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Dispersion and damping of collective excitations in supercritical Argon along isothermal line
of 280 K are studied by a combination of molecular dynamics simulations and Generalized
Collective Mode (GCM) analysis. ”Positive dispersion” of collective excitations and its de-
pendence on density is discussed on the basis of GCM theory of ”positive dispersion”.
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1. Introduction

Collective dynamics in liquids and supercritical fluids is reviving an essential in-
crease of interest of scientific community. Systematic improvements of resolution
of Inelastic X-ray Scattering (IXS) and Inelastic Neutron Scattering (INS) tech-
niques [1, 2] made possible precise estimations of dispersion of collective excita-
tions in liquids as well as search for manifestation of non-hydrodynamic collective
processes in dynamic structure factors S(k, ω), where k and ω are wave number
and frequency, respectively. Very recently one of the most fascination problems in
collective dynamics of supercritical fluids has become the issue of dependence of
so-called ”positive dispersion” of collective excitations on density. Right outside the
hydrodynamic regime the sound excitations in dense fluids have dispersion ωs(k)
not linear with wave number anymore but bent up towards higher frequencies.
This ”positive dispersion” of collective excitations was initially explained by mode
coupling theory (MCT)[3, 4]. The microscopic mechanism responsible for ”positive
dispersion” in MCT [3] is the non-local (with different wave numbers) coupling of
hydrodynamic relaxation and propagating modes. The MCT yields a correction
to the hydrodynamic dispersion law of acoustic excitations αsk

5/2 with a positive
prefactor αs. This prefactor can be calculated from a sophisticated expression given
in Ref.[5], that requires the knowledge of explicit density dependences of adiabatic
speed of sound cs(n) and thermal expansion coefficient αT (n).

Recent IXS experiments performed on supercritical Ar at 573 K and subsequent
MD simulations [6] showed that the positive dispersion in supercritical Ar was
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decreasing with reduction of density and almost vanished at some density, that
was associated with extended into supercritical region Widom line [7]. One of the
consequences of this finding was a suggestion that the ”positive dispersion” can be a
dynamic quantity that can discriminate between liquid-like and gas-like fluids in the
supercritical region. However the calculations of density dependence of the MCT
coefficient αs for Ar at 573 K that is responsible for the ”positive dispersion” were
not in agreement with experimental findings, but supported previous calculations
[5] for Ar at 120K indicating increase of αs with decreasing density.

Recently a theory of ”positive dispersion” of collective excitations in fluids
was developed within the method of Generalized Collective Modes (GCM) [8].
The essential difference between MCT and GCM is in explicit treatment of non-
hydrodynamic processes in GCM approach and their coupling with hydrodynamic
modes in local approximation [9, 10]. Namely due to coupling of collective excita-
tions with a non-hydrodynamic process of structural relaxation one obtains within
the GCM analytical treatment the ”positive dispersion” of acoustic excitations on
the boundary of hydrodynamic regime [8]. Another interesting finding was the pos-
sibility of ”negative dispersion” of acoustic excitations due to their coupling with
thermal processes. The GCM analysis of collective modes was performed in Ref.[8]
for liquid Ar simulated with Lennard-Jones potentials at two temperatures 205 K
and 573 K. It was shown that the ”positive dispersion” vanishes with decrease
of density for both temperatures, while ”negative dispersion” can appear for the
temperatures and densities by approaching the critical point.

An important issue is to study the ”positive” dispersion of collective excitations
along more isothermal lines in the supercritical region. This would either support
or discard the suggestion that the ”positive dispersion” vanishes by approaching
the Widom line from the high-density side. Besides, a problem in simulations of
dynamic properties of supercritical fluids close to critical point are finite-size effects.
In [8] for the lower isothermal line corresponding to the temperature of 205 K was
obtained a large deviation from the NIST data for the ratio of specific heats γ right
at its maximum as a function of density, that can be a consequence of finite-size
effects. Therefore in this study we are aimed to check the relevant thermodynamic
quantities obtained from the simulations with the NIST data in order to be sure
that our simulations correctly reflect thermal processes in the supercritical fluid and
then perform theoretical analysis of ”positive dispersion” based on GCM approach.
The remaining paper is organized as follows: in next section we give the details of
molecular dynamics simulations and consequent GCM analysis. The results on
thermodynamic quantities and ”positive dispersion” for Ar at 280 K are reported
in the third section, and the last section contains conclusions of this study.

2. Molecular dynamics simulations

We performed MD simulations for 13 densities along the isothermal line T=280 K
for supercritical Argon using systems of 2000 particles interacting via ab initio

Woon potentials [11]. Parameters of the potentials were taken from [12] and cut-off

radius was 12Å. These potentials were the same as the used in MD simulations
of supercritical Ar at 573 K [6]. The time step in simulations was 2 fs. All the
simulations were performed in microcanonical ensemble. Energy conservation was
on very good level: the energy drift was less than 0.02 percent over the production
runs of 480000 time steps.

Every sixth configuration was used for sampling of dynamic variables. Dynamic
variables of particle density, momentum density and energy density as well as their
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time derivatives needed for GCM analysis were sampled for thirty different wave
numbers directly in MD simulations. The averages of static and time correlation
functions over all possible directions of different wave vectors with the same mag-
nitude were performed.

The GCM analysis of collective dynamics in supercritical Argon was performed
within a thermo-viscoelastic five-variable dynamic model:

A(5)(k, t) =
{

n(k, t), JL(k, t), h(k, t), J̇L(k, t), ḣ(k, t)
}

, (1)

where n(k, t), JL(k, t) and h(k, t) are the Fourier-components of hydrodynamic
variables of particle density, density of longitudinal component of current and heat
density, and overdots in the extended dynamic variables correspond to the first time
derivatives of hydrodynamic variables. Since the static average of cross-correlations
between a dynamic variable and its first time derivative is equal to zero - they are
orthogonal and the extension of the hydrodynamic basis set with the time deriva-
tives of hydrodynamic variables can be useful in describing non-hydrodynamic
processes. Within the GCM approach the chosen extended set of N dynamic vari-
ables is used for construction of N × N generalized hydrodynamic matrix T(k),
eigenvalues zi(k) of which correspond to wave-number dependent collective modes.
Analytical solution of the thermo-viscoelastic dynamic model in long-wavelength
limit was obtained in [13].

The matrix elements of generalized hydrodynamic matrix T(k) can be expressed
via wave-number dependent thermodynamic quantities, therefore for each density
we estimated the following generalized thermodynamic quantities: generalized ther-
mal expansion coefficient αT (k), specific heat at constant volume Cv(k), ratio of
specific heats γ(k), as well as regular static structure factor S(k). We performed
a check of the calculated thermodynamic quantities with the NIST database [14].
The long-wavelength limit of Cv(k) was in perfect agreement with values Cv esti-
mated from temperature fluctuations in the standard way. In Figure 1 one can see
that the values of Cv calculated in MD are in good agreement with the NIST data.
The values of ratio of specific heats γ are within the acceptable 5% discrepancy
with the NIST data, the calculated density dependence correctly reproduces the
location of maximum. Note, that for Cp the density dependence has its maximum
at n∗ = 0.355, i.e. for supercritical Argon at 280 K the Widom line crosses the den-
sity dependences at n∗ = 0.355. For convenience in comparison with Lennard-Jones
systems the reduced density was taken as n∗ = n ∗ (3.405Å)3.

Adiabatic speed of sound cs was calculated from the long-wavelength limit of
√

γ(k)/S(k). In Figure 2 the calculated density dependence of adiabatic speed
of sound for supercritical Ar at 280 K is shown to be in good agreement with
NIST data. The adiabatic speed of sound increases monotonically with density
having the most steep increase at high densities. An analytical expression for the
density dependence of adiabatic speed of sound can be found in Ref.[15]. Another
important quantity that usually is used in GCM analysis of collective dynamics
is the high-frequency speed of sound c∞, that was estimated from the following
expression

lim
k→0

〈J̇L(−k)J̇L(k)〉

〈JL(−k)JL(k)〉
∝ c2

∞
k2 .

In Figure 2 it is shown, that in contrast to adiabatic speed of sound the c∞ increases
almost linearly with density up to n∗ ∼ 0.4, while for high-density fluids it increases
more steep with density.
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Figure 1. Specific heat at constant volume Cv and ratio of specific heats γ for Ar at 280 K calculated in this

study (stars) in comparison with NIST data[14]. Dimensionless density was taken as n∗ = n ∗ (3.405Å)3.
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Figure 2. Calculated adiabatic (stars) and high-frequency (plus symbols) speeds of sound. By open boxes
is shown the adiabatic speed of sound for Ar at 280 K from NIST database.

3. Results and discussion

We are mainly interested in dispersion of generalized sound excitations in super-
critical Ar. In Figures 3 and 4 are shown the dispersion and damping of collec-
tive excitations for two densities, obtained from the imaginary and real parts of
complex eigenvalues in the GCM analysis of density-density, density-energy and
energy-energy hydrodynamic time correlation functions obtained in MD simula-
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tions. Matrix elements of the 5 × 5 generalized hydrodynamic matrix T(k), con-
structed on the basis set of dynamic variables (1), were calculated via static and
time correlation functions for each wave number. No fit parameters were used. The
solution of the eigenvalue problem for T(k) correspond to dynamic eigenmodes that
can exist in some window of frequencies and given wave number k in the studied
fluid. In the long-wavelength region the standard three hydrodynamic modes were
recovered: real eigenvalue with long-wavelength asymptote

d1(k) = DT k2 , (2)

where DT is thermal diffusivity, and a complex-conjugated pair of eigenvalues cor-
responding to hydrodynamic sound:

zs(k) = Γk2 ± icsk , (3)

where Γ = (DL+(γ−1)DT )/2 is the sound damping coefficient, and DL is kinematic
viscosity. The hydrodynamic long-wavelength asymptotes for sound excitations (3)
are recovered for GCM eigenvalues as it is shown in Figures 3 and 4. One can
see that the region of wave numbers where the GCM sound eigenvalues reach the
hydrodynamic asymptotes depends on density: for high-density fluids it is quite
narrow and it increases with reduction of density. This is an evidence of different
strength of processes responsible for emergence of ”positive dispersion” of collective
excitations.

One has to note, that in the long-wavelength region the imaginary
parts of complex eigenvalues Im zs(k) exactly correspond to the fre-
quency of the side peak of dynamic structure factor S(k, ω). However
beyond the hydrodynamic regime the side peak position is not exactly
equal to Im zs(k) because of other contributions to S(k, ω) like the asym-
metric (non-Lorentzian) one, that increases linearly with k in the long-
wavelength region and becomes quite important beyond hydrodynamic
regime [? ]. Besides, non-hydrodynamic excitations like heat waves or
”fast sound” in binary melts with disparate masses make non-zero con-
tributions to the dynamic structure factors measured in scattering ex-
periments. Experimental estimation of sound dispersion via Brillouin
peak position of S(k, ω) is based on solely hydrodynamic picture of col-
lective dynamics, while more sophisticated models are needed for analy-
sis of experimental S(k, ω) with the purpose of estimation of true sound
dispersion.

Among the five eigenmodes, obtained in the long-wavelength region two real
eigenvalues tend to non-zero values in k → 0 limit, that is an evidence that they be-
long to non-hydrodynamic processes with finite lifetime on macroscopic distances,
i.e. they do not survive on macroscopic scale in comparison with hydrodynamic
processes. Analytical solution for the five-variable dynamic model was obtained
in long-wavelength limit in [13], and expressions for the two long-wavelength non-
hydrodynamic (kinetic) modes read:

d2(k) = d0
2 − DLk2 + (γ − 1)∆k2 , (4)

and

d3(k) = d0
3 − γDT k2 − (γ − 1)∆k2 , (5)
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Figure 3. Dispersion and damping of generalized sound excitations for reduced density n∗ = 0.9648.
Dashed lines show the asymptotic hydrodynamic behavior of dispersion and damping with calculated

coefficients cs = 16.158 Å/ps and Γ = 18.5 Å2/ps.

where the k = 0 values are:

d0
2 =

c2
∞

− c2
s

DL

and

d0
3 =

cV

mλ
[Gh −

(γ − 1)

κT
] .

Here

∆ =
d0
2d

0
3

d0
3 − d0

2

DT

DLc2
s

(DT − DL)2

is a coefficient that reflects coupling between the two non-hydrodynamic modes.
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Figure 4. Dispersion and damping of generalized sound excitations for reduced density n∗ = 0.4465.
Dashed lines show the asymptotic hydrodynamic behavior of dispersion and damping with calculated

coefficients cs = 5.584 Å/ps and Γ = 10.6 Å2/ps.

The quantities Gh and κT correspond to heat rigidity modulus and isothermal
compressibility, respectively. Because of the factor (γ − 1) the last terms in right
hand sides of (4) and (5) appear only due to coupling between the heat and density
fluctuations. The quantity (c2

∞
− c2

s) is called in the literature as the strength
of structural relaxation and for wave numbers in the vicinity of the first sharp
diffraction peak it is possible to show that the d2(k) is the inverse relaxation time
of the cage of nearest neighbors[17]. Namely the non-hydrodynamic mode d2(k)
reflects the structural relaxation in fluids. The other non-hydrodynamic mode,
d3(k), is of thermal origin, it keeps information about heat rigidity in the fluid,
and as it was shown in [18] the non-hydrodynamic processes d3(k) for increasing
wave numbers is responsible for emergence of non-hydrodynamic heat waves that
can exist on nanoscales but not on macroscopic distances and times.

The ”positive dispersion” of collective excitations appears mainly due to interac-
tion of acoustic modes with structural relaxation on the boundary of hydrodynamic
regime. In Figure 5 we show how the strength of structural relaxation changes

Page 7 of 10

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 19, 2011 12:17 Molecular Physics a3

8 Taylor & Francis and I.T. Consultant

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

d0 2 
/ p

s-1

Reduced density n*

Figure 5. Dependence of the long-wavelength limit of structural relaxation mode on density for supercrit-
ical Ar at 280 K.

with density. In the high-density region there is a maximum that appears because
of more fast drop of kinematic viscosity DL with reduction of density than the
change in (c2

∞
− c2

s). Further decrease of density leads to monotonic decay of the
d0
2 that implies that even for low density fluids the non-hydrodynamic mode d2(k)

will have quite large relaxation time and therefore will be important in collective
dynamics of low-density fluids too. On the other hand the elastic properties of the
system monotonically decay with decrease of density, that is seen from Figure 6,
where the high-frequency shear module G∞ and bulk module K∞ are shown.

Within the GCM theory the ”positive dispersion” can be obtained as a long-
wavelength correction to hydrodynamic dispersion law that is proportional to k3[8]

ωs(k) ≈ csk + βk3 + ... (6)

with the prefactor β that reads:

β =
csD

2
L

8

5 − (c∞/cs)
2

c2
∞

− c2
s

− (γ − 1)DT [
6DL + (γ − 5)DT

8cs
−

cs

2d0
3

] . (7)

For viscoelastic approximation, when the ratio of specific heats γ = 1, one obtains
very simple expression for the dispersion of collective excitations on the boundary
of hydrodynamic regime:

ω(k) ≈ csk +
csD

2
L

8

5 − (c∞/cs)
2

c2
∞

− c2
s

k3 . (8)

It follows from this expression that depending on the ratio of high-frequency speed
of sound to adiabatic speed of sound one can obtain even vanishing to zero ”positive
dispersion” and possible ”negative dispersion”. From Figure 2 one can see that the
largest ratio of the high-frequency speed of sound to adiabatic one c∞/cs larger
than 2 takes place between densities n∗ = 0.4465 and n∗ = 0.2351, that implies
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Figure 6. Dependence of the high-frequency shear and bulk moduli on density for supercitical Ar at 280 K.

almost vanishing ”positive dispersion” in that region of densities. In Figure 7 one
can see how the positive dispersion reduces with decrease of density. According to
the NIST database for Argon [14] the Widom line crosses the isotherm T =280 K
at n∗ = 0.357 that is in agreement with Figure 7, where the ”positive dispersion”
almost vanishes by approaching that density. Another interesting finding is a little
increase of the ”positive dispersion” for very low-density fluids, that within the
adopted approximation in our GCM analysis is explained by decreasing for very
low density systems ratio between the high-frequency sound and adiabatic one.
Note that the analysis of IXS experiments on Ar at 573 K in [6] gave evidence of
a small (∼ 4%) ”positive dispersion” even in the low-density region.

4. Conclusions

We performed a combined study based on MD simulations of supercritical Ar
along the isothermal line of 280 K and theoretical GCM analysis of collective
excitations. We made check that our calculated density dependences of adiabatic
speed of sound, ratio of specific heats and specific heat at constant volume were
in good agreement with the NIST data. Based on these quantities we studied the
”positive dispersion” of collective excitations in supercritical Ar and how it depends
on density.

We made use of the five-variable dynamic model for GCM analysis of time cor-
relation functions obtained in MD simulations. We found, that the ”positive dis-
persion” reduces with the decrease of density. Theoretical GCM expression for
the correction to hydrodynamic dispersion law yields ”positive dispersion” in good
agreement with MD data in a wide region of densities. We found, that the theo-
retical expression for ”positive dispersion” is in agreement with a suggestion that
the ”positive dispersion” can vanish in the vicinity of the Widom line [6].
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[4]J.Bosse, W.Götze and M.Lücke, Phys. Rev. A, 18, 1176 (1978)
[5]I.M.deSchepper, P.Verkerk, A.A. van Well, L.A. deGraaf, Phys.Lett. A, 104, 29 (1984).
[6]G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro and T. Scopigno, Nature Phys. 6

(7), 503 (2010).
[7]P.F. McMillan and H.E. Stanley, Nature Phys. 6 (7), 479 (2010).
[8]T. Bryk, I. Mryglod, T. Scopigno, G. Ruocco, F. Gorelli and M. Santoro, J.Chem.Phys. 133, 024502

(2010).
[9]I.M.deSchepper, E.G.D.Cohen, C.Bruin, J.C. van Rijs, W.Montfrooij, and L.A. de Graaf, Phys. Rev. A

38, 271 (1988).
[10]I.M.Mryglod, I.P.Omelyan, and M.V.Tokarchuk, Mol. Phys. 84, 235 (1995).
[11]D.E.Woon, Chem.Phys.Lett. 204, 29 (1993).
[12]J.-M.Bomont, J.-L.Bretonnet, T.Pfleiderer and H.Bertagnolli, J. Chem. Phys. 113, 6815 (2000).
[13]T. Bryk and I. Mryglod, Condens. Matter Phys. 7, (3) 471 (2004).
[14]E.W. Lemmon, M.O. McLinden and D.G. Friend, ”Thermophysical Properties of Fluid Systems”

in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Lin-
strom and W.G. Mallard, (National Institute of Standards and Technology, Gaithersburg MD, 20899)
http://webbook.nist.gov

[15]M.Schoen and F.Porcheron, Phys. Rev. E 67, 051202 (2003).
[18]T. Bryk and I. Mryglod, Phys. Rev. E 64, (3) 032202 (2001).
[17]T. Bryk and I. Mryglod, Condens. Matter Phys. 11, (1) 139 (2008).
[18]T. Bryk and I. Mryglod, Phys. Rev. E 63, (5) 051202 (2001).

Page 10 of 10

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


