalent to∑

n

‖f + . . .+ T 2n−1f‖p
ψ(2n)2n/p

=
∑
n

‖U2n(f)‖p
ψ(2n)2n/p

<∞ .

We proceed now as in the proof of Proposition 4.10; namely, we consider dyadic blocs. Let us give
the hints. Let v ≥ 0 be an integer. For r > v, write that

max
1≤k≤2r

|Uk(f)| ≤ max
1≤s≤2r−v

|Us2v (f)|+ 2v max
1≤j≤2r

|T jf | .

Using Proposition 4.5 to take care of the first term in the right hand side, it follows that

max
1≤k≤2r

|Uk(f)| ≤ 2v max
1≤j≤2r

|T jf |+ 2r/p
∑
k≥0

[
Mk+v(|U2k+v (f)|p)

]1/p
2(k+v)/p

.

We finish the proof by using arguments developped in the proof of Proposition 4.10. �

B Technical results

Proof of Corollary 3.8. Let us prove that the first part of (21) holds. With this aim, we first
notice that, due to the subadditivity of the sequence (‖E0(Sn)‖p)n≥1, this condition is equivalent to
(see Lemma 2.7 in [26]) ∑

k≥0

‖E0(S2k)‖p
22k/p2

<∞ . (64)

Since p > 2, (29) implies that
∑
k≥0 ρ

2/p(2k) < ∞. Therefore, by using (13), it follows that (64) is

satisfied as soon as
∑
k≥0 2−2k/p

2 ∑k
i=0 2i/2ρ2/p(2i) <∞, which is the first part of condition (29).
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We prove now that the second part of (21) holds. As we noticed in the proof of Theorem 3.5, this
condition is equivalent to the second part of (26).

Let r and j be positive integers. Let l ∈ [2j , 2j+1− 1] be an integer. There exists k ∈ [2j−1, 2j − 1]
such that either l = 2j−1 + k or l = 2j + k according to the fact that either l ∈ [2j , 2j + 2j−1 − 1] or
l ∈ [2j + 2j−1, 2j+1 − 1]. Then we have

Sl = S2j−1 ◦ θk + Sk or Sl = S2j ◦ θk + Sk .

For l ∈ [2j + 2j−1, 2j+1 − 1], we have

‖E−r(Sl)‖2 ≤ ‖E−r−2j−1(S2j )‖2 + ‖E−r(Sk)‖2 ,

For l ∈ [2j , 2j + 2j−1 − 1], using the convention that E−r−1/2 = E−r, we obtain

‖E−r(Sl)‖2 ≤ ‖E−r−2j−1(S2j−1)‖2 + ‖E−r(Sk)‖2 ≤ ‖E−r−2j−2(S2j−1)‖2 + ‖E−r(Sk)‖2 .

Hence

max
2j≤l≤2j+1−1

‖E−r(Sl)‖2 ≤ ‖E−r−2j−1(S2j )‖2 + ‖E−r−2j−2(S2j−1)‖2 + max
2j−1≤k≤2j−1

‖E−r(Sk)‖2 ,

and, by an easy induction over j, we obtain that

max
2j≤l≤2j+1−1

‖E−r(Sl)‖2 ≤ 2

j∑
s=0

‖E−r−2s−1(S2s)‖2 .

Therefore, the second part of (26) will hold if

∑
k≥0

2k

22k/p

∑
j≥k+1

2−j/2
j∑
s=0

‖E−2k−2s−1(S2s)‖2 <∞ . (65)

But, since ‖E−r(St)‖2 � ρ(r)
√
t,

∑
j≥k+1

2−j/2
j∑
s=0

‖E−2k−2s−1(S2s)‖p � 2−k/2
k−1∑
s=0

‖E−2k(S2s)‖2 +
∑
s≥k

2−s/2‖E−2s−1(S2s)‖2

� ρ(2k) +
∑
s≥k

ρ(2s)�
∑
s≥k

ρ(2s) ,

so we obtain,

∑
k≥0

2k

22k/p

∑
j≥k+1

2−j/2
j∑
s=0

‖E−2k−2s−1(S2s)‖2 �
∑
k≥0

2k(1−2/p)ρ(2k) . (66)

Noticing that (29) implies in particular that

ρ(2k) = o(2−k(p
2−4)/(4p))) as k →∞ , (67)

and taking into account that p > 2, we then infer that the sums in the right-hand side of (66) are
finite under (29). This ends the proof of (65), hence the second part of (21) holds.
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It remains to show that (22) is satisfied. With this aim we set for any integer i ≥ 0, S̃2i = S2i+1−S2i

and S̃2−1 = S1. With this notation,

‖E0(S2
2k)− E(S2

2k)‖p/2 ≤ 2

k−1∑
j=−1

j∑
i=−1

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 . (68)

We bound now the quantity ‖E0(S̃2i S̃2j ) − E(S̃2i S̃2j )‖p/2 in two different ways. In what follows, we
use the following convention ρ(2−1) = ρ(1). Note first that since p ∈]2, 4] and r ≥ p,

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 ≤ ‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖2∧(r/2)
≤ sup

Z∈B2∨(r/(r−2))(F0)

Cov(Z, S̃2i S̃2j ) ,

where Bp(F0) be the set of F0-measurable random variables such that ‖Z‖p ≤ 1. Using then Theorem
4.12 in [2], we get that for any −1 ≤ i ≤ j,

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 ≤ 21−sρs(2i)‖S̃2i S̃2j‖2∧(r/2) ≤ 21−sρs(2i)‖S̃2i‖4∧r‖S̃2j‖4∧r ,

where s = min(1, 2(r − 2)/r). Now the first part of (29) implies
∑
k>0 ρ

1/2(2k) < ∞ (see also (67)),

therefore ‖Sn‖4∧r � n1/2 (see [25] or [28]). Hence, for any −1 ≤ i ≤ j,

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 � ρs(2i)2i/22j/2 . (69)

On an other hand, for any −1 ≤ i < j,

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 ≤ 2‖S̃2iE2i+1(S̃2j )‖p/2 ≤ 2‖S̃2i‖p‖E2i+1(S̃2j )‖p .

Using Theorem 4.12 in [2] together with stationarity, we get that

‖E2i+1(S̃2j )‖p ≤ 21−2/pρ2/p(2j − 2i+1)‖S2j‖p .

Hence taking into account that under (29), ‖Sn‖p � n1/2 (see [25] or [28] again), we get that for any
−1 ≤ i < j,

‖E0(S̃2i S̃2j )− E(S̃2i S̃2j )‖p/2 � ρ2/p(2j − 2i+1)2i/22j/2 . (70)

Therefore stating from (68) and using the bounds (69) and (70), we get that

‖E0(S2
2k)− E(S2

2k)‖p/2 �
k−1∑
j=−1

[2j/p]∑
i=−1

ρ2/p(2j − 2i+1)2i/22j/2 +

k−1∑
j=−1

j∑
i=[2j/p]+1

ρs(2i)2i/22j/2

�
k−1∑
j=0

ρ2/p(2j)2j/p2j/2 +

k−1∑
j=0

j∑
i=[2j/p]+1

ρs(2i)2i/22j/2

�
k−1∑
j=0

ρ2/p(2j)2j/p2j/2 +

[2k/p]∑
i=1

ρs(2i)2i/22ip/4 + 2k/2
k∑

i=[2k/p]+1

ρs(2i)2i/2 .

Hence, since 2 < p ≤ 4,∑
k≥0

1

22k/p
‖E0(S2

2k)− E(S2
2k)‖p/2 �

∑
k≥0

2k/2

2k/p
ρ2/p(2k) +

∑
k≥0

(12<p<4 + k1p=4)
2k

22k/p
ρs(2k) .
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The series being convergent under (29), condition (22) is satisfied. This ends the proof of the corollary.
�

The next lemma is Lemma 19 in Merlevède, Peligrad and Peligrad [24]. In their paper the lemma
is stated with ` = 0 and with H = R but with similar arguments as done in their proof, it works
for any nonnegative integer ` and for adapted stationary sequences with values in a normed space by
replacing the absolute values by the corresponding norms.

Lemma B.1 Let p ≥ 1 and let (Xn)n∈Z be an adapted stationary sequence in Lp(H) in the sense of
Notation 1.1. For every γ > 0, n ≥ 1 and any integer ` ≥ 0,

1

nγ
max

1≤k≤n
‖E−`(Sk)‖p,H ≤ 23γ+3

6n∑
k=n+1

1

kγ+1
‖E−`(Sk)‖p,H .

Proposition B.2 Let p ≥ 2 and let (Xn)n∈Z be an adapted and real stationary sequence in Lp in the
sense of Notation 1.1. Assume that (6) holds. Then setting Mn =

∑n
k=1D ◦ θk where D is defined by

(5), the following inequality holds:

‖E0(M2
n)− E(M2

n)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖E0(S2
2n)− E(S2

2n)‖p/2,H

+n

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

+ n
∑
k≥n

‖E−n(Sk)‖2
k3/2

.

Proof.
Setting Rn = Sn −Mn, we start with the following inequality:

‖E0(M2
n)− E(M2

n)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + 2‖Rn‖2p
+2‖E0(SnRn)− E(SnRn)‖p/2 . (71)

Using Theorem 2.4 with p ≥ 2, we first get that

‖Rn‖2p � n

( ∑
`≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

. (72)

Now, starting from (46) and using the decompositions (44), (45), (47) and (49) with un = 2n, we
write that

Rn = E0(Sn) +
E0(S2n ◦ θn)

2n+ 1
− En(S2n ◦ θn)

2n+ 1
−An −Bn , (73)

where

An = 2n
∑

l≥2n+1

En(Sl ◦ θn)− E0(Sl ◦ θn)

l(l + 1)
, (74)

and

Bn =
∑
k≥2n

∑
l≥k+1

En(Xl+n)− E0(Xl+n)

l
. (75)

Notice first that∥∥∥E0

(
Sn

(
E0(Sn) +

E0(S2n ◦ θn)

2n+ 1

))
− E

(
Sn

(
E0(Sn) +

E0(S2n ◦ θn)

2n+ 1

))∥∥∥
p/2

≤ 2‖E0(Sn)‖2p + 2(2n+ 1)−1‖E0(Sn)‖p‖E0(S2n)‖p ,
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which combined with (56) with un = [np/2] implies that∥∥∥E0

(
Sn

(
E0(Sn) +

E0(S2n ◦ θn)

2n+ 1

))
− E

(
Sn

(
E0(Sn) +

E0(S2n ◦ θn)

2n+ 1

))∥∥∥
p/2

� n

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

. (76)

Now writing that S2n ◦ θn = S2n ◦ θn−Sn ◦ θn +Sn ◦ θn and using the fact that Sn is Fn-measurable,
we get ∥∥∥E0

(
Sn

(En(S2n ◦ θn)

2n+ 1

))
− E

(
Sn

(En(S2n ◦ θn)

2n+ 1

))∥∥∥
p/2

≤ n−1‖E0(Sn(S2n − Sn))− E(Sn(S2n − Sn))‖p/2 + n−1‖E0(SnEn(S3n − S2n))‖p/2 . (77)

Using the identity 2ab = (a+ b)2 − a2 − b2 and the stationarity, we first obtain that

‖E0(Sn(S2n − Sn))− E(Sn(S2n − Sn))‖p/2 ≤ 2‖E0(S2
n)− E(S2

n)‖p/2
+ ‖E0(S2

2n)− E(S2
2n)‖p/2 . (78)

To bound up the second term in (77), we write Cn := n−1En(S3n−S2n) and we follow the lines of the
proof of Theorem 2.3 in [7] (see the displaylines between their equations (4.13) and (4.16)). Hence we
first write that

‖E0(SnCn)‖p/2 ≤ ‖E
1/2
0 (S2

n)E1/2
0 (C2

n)‖p/2
≤ ‖(E0(S2

n)− E(S2
n))1/2E1/2

0 (C2
n)‖p/2 + (E(S2

n))1/2‖E1/2
0 (C2

n)‖p/2
≤ ‖E0(S2

n)− E(S2
n)‖p/2 + ‖Cn‖2p + 2(E(S2

n))1/2‖E1/2
0 (C2

n)‖p/2 .

Notice that since (6) holds, by Theorem 2.4, we have in particular that ‖Sn‖2 = o(n1/2) + ‖Mn‖2,
implying that

‖Sn‖2 � n1/2 . (79)

Using (79) and the fact that the function x 7→ |x|p/4 is concave, it follows that

‖E0(SnCn)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖Cn‖2p + n1/2‖Cn‖2 . (80)

By stationarity and using (56) with un = [np/2], we get that

‖Cn‖p,H � n−1‖E−n(Sn)‖p,H � n−1/2
∑

k≥[np/2]

‖E0(Sk)‖p
k1+1/p

. (81)

On another hand, by using once again the stationarity and Lemma B.1

‖Cn‖2 � n−1‖E−n(Sn)‖2 �
∑
k≥n

‖E−n(Sk)‖p
k2

. (82)

Therefore starting from (77) and using (77), (80), (81) and (82), we infer that∥∥∥E0

(
Sn

(En(S2n ◦ θn)

2n+ 1

))
− E

(
Sn

(En(S2n ◦ θn)

2n+ 1

))∥∥∥
p/2
≤ ‖E0(S2

n)− E(S2
n)‖p/2

+ n−1‖E0(S2
2n)− E(S2

2n)‖p/2 + n−1

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

+ n1/2
∑
k≥n

‖E−n(Sk)‖p
k2

. (83)

24



We consider now the term ‖E0(SnAn)− E(SnAn)‖p/2. With this aim, we first define

Ãn = 2nEn(Sn ◦ θn)
∑

l≥2n+1

1

l(l + 1)
.

Since Sn is Fn-measurable, by using stationarity,

‖E0(SnÃn)− E(SnÃn)‖p/2 � ‖E0(Sn(S2n − Sn))− E(Sn(S2n − Sn))‖p/2 .

Using then the identity 2ab = (a+ b)2 − a2 − b2 and stationarity, it follows that

‖E0(SnÃn)− E(SnÃn)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖E0(S2
2n)− E(S2

2n)‖p/2 . (84)

Let now

Dn := n
∑

k≥2n+1

En(Sk ◦ θn))− En(Sn ◦ θn)

k(k + 1)

and notice that, by stationarity,

‖E0(Sn(An − Ãn))− E(Sn(An − Ãn))‖p/2 � n‖E0(Sn)‖p
∑

k≥n+1

‖E0(Sk)‖p
k2

+‖E0(SnDn)‖p/2 . (85)

Using (56) with un = n, we first get that

n‖E0(Sn)‖p
∑
l≥n+1

‖E0(S` ◦ θn)‖p
`2

� n2

(∑
`≥n

‖E0(Sk)‖p
k2

)2

.

But, by using Lemma B.1 and the fact that p ≥ 2,

n
∑
`≥n

‖E0(Sk)‖p
k2

≤ max
1≤k≤[np/2]

‖E0(Sk)‖p + n
∑

k≥[np/2]

‖E0(Sk)‖p
k2

� np/2
∑

`≥[np/2]

‖E0(Sk)‖p
k2

� n1/2
∑

k≥[np/2]

‖E0(Sk)‖p
k1+1/p

. (86)

Therefore

n‖E0(Sn)‖p
∑
l≥n+1

‖E0(S` ◦ θn)‖p
`2

� n

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

. (87)

We bound now the the second term in the right-hand side of (85). Proceeding as to get (80), we infer
that

‖E0(SnDn)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖Dn‖2p + n1/2‖Dn‖2 . (88)

Stationarity and inequality (86) imply that

‖Dn‖p � n
∑
k≥n

‖E−n(Sk)‖p
k2

� n1/2
∑

k≥[np/2]

‖E0(Sk)‖p
k1+1/p

. (89)

On another hand, using once again, stationarity

‖Dn‖2 � n
∑
k≥n

‖E−n(Sk)‖2
k2

. (90)
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Overall, starting from (85) and considering the bounds (87), (88), (89) and (90), it follows that

‖E0(Sn(An − Ãn))− E(Sn(An − Ãn))‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2

+ n

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

+ n3/2
∑
k≥n

‖E−n(Sk)‖2
k2

. (91)

We consider now the term ‖E0(SnBn)− E(SnBn)‖p/2. Proceeding as to get (80), we infer that

‖E0(SnBn)− E(SnBn)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖Bn‖2p + n1/2‖Bn‖2 . (92)

According to the bound (54) followed by an application of Lemma 4.3,

‖Bn‖2 � n1/2
∑
k≥n

∑
m≥1

‖P−k(Sm)‖2
(m+ k)2

� n1/2
∑
k≥n

‖E−n(Sk)‖2
k3/2

. (93)

To bound ‖Bn‖p, we use (73). By stationarity, we then infer that

‖Bn‖p ≤ ‖Rn‖p + 3‖E0(Sn)‖p + 2n
∑
`≥n+1

‖E0(S`‖p
`2

.

Hence using Theorem 2.4 and inequality (56) with un = n, we get that

‖Bn‖p � n1/2
∑

`≥[np/2]

‖E0(S`‖p
`1+1/p

+ n
∑
`≥n

‖E0(S`‖p
`2

,

which together with (86) implies that

‖Bn‖p ≤ ‖Bn‖p � n1/2
∑

`≥[np/2]

‖E0(S`‖p
`1+1/p

. (94)

Starting from (92) and using (93) and (94), we then obtain that

‖E0(SnBn)− E(SnBn)‖p/2 �‖E0(S2
n)− E(S2

n)‖p/2 + n

( ∑
k≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

+ n
∑
k≥n

‖E−n(Sk)‖2
k3/2

. (95)

Taking into account the decomposition (73) together with the bounds (76), (83), (84), (91) and (95),
we then derive that

‖E0(SnRn)− E(SnRn)‖p/2 � ‖E0(S2
n)− E(S2

n)‖p/2 + ‖E0(S2
2n)− E(S2

2n)‖p/2

+ n

( ∑
`≥[np/2]

‖E0(Sk)‖p
k1+1/p

)2

+ n
∑
k≥n

‖E−n(Sk)‖2
k3/2

. (96)

Starting from (71) and considering the inequalities (72) and (96), the proposition follows. �
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[9] J. Dedecker, F. Merlevède and E. Rio Rates of convergence for minimal distances in the central
limit theorem under projective criteria, Electron. J. Probab. 14 (2009), 978-1011.

[10] Y. Derriennic and M. Lin, The central limit theorem for Markov chains with normal transition
operators, started at a point, Probab. Theory Relat. Fields. 119, (2001) 508-528.

[11] Y. Derriennic and M. Lin, Fractional Poisson equations and ergodic theorems for fractional
coboundaries, Israel J. Math. 123 (2001), 93-130.

[12] Y. Derriennic and M. Lin, The central limit theorem for Markov chains started at a point, Probab.
Theory Related Fields. 125 (2003), 73-76.

[13] M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188
(1969), 739-741.

[14] M. I. Gordin and B. A. Lifsic, Central limit theorem for stationary Markov processes, Dokl. Akad.
Nauk SSSR 239 (1978), 766-767.

[15] M. Gordin and M. Peligrad, On the functional CLT via martingale approximation, Bernoulli 17
(2011), no. 1 (2011), 424-440.

[16] I. G. Grama, On moderate deviations for martingales, Ann. Probab. 25 (1997), 152-183.

[17] I. G. Grama and E. Haeusler, An asymptotic expansion for probabilities of moderate deviations
for multivariate martingales, J. Theoret. Probab. 19 (2006), 1-44.

[18] C. C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes,
Bull. Austral. Math. Soc. 12 (1975), 1-8.

[19] I. A. Ibragimov, A remark on the central limit theorem for dependent random variables, Teor.
Verojatnost. i Primenen. 20 (1975), 134-140.

27



[20] U. Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co.,
Berlin, (1985).

[21] M. Maxwell and M. Woodroofe. C entral limit theorems for additive functionals of Markov chains,
Ann. Probab. 28 (2000), 713–724.
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