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The description of open quantum system successfully ugesotincept of the effective Hamiltonian, which
takes into account the coupling to the environment. The@pincan be extended to classical waves. Exper-
imentally, classical waves are very convenient as theyaltocontrol boundaries, coupling and absorption.
We combine here recent works with microwaves investigatimgerties of open systems which can be de-
scribed by an effective Hamiltonian. This ranges from gaggroperties like modifications to level dynam-
ics, width distribution and coupling fidelity to spatial perties like intensity distributions and complexness
parameter which describes the non-orthogonality of eigaetfons.
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1 Introduction

Any measurement opens a wave system. This coupling to thinoom drastically changes the system
properties by converting discrete energy levels into degagesonance states and induces currents that
did not exist in the closed system. One possible descrifpighe effective Hamiltonian (see [1] for an
overview). Thus typical quantities investigated in thdmeaf quantum chaos [2] have to be modified like
nearest neighbor spacing distributions, avoided crossiagd new features occur like resonance width,
resonance trapping and current flows. In particular, welvlinterested in statistical properties in the case
of chaotic systems.

In this manuscript we review experimental investigatiohshose properties using two dimensional
microwave cavities. These experiments have the advantedette time independent two dimensional
Schrodinger equation and the corresponding Helmholtatou are mathematically equivalent [2]. The
experimental setup is simple and the main measurementag@i@ctor network analyser, is commercially
available. The coupling to the environment, typically te #malyser, can be either performed by microwave
waveguides, where each supported mode is an individuahehaor by coaxial antennas which typically
only support a single mode. The antennas have the advaritagthey perturb the closed system only
weakly and they can be positioned arbitrarily in the two disienal 'billiard’. Additionally they can
operate over the whole frequency range, whereas waveduddesa lower cutoff frequency.

Microwave experiments have also induced the investigatiotine effects of absorption on different
quantities like the Poisson kernel and the width distritrutiAbsorption can be introduced into the effec-
tive Hamiltonian by attaching 'infinitely’ many but weaklypapled channels additionally to the real chan-
nels. These absorptive channels have often similar efiethhedephasing probe introduced by Blttiker
to describe the electron transport [3], like broadening&s®nances, but differences can be found if their
absorption or dephasing strength can be changed paraatigtf&]. Additionally, there exists two type
of absorptions in microwave cavities, one which can be desdrjust by an additional constant or more
precisely speaking weakly frequency depending width iedury top and bottom plates, and a mode de-
pendent additional term coming from the boundary [5, 6].r€f@re the measured scattering matrix is only
subunitary.
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2 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave expenit® in the realm of the effective Hamiltonian

The measured quantities are reflection and transmissiotitadgs through the introduced channels.
Thus, all elements of the scattering matrix are experinfigrdaectly accessible including the phases [2].
Also, the systems can be controlled easily down to the suleleagth regime. It is the purpose of this
review to give an overview of different quantities usingyoalsingle description given in section 2. In gen-
eral the definition of the effective Hamiltonian and the s&@tg matrix elements differ by factors afor
2 in coupling constants and the normalization to the meagl Epacing enters at different places. From the
experimental point of view, the distribution of scatteringtrix elements are better accessible than the res-
onances of the effective Hamiltonian. Often the resonacae®nly be extracted in the regime of isolated
resonances, i.e. assuming only weak coupling. There ayeadielw results for strongly overlapping reso-
nances, e.g. for the resonance trapping (see Subsec. 3B 8pjar for width distribution (see Subsec. 3.2
and [9]). Hopefully it will be possible in the future to exttahe resonances reliably even in the strongly
overlapping regime and follow them parametrically in thengdex plane. Thus one could directly relate
for example the already available results presented fos¢httering fidelity (see Subsec. 3.4 and [10, 11])
or the Poisson kernel (see Subsec. 3.2) to the dynamics obthplex resonances experimentally.

In Sec. 2 we give a short introduction to the effective Haomiian. As the effective Hamiltonian cannot
be measured directly we introduce the scattering matrixratate it to the effective Hamiltonian. We
fix our notation which will be used throughout the manuscaipd might differ from the original papers.
Experiments related to spectral properties are describad in the corresponding subsections of Sec. 3.
We start with the investigation of avoided crossings odogrfor level dynamics under parametric changes
of the system (Sec. 3.1). The Poisson kernel and the comdsmpwidth distribution are presented in
Sec. 3.2. The resonance trapping effect is investigateddn &3 by increasing the coupling to the system
using a microwave cavity with attached waveguide, and thedifidcreated by a variation of coupling is
shown in Sec. 3.4. Finally, we also present results on wanetions and measures of openness in Sec. 4
and then summarize the results and give an outlook in Sec. 5.

2 Effective Hamiltonian and scattering theory

2.1 Effective Hamiltonian for chaotic system

The general case dff scattering channels connectedNoevels of the closed cavity can be described in
terms of the following effective non-Hermitian Hamiltonia

M
Heg=H—iY_ kWW]. (1)
c=1
Here, the internal Hamiltonia/ of the closed system is represented by a Hermifiarx N matrix,
whereaslV,. are M vectors of lengthV containing the information on the coupling of the levelshe t
continuum through\/ coupling channels. Thi/. are assumed to be normalized to oVIéj,Wc =1,and
k. IS the coupling constant of channelHave in mind that there exists a scale induced by the Hanito
which is the mean level spaciny.

Such an approach was initially developed in nuclear phy4i2s14] and since then has been success-
fully applied to study various aspects of open systemsyding wave billiards [2, 15-17]. Usually, the
phenomenological coupling constantsare considered as real numbers which enter the final expressi
via the so-called transmission coefficiefits However, in the general case of an experiment it might be
difficult to vary only the coupling of a channel without petting the system otherwise, thus leading to
complex coupling coefficients.. The only constraint iRe(x.) > 0, due to the causality condition on the
S-matrix. We note that quite a similar problem of nonzéidx.) arises in shell-model calculations due
to the principal value term of the self-energy operator]12] and [13].

In this paper we will restrict ourself to open systems, wlikeeclassical counterpart of the wave system
is fully chaotic and time reversal symmetry is respectedhisicase, the Hamiltonian of the closed system
is described by a largty x N random Gaussian orthogonal matrix (GOE), in which caseveusal fluctu-
ations are expected in the limi >> 1 over a scale of the order of the mean spacdMore specifically,
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by restricting the study to the center of the spectrum, thellgpacing is given byA = An/N where2A
is the radius of the semicircle density for GOE [18]. Depegdin the quantities of interest, the induced
energy dependence on the imaginary part can be incorpardtetthe statistics of the closed Hamiltonian,
ie. H = H — AH,,, with AH,,, = > Im(k.)W.W,. One should have in mind that the GOE as-
sumption forH’ is an approximation as the induced change of enéxgl,,, is not described by GOE. In
this paperA H,,,, is only playing an important role in section 3.4, where weestigate the fidelity of the
system under a change of the coupling.

The non-Hermiticity ofH.¢ yields a set of complex eigenvalugs, } associated to two distinct sets of
eigenvectors called left()2 |} and right{|Z)} eigenvectors:

Heff|7/’§> = gn|7/’§>v <7/’7LL|Heff = <7/’7LL|gna (2)

where the complex eigenvaldg = E, — (i/2)T",, gives respectively the energdy, and the resonance
width T',, > 0 of thenth resonance. The left and right eigenvectors, which desdhie resonance states,
satisfy the condition of bi-orthogonaliti)L|1/F) = 6,,,,, and completenesgf;[:1 [YEY (L] = 1. Inthe
context of microwave cavities, the validity of model (1) Heeen established in previous works [17, 19].
More general models of non-Hermitian Hamiltonian opersaioay be used to study open quantum systems
(see e.qg. the topical review written by I. Rotter [1]). Thasrhalism has been successfully applied to wave
billiards for which antennas and absorption are respdygtiescribed by physical and fictitious coupling
channels [19-21].

2.2 Scattering theory including the effective Hamiltonian

According to the general scattering formalism [12, 13, #23, resonance part of thiematrix at the scat-
tering energyly can be expressed in terms &g as follows [11]:

Su(E) = b — 2i/Re(ma)Re(g) Wi Ty 3)
E — Heg
In the case where the coupling amplitudes change slowly thithenergy, one may safely consider the
complex eigenvalue$, of H.¢ as the only singularities of th&-matrix in the complex energy plane.
Using random matrix theory (RMT) for large matricegat= 0, the transmission coefficients are given
in terms of the averag&-matrix diagonal elementsS..) = (1 — x})/(1 + k) by [11,13, 18]

2 _ 4Re(rc)
1+ k2

*
1 — kK

=1
1+ ke ¢

ﬂzl—K&JP:l—‘ sy M. (4)

ThusT., is accessible directly from a reflection measurementarmén be determined uniquelylifa(x.) =
0. It is worth noting that, in the case of real, one getd, = (1%)2 € [0,1],so thatT,. <« 1 andT. =1
correspond to an almost closed or perfectly open channespectively. In the case of purely imaginagy
corresponding to perfectreflection, the channelis cldsges 0. We will use this in the investigation of the
coupling fidelity (see Subsec. 3.4 and [11]), where the efitadding a channel (i.d,. =0 — T, = 1)
is investigated in the scattering fidelity.

Typically, the elements of the scattering matrix can betemitas a sum of Lorentzians assuming that
the coupling constants. have only a weak energy dependance within the resonanck,weltone is far

from energy thresholds
Gp

Sab(E) = dab — ZZ E_E 1 i1 (5)
n n 2+ N

wherea,, is the complex amplituddy,, the eigenenergy arid, the width of the resonancé:,, describes
in the time domain the exponential decay of thth eigenstate. In the weak coupling regime <« 1,
assuming reak), the resonances do not overlap and the non-Hermitian pait.@ can be treated as a
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4 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave expenit® in the realm of the effective Hamiltonian

perturbation of the Hermitian paff and one can relate the parameters of the Lorentzians to dkect!
system. In this Breit-Wigner approximation the elementthefscattering matri¥ can be written as

Re(kq)Re(kp) WanW n
—(5ab—222 b b .

Sap(E
ETL J’_ FTL

(6)

Assuming reak, to leading order in:, the real parts of,, are given by the eigenenergies of the closed
system,H|n) = E,|n), while their widths are given by :

M
T =2 kie(n|WWi|n). (7)

c=1

An investigation of the joint distribution of the complexflexction amplitudeS;; and the widthl",, is
presented in Subsec. 3.2. Likewise, the right eigenvectofs.« read :

M

[652) = chz UAIATENS ®)

m#n

We investigate the eigenvectors, i.e. the eigenfunctidriie system in section 4. Often one can use a
2 x 2 random matrix toy model to obtain analytic results. An ex@ipshown in Subsec. 3.1.

3 Classical wave experiments on spectral properties

3.1 Leveldynamics

It is often relevant to study the dynamics of levels when apeater of the system is varied. For a com-
pletely uncorrelated spectrum typical of a system with f@gdynamics, levels evolve ignoring the pres-
ence of others. It ensues that for certain values of the petexrievels may become degenerate. On the
contrary, in a chaotic system, level repulsion precludes supossibility. To characterize the parametric
dynamics of levels one may consider the statistics of lodalmma of level spacings, also called avoided
crossings. In this section, following [23], we recall howatlevel model with a large number of open de-
cay channels can be used to describe avoided level crogatigjiss in open chaotic billiards. This model
allows us to describe the fundamental changes of the priityatistribution of the avoided level crossings
compared with the case of a closed wave system [24]. In pdatidt is found that the decay process due
to open channels induces a modification of the probabiligyrihiution of the avoided level crossings at
small spacings due to an attraction of the resonances. Ircewave experiment presented in [25] the
spectral properties of a superconducting two-dimensiori@owave billiard were investigated, where the
geometry of the cavity is varied by rotating a dielectricf(@e) wedge creating an evolution of the levels
(see inset of Fig. 1). The resonator modeled an open quaritisindowhose classical dynamics is chaotic
with the antennas acting as single scattering channels T28] influence of the flux of microwave power
was so weak that it could not be detected through spectraltitiesa like the nearest neighbor spacing
distribution or the spectral rigidity at a fixed value of thergmeter. But the distribution of the avoided
crossings is more sensitive to small effects showing cleaiations from the GOE result, which could be
attributed to the openness of the cavity.

In reference [23], an effective Hamiltonidies (1) (see Eq. (1)) which depends on a continuous pa-
rametery through its Hermitian parff (1) is used [25]. The Hamiltonia# (1) of the closed system
is modeled by & x 2 random matrix and the coupling to the environment in terma/ogquivalently
coupled open channels( = x). The eigenvalues of the effective Hamiltonian are comgled read
ex = Ey — (i/2)T'y, whereFEy andT'y are, respectively, the two eigenenergies and the two spectr
widths of the 2-level model. For the study of statisticalgeriesH (1) is replaced by a Gaussian random
matrix [2] and the coupling matrix elemen{s:W. ,, are chosen to be real Gaussian-distributed with zero
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mean and variancg® = kA /7, whereA is the mean level spacing of the closed system [5]. In theneige
basis of H (1) (the u-dependence will be omitted in the following), the effeetidamiltonian is written

as
(Ey 0\ i (T'n T2
Hett = (0 E2> 2 <F21 F22) ’ ©
whereE; » are theu-dependent eigenenergiesif(E£, > E; is assumed) anl,,, = nzi\il WenWe p.
The complex eigenvalues of the effective Hamiltonig in Eq. (9) read

 Ei+Ey - (T +T92) +vD

. 2
ep = 5 with D = ((El - E>) + %(Fzz - F11)) =I5 . (10)

Thus the spacing between the two eigenenergies is giveh Bye, — ¢ = Re(v/D). Considering
the limit of a large number of open channdl in the weak coupling regime, we may apply the central
limit theorem and replace the random variables dependinfp@roupling amplitudes by their averages
(D) = Ma? and(T',,,I'pn) = Mo*. Then the spacing is given by

. (12)
otherwise

4 2 — Mo* if s >VMo?
0

wheres = E»— F; is the spacing of the eigenenergies of the closed systene.tNattsincel/o* = var(T’),
it means that the changes of the spacings due to the operfrtsssystem are related to the fluctuations
of the spectral widths [26]. In the limi¥/ — oo ando? — 0 with Mo? = (T') fixed, vafT") — 0 and thus
the spacing between eigenenergies of the open system geswverthat of the closed systemh— s, in
spite of non-vanishing losses. This implies that the vabfébe parameten at the avoided crossings are
the same for the closed and the open system. Thus, to obtadigtribution of avoided crossingf the
open system, the spacingsare assumed to be distributed as the avoided crossings obthesponding
closed system. With Eq. (11) the probability distributidritee avoided level crossingsgc) is given by

p(e) = (8(e)0(VMo? — 5)) + (8(c — V52 = Mat) (s — VMo?)) | (12)

wheref is the Heaviside step function and the triangular bracketotk averaging with respect to the
spacings.
Using the probability distribution of avoided crossings folosed) chaotic systems with time reversal

symmetry calculated by Zakrzewski and Kus [24s) = 4 /#6_52/(%2), where the mean value efis
given by(s) = ay/2/m, and averaging overyields

(+Mo*)/(207)

VMo? 2 ce”
p(c):erf< T )5(c)+ P N o (13)

whereq fixes the average af Note that the linear behavior of the distributipfr) at small spacings in-
duces a dip and the local minima of the spacings have a zessiags contribution leading to the presence
of ad-peak at the origin.

In the experiment described in [25], only finite spacingslddae measured due to the finite frequency
resolution implied by the discrete sampling of the data. réfege, it is more convenient to consider the
distribution of nonvanishing avoided crossings (the sddemm in the right-hand-side of (13) with proper
normalization) to compare theory and experiment. The eéwxymtal results of [25] were obtained using a
superconducting microwave cavity, thus minimizing diasiye processes. Three antennas were attached
to the cavity: they correspond, in our model, & = 3 open channels [27]. Absorption into the walls
could be safely neglected in the analysis of the experinhéiata. The analytic result obtained through a
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Fig. 1 Probability distribution of non vanishing avoided crogsinin blue, the experimental histogram ( [25]). In red
the analytical prediction with #;;=0.182 (obtained through a least square procedure Witk 3). Inset: schematic
representation of the cavity with a rotating Teflon wedge (2&]).

fit usingx as a parameter (continuous curve) is shown in Fig. 1. Theé-taodel result follows closely
the experimental histogram. This provides a clear confionaif the interpretation drawn in [25] that the
deviation of the avoided-crossings distribution from thedicted GOE result for closed systems was due
to the measurement process, i.e. the influence of the thtearaas, which couple the cavity modes inside
the resonator to the outside.

In other microwave experiments, exceptional points (ERgheeen investigated [28,29]. At an EP, two
or more eigenvalues and also the associated eigenvectadesce [1,30]. To investigate the EP, resonances
are moved in the complex plane by varying two parametersic@jlp one parameter is mainly inducing
a shift of the real part, whereas the other corresponds teaginary perturbation inducing a change of
resonance width. Let us assume now a typical EP which ingadwy two eigenvalues. By encircling the
EP parametrically once the two resonances are exchangéel avtly one wave function acquires a sign.
Encircling a second time another exchange occurs but thevavefunctions differ now by a phase of
from the starting situation. Finally the original situatis restored when encircling the EP 4 times [31].
This behavior has been demonstrated using microwave esy8, 29].

3.2 Poisson kernel and width distribution

Often, one cannot extract the resonances and a direct igagsh of the effective Hamiltonian is not
accessible, but information of the&-Matrix like reflection and transmission amplitudes are. ws are
interested not in the individual properties of the systerhibustatistical properties, the distribution of
amplitudes and phases are of interest. In this section weaesifrict to a system coupled only via a single
channel to the environment and rely on the references [20T2& statistical distributions of th&-matrix
elements with imperfect coupling have been addressed ralexuthors [32—-38]. Experimentally not
only the direct processes have to be taken into account soii@ses or absorption. When absorption is
present,S is a subunitary matrix and in the single-channel caseStmeatrix can be parametrized using
the reflection coefficienk asS = v/Re’ The coupling between the scattering channels and the dnteri
region is given by the transmission coeffici@ht= 1 — |(S)|? (see Eq. 4). The subindexwill be used to
denote the antenna coupling. The distributiyn, (R) of R is known [17,39] and there exists an analytical
approximation for GOE/4 = 1) which we will use here [21]

o—/(1-R)

Pro(Ro) = CW

[Aofl/Q +B(1— R)l/ﬂ , (14)

wherea = /2, A = a(e* — 1), B = (1 +a —¢e%), C = o’/?/T'(3/2) andT is the upper incomplete
Gamma function: is the absorption strength, e.g. the exponentiel decayofétee intensity, inside the
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Fig. 2 Joint distributionP(R, ) of the S-matrix for different coupling and absorption regimes: {fa)= 0.56,

T, = 0.116 (weak absorption-weak coupling) ()= 2.42, T, = 0.754, and (c)y = 8.40, T, = 0.989 (stronger
absorption-nearly perfect coupling). The upper, middles@orrespond to experiment and theory, respectively (see
[21]). Note the change of scales f&rand6d. Below the corresponding normalized width distributiorsii®wn. The
black histogram was obtained from the experiment using #renbnic inversion. The solid line corresponds to the
theoretical prediction from [17] taking additionally fluetting absorption into account [41] (see [21, 41]).

closed system. We denote a system with absorption strengiid perfect coupling(,=1) by Sy =
Roe'?. Introducing theS-matrix of the antenna [36, 40] and using the combinatioa aflS-matrices,
the distributionPg(S) for the system including direct processes was derived s [21

PS(S) — ‘a(RO; 90)

(R, 0) (15)

Ps,0(So0) = (%) %PR,O(RO)-

The experimental realization using microwaves has beefoimeed by a rectangular cavity where a
movable half circle is attached to one wall. The microwaveste the cavity via a single antenna, where
the antenna coupling is frequency dependent. Details oExperimental description can be found in
Refs. [9,20,21]. In Fig. 2 the joint probability(S) = P(R, §) is shown for three different absorption and
coupling regimes (columns a-c). In the upper row the expenital distributions and in the middle row the
theoretical distributions are shown. A good agreementusdoespecially if one takes into account that all
parameters of the theory can be fixed in advance by averaggitips

To make a more direct relation to the effective Hamiltoniam, will now investigate the resonances,
more precisely the distribution of resonance witltH-rom the previous reflection measurements the poles
of the S-matrix in the complex plane have been determined [41]. Esemances have been extracted by
means of the harmonic inversion [42]. Thus it became passiblesolve the resonances in a regime where
the line widths exceed the mean level spacing up to a factb® of he obtained experimental distributions
of line widths are shown in the lower row of Fig. 2. The distitions are in agreement with predictions
from random matrix theory [17] when wall absorption and fliadtons caused by couplings to additional
absorbing channels are considered [41].

The joint probability distribution$( R, #) shown in the upper row of Fig. 2 is induced by the resonances
and eigenfunctions of the effective Hamiltonian. The pnésé width distribution shown in the lower part
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8 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave expenit® in the realm of the effective Hamiltonian

is only one part necessary to generate i, ). The other parts are the distribution of the resonances
including their correlations to the widths and the value igeefunctions at a fixed position (antenna
position). It will be a future challenge to derive all thisroelations theoretically and experimentally.

In a recent work the same data has been used to investigatédgher surmise of the nearest neighbor
spacing for an open system [43]. Using the effective Hamiéo approach in the x 2 approximation
(see Sec. 3.1) the authors were able to derive an analyticalila and an agreement to the experimental
nearest neighbor spacing distribution was found [43].

In this subsection we have shown the width distribution ffedent coupling strength. In the following
subsection we will investigate how the resonances, edpetheir widths, will change when gradually
changing the coupling to a single channel.

3.3 Resonance trapping

Resonance trapping is a phenomenon appearing in stronglyqumntum systems. We will present results
from [7, 8] using a slightly different notations. For desaikfer to the original works. Resonance trapping
is caused by the interaction of overlapping resonancesstéde¢he continuum of scattering states by which
some of the states align with the channels by trapping othes.oTherefore the total coupling strength is
given by

N M N
Ftot = Z Fn ~ Falign = Z Fn ie. I—"[rap = Z I—‘m ~0 ; (16)
n=1 n=1 n=M+1

where N is the total number of states aidd states are strongly coupled to the environment. Due to the
reordering processes, the oth€r— M states are only weakly coupled to the environment. Res@anc
trapping can be observed if the total coupling strength iigeda

Starting from weak coupling where the resonance stategifirisaated, we have Breit-Wigner reso-
nances (see Eq. 6) and the Hamiltonidg; is almost diagonal. Increasing the coupling the resonances
start to overlap and a redistribution in the spectrum of fistesn takes place due to the non-diagonal terms
of the non-Hermitian patW W of H.q. The HamiltonianH.¢ has to be diagonalized,

Heﬂl'lz}'rL) = (En - %fn) |"/~}n> . (17)

leading to

e(i%a)Re(Rb) Wanbm
E— En + %fTL .

Sup(E) = by — 2 3 YE (18)

where \/Re(rq )W = (\/Re(rkq)W|ib,). W, E, andT,, are generally energy dependent dhidis
complex. The poles of th& matrix are obtained from the solutions of the fixed-pointagens

and I, = fn . (19)

E=E, E=E,

E’n = En

which determine the energids, and widthsl',, of the resonance states. The eigenfunctii)m)f H.g
are bi-orthogonal. The resonances are no longer of Braifréfitype because of the energy dependencies
of W andT,, (see [44,45]). The energy dependencies ensure the upit@the S matrix.

This effect was demonstrated by a microwave experimenf[¥iere the coupling to the cavity via
a waveguide was varied by a slit (see inset of Fig. 3). Theatifle was measured via a waveguide of
width D = 23.2 mm where a slit was positioned at distardce- 16 mm from the attachment to the cavity.
The cavity has a form of a quarter Sinai shape with length 285 mm, widthb = 200 mm, and radius
of the quarter circle of = 70mm. The slit openingl was varied in steps of 0.1 mm and the resonance
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resonance width/GHz

11.00 11.10 11.20 11.80 11.40 11.50 11.60
resonance frequency/GHz

Fig. 3 Eigenvalues, obtained by fitting the experimental reflectlata to Lorentzians, for slit positiah = 16 mm.
The open circles denote the eigenvalues by full opening (D). The inset shows a sketch of the billiard with attached
waveguide and slit within the waveguide € 285 mm, b = 200mm,r = 70mm, Lo = 204 mm, D = 23.2mm,

L =16 mm) (see [8]).

extracted by fitting a superposition of Lorentzians. In Fghe resonances in the frequency range from
11 to 11.6 GHz are shown as a function of the slit opening. Tgenaircles denote the eigenvalues by
full opening @ = D). Clearly a trapping effect is visible for several resoremavhere the widtlh' for the
full opening is smaller than the maximum width observed foaBer openings. For the cavity parameters
roughly a quarter of all resonances investigated are thppee observed frequency shift in Fig. 3 is due
to both the real and imaginary part ©f

It is worthwhile to note that the width distribution once ttesonance trapping has happened contains
two contributions. One distributioR (T'yap) Of the trapped states which is similar to using a correspandi
weak coupling and another paP(T 4ign) Of the broad aligned states. In the previous subsection itiiga w
distribution of the trapped states is shown, but in the c&teegoint probability distributionP(R, ©) both
contributions are included (see Fig. 2c).

3.4 Scattering Fidelity for varying coupling

In this section we want to investigate the effect of openheygystem by adding one additional channel,
where another channel is used to measure the scatteringkmak present here only a short theoretical
description, which follows [11] (refer to this reference éetails of the theory). In contrast to [11] we will
compare here the perfectly reflecting to the perfectly diiegrchannel, whereas in [11] a variation of the
reflection was presented.

The quantity we want to use is the scattering fidelity [10]ethis related to the fidelity [46,47]. Both
measure the stability of a wave system against perturlmti®he fidelity is the time dependence of the
overlap of the same initial pulse propagated by a ’slighdijfferent Hamiltonian, whereas the scattering
fidelity amplitudef,; corresponds to the properly normalized spectral croselation function of scat-
tering matrix elements,;, for 'slightly’ different systems [10]:

(Sun()52(1) |
V San(0)52, (1) (81, (1)52(1))

fan(t) = (20)

This definition ensures that,,(0) = 1. Furthermore, an overall decay of the correlation functidoe
to absorption or other open channels drops out, providedéisay is the same for the parametric cross-
correlation functions in the nominator and the autocoti@efunctions in the denominator. The scattering
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fidelity itself is

F(t) = [fa(t)]*. (21)

For chaotic systems and weak coupling of the measuring aattére scattering fidelity approaches the
ordinary fidelity [48]. The time is given in units of the Heisenberg timg = 27%/A, with A being the
mean level spacing.

The scattering fidelity presented here will be denotecbapling fidelity We present here a sketch of an
exact RMT prediction (for details see [11]). The couplingstant of the added channel will be denoted by
 for Sa(t) andx’ for S*;’;,(t). The derivation is general but later the reference systéheisystem without
channel, i.e.s’ = 0. For the case where = «’ the parametric correlation functior§,.; (t)S” (¢)) in
Eq. (20) reduces to the autocorrelation function, whichsigby the famous Verbaarschot-Weidenmuller-
Zirnbauer (VWZ) integral [13]. For the case of£ «’ the correlator S, ()5 (t)) yields [11]

(Sab (1) 553, (1)) = (S5 ()55 ™ (8)- (22)

Thus the parametric cross correlation function reducesntawocorrelation functioSeff (1) Sefi* (1))
given by the VWZ integral, where the transmission coefficigy. (4)) of the varied channel has to be
replaced by

2(k+ k™)

i e T L

(23)

One can interpref° as an effective transmission coefficient due to a parameriation of the coupling
strength in the varied channel. Fer= «/, the effective transmission coefficieht® becomes equal to
the conventional transmission coefficient (Eq. (4)). Intcast to the transmission coefficient in Eq. (4)
the effective transmission coefficiefit is generally complex. The subsequent evaluation of thelsayp
fidelity cannot be done analytically and will be performednauically.

As in our case only one channel with a coupling strength teaedds on frequency is added, and the
reflection is measured using the only other channel, i.eawiattached antenna, the theoretical description
of the scattering fidelity can be simplified. By denoting the added antenna and™ the measuring
antenna, the effective Hamiltonidier may be writtenHes = HZ; — maWaWj where HY; is defined
as [11]

@ =H — ik VW] (24)

Note that the coupling constant, is generally complex and takes into account the effects ¢ bwe
channel coupling and any reflection and phase shifts comimg the imperfect experimental environment,
e.g. slight mismatches of cable analyzer connection etc.

Through this description, thx 2 scattering matrix for both channels has thus been reducad to1l
scattering matrix for the measuring antenna only

1
1 — ik W —o0n—W,
atep _Ha ¢
Saa = 1 S (25)
1 ) a a a
+ ik W, E_HSHW

As a basis system for the measurement we use a chaotic gBaréticavity with length = 472 mm,
width w = 200 mm and a quarter-circle of radius= 70 mm. Additional elements were inserted to reduce
the influence of bouncing balls and a rotatable ellipse wasdnuiced close to the center for ensemble
averaging. The two antennas are situated such that ther drect view of each other. The added
perturbing antenna is directly attached to a vector netw@ogdyzer, mimicking an infinitely long channel.
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Fig. 4 Fidelity |f(t)|?, real fr(t), and imaginary parif;(t) of the fidelity amplitude. Filled symbols show the
experimental results and the theoretical curves are dfteskperimental parameter and dashed for fitting parameter
In the upper row the chosen frequency ranges a&re— 9.2 GHz (black triangles) with«&P = 0.24, it = 0.21
and9.8 — 10.3 GHz (green diamonds) withk®® = 0.43, xf* = 0.46. In the lower row the frequency range is
7.2 — 7.7GHz. Filled circles show the experimental results. The thécaétturves are dotted for experimental
parametekS® = 0.19; dashed black for real valued fitting parametéf = 0.37 and dashed red for complex valued
fitting parameter ™ = 0.19 4 i0.20.

This gives us also the possibility to measure directly tlikecéon at the added channgl. and calculate

the coupling strengtff. = 1 — | < S.. > |2, where the average is taken over different ensembles and a
small energy window. Assuming that the couplinghas only a real part we can determigeuniquely
fromT.,.

In the upper part of Fig. 4 the fidelity introduced in Eq. (24 piotted for two frequency ranges corre-
sponding to two different coupling strengths Using the experimentally determined here denoted as
coupling parameter*P, a good agreement between experimental results (filled signéand theoretical
curves (dotted line) is found without any fit. A fit &f. to the experimental curves to the scattering fidelity
|f(t)|? (the corresponding values are denoted:f$) which is plotted as dashed line shows only a minor
improvement for the correspondence between experimerthaiody. In both cases an agreementis found.

In the lower part of Fig. 4 we present the fidelity decay forftieguency rang&.2 — 7.7 GHz. Here we
find an obvious deviation between the experimental resfillesd( circles) and the theoretical curve based
on the experimental parametef® (dotted line). To determine the decay of the experimentelifiddecay
we tried two possible ways of fitting. to the experimental data. The first is fitting(¢)|? using a real
valuedxfi* and the second is fitting the complgkt) using a complex:tm,

While for the fidelity decays both fitting procedures lead tgand agreement between experiment
and theory, the corresponding refal(¢) and imaginaryf;(t) parts of the fidelity amplitude presented in
Fig. 4 is described satisfyingly only by the red dashed cumhgch is generated with the complex valued
fitting parameterfi*™. Thus in the frequency range from 7.2-7.7 GHz the attachéghaa cannot be
described solely by an additional coupling but it has a naiigible scattering part inside the billiard. It is
worthwhile to note that the real part ef-™ is matching the experimentaf*® thus showing a consistent
description. In case of the two other ranges shown in Figedrttaginary part is small and I®.) = 0 is
a reasonable assumption.
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Fig. 5 Coupling constank. as a function of the mean frequengydetermined from the experimental transmission
coefficientT. (black triangles) and as real valued fitting parameter te#perimental fidelity decay (red diamonds).

In Fig. 5 we plotted the coupling constantdetermined from the experimental transmission coefficient
T. askSP (black triangles) and from the fit to the experimental figetiecayx/i* (red diamonds). For
frequencies from about 6 GHz up to 10 GHz the experimentadhgminined coupling constant and the
fitting parameter do not deviate much from each other aparh fsome significant peaks like the one
around 7.5 GHz which results from system specific featumedgbly antenna resonances. Beyond 11 GHz
the way of determining the coupling constant via a reflectiimasurement at the perturbing antendaes
not lead to convincing results. This might be due to the rasoa trapping effect which was observed in
similar microwave billiards (see section 3.3 and [7, 8]).thHé coupling of the newly attached channel
is sufficiently strong, thus leading to a reorientation & gigenvalues, an imaginary part of the coupling
constant has to be taken into account. Typically the cogmglonstant and antenna transmissigincrease
with frequency and above 10 GHz > 0.8. Thus in the regime of resonance trapping, taking the coxmple
coupling coefficient into account is crucial for the coupliiidelity.

4 Classical wave experiments on spatial properties

4.1 Wave functions

We now turn to examine the consequences of openness on tied ppaperties of the field.

While field statistics of open chaotic systems have beersyaically studied for a given energy and
considering the energy as a continuous parameter (seefjd¥péerences therein), statistics of resonance
states i.e. left and right eigenvectorsidfy are less understood. The impact of the openness is to turn rea
eigenfunctions into complex internal wavefunctions aiged to resonances. This complexness being
uniquely related to the presence of currents inside thesyft9, 50]. In order to quantify the presence of
currents, one can use the complexness paramgter ((Im,,)?)/((Rew,,)?) introduced by Lobkis and
Weaver [51] as the ratio of the variance of the imaginary aad parts of the:ith resonance state (after a
phase rotation leading to independent real and imaginanpooents [52]). These authors experimentally
obtained the complexness parameter from the distributidheophasey of the spatial component of the
field : ¢ = ||e’?. By considering that the real and imaginary parts of the fieindependant Gaussian
random variables, they obtained:

q 1
2

Plo) = L .
(%) 2m g2 cos? ¢ + sin”

(26)

This distribution is closely related to the Poisson keregj. (L5) for a given frequency. This expression
is peaked around andr for purely standing waves in a closed cavity. As losses as®e the phase
probability distribution broadens corresponding to a gngraveling-wave component of the mode. The
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Fig. 6 Distribution of intensities for three different wave fuitsts at frequencies = 8.0 (a), 16.9 (b), and 15.4 GHz
(c) are shown with different phase rigiditigg>. The solid line represents the distribution from eq. (28)thle inserts
the corresponding modulus of the wave function is shown [&&.

latter feature has been recently experimentally verifiednegns of elastic waves in a chaotic plate [53].
In the context of microwave cavities, a derived distribntiad been obtained by J. Barthéleatyal. [54].

A related quantity, namely the phase rigidjp/? can be expressed as a function of the complexness
parameter:

| |:<¢%>*<¢?>:1—q2 27)
S AR T R
By considering the phase rigidity as a continuous functibfreguency, P. Brouwer studied the effect of
openness [55] and derived the theoretical distributiofp, which has been experimentally verified by
Kim et al. in an open microwave cavity [50, 56].

For fixed phase rigidityp|? the distribution of wave function intensities is given b [57]

__ 1 ol Iplf]
P”(”_\/l—|p|26p[ 1|p|2]10{1|p|2 ' (28)

For |p|> — 1, P, is approaching a Porter-Thomas, whereas it is an expoheigtebution for |p|> =

0. Porter-Thomas and single exponential distributions grelistributions for one and two degrees of
freedom, reflecting the fact that in closed systems the wawetion is real, whereas in fully open systems
it contains a real and an imaginary part of comparable madaitin Fig. 6 the distribution of intensities
for three different wave functions of an open microwave tyaigishown with different phase rigidity values
ranging from nearly closedd|?> ~ 1) to nearly completely operi4?> ~ 0). A good agreement is seen,
especially as the only parameter, the phase rigjdity has been fixed beforehand (for details see [50,56]).

The complexness parametgy has been investigated both experimentally [53, 54] andrétieally
[5,26] through the scope of its relationship to the resoravidth. In particular, in Ref. [5] the authors have
established that the complexness parameter is also a reedghe non-orthogonality of eigenfunctions in
the case of inhomogeneous losses.

A linear relationship betweey), andI",, was first noticed by Barthélenst al.[54] analyzing hundreds
of resonance states of a 2D chaotic microwave cavity at r@onpérature. This result was then confirmed
using the effective Hamiltonian formalism in the limif > 1, relevant in the experiment [5]. A linear
relationship between,, andI’,, was also verified in an elastodynamics experiment for a gigsanance
when a spatially extended coupling is varied [53]. The caxpéss parameter was also investigated at
arbitrary M by means of its probability distribution in the regime of Wwe=aoupling [26]. There, it was
shown that the average value @f is directly proportional to the variance &f,, which constitutes the
natural measure of the fluctuations of the widths.

In reference [6], the authors confronted theoretical mtiatis presented in [26] to numerical solutions
of the Maxwell equations in a 2D chaotic microwave cavityhaitssy boundaries subject to Ohmic dis-
sipation. In the regime of weak coupling, which correspotadihe condition,/var(I") < A, whereA
is the mean level spacing, the anti-Hermitian parttif is small compared to the Hermitian part and
perturbation theory can be applied.
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Fig. 7 Real (on the left) and imaginary (on the right) componenthef 500th resonance state obtained by means of
the Finite Element Method (see [6]).

We define the rescaled widths = #I"/(2kA) with (y) = M where we assume a single and real
coupling constant: for the M fictitious channels accounting for absorption. Considgtirat the widths
are given by a sum aof/ squared independent Gaussian random variables, theyfallg’ distribution
with M degrees of freedom:

1
2 _ M/2—1 _—~/2 29
Xz (7) 2M/2F(M/2)7 e ) (29)

wherel'(+) is the Euler gamma function.
The distribution of the rescaled complexness param¥ter= ¢2 /x2, was obtained by making use of
group integral methods [58] and reads:

M 1+@3+M)Xx!
GOFE _
7)I\/f (X) - 6X2 (1+X71>M/2+2 ’ (30)

where strong mode-to-mode fluctuations clearly appearpeiet in the power law tail / X2 of the dis-
tribution.

The chaotic cavity considered in [6] has a quarter of a stadibape with a radius @@ = 1m and a
length ofl = 2m (see Fig. 7). In order to reduce the bouncing ball modesédszivthe two parallel sides,
an oblique cut is performed on one side and a movable perfedtécting half disk of diametet = 0.3 m
is placed on the opposite side. The absorbing boundary ttonds imposed on an adjustable part of the
boundary of the cavity. The number of channglsis related to the effective absorbing lendths along
the boundary and the wavelengthhrough:

o labs
TN/2] (31)

Note thatM is also related to the first two moments of the width distiidou{29):

M=—2 (32)

(2 /(-1

Fig. 8 shows the distributions of the complexness paranméteompared to the theoretical distribution
(30). Three different sets of values of the absorbing lesigtbnductivities and frequency ranges are used
(see caption). For each frequency interval, the numbeaf channels used for the comparison corresponds
to the nearest integer value of relation (31) computed withrhedian value of the wavelength in each
interval (the estimates (31) and (32) agree within a fewg®ts). The excellent agreement, even in the tail
of the distribution (as shown in inset far = 38), confirms that the prediction (30), obtained within the
perturbation theory, contains the essential features¢ouwat for the non-orthogonality of the resonance
states due to spatially continuously distributed losses.

Note that in the width distributions presented in Subse®.i8.the lower row of Fig. 2, the above
presented distributions of the complexness parameteespond to the additional fluctuating absorption,
which must be taken into account to obtain a good agreeméneba theory and experiment [41].
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Fig. 8 Distributions of the complexness parameter for differemgaabing lengths, conductivities and frequency
ranges: (&)aps = 7/18, 0. = 80 Sm~! and from the 300 th to the 400th resonancesi{h)= /6, o. = 400 Sm!
and from the 700 th to the 800th resonancesi{g) = 7 /2, 0. = 1000 Sm~! and from the 700 th to the 800th reso-
nances. The histograms show the numerical distributiohs.sblid lines correspond to the theoretical predictior) (30
where the numbeM of channels corresponds to the nearest integer value diorek81) computed with the median
value of the wavelength in each frequency interval (see [6])

5 Summary and Outlook

We have shown that classical wave experiments are perfagitigd to investigate systems which can be
described by the effective Hamiltonian approach. They jtezasy access to the full complex scattering
matrix, thus giving the possibility to fix relevant paranretbeforehand. Additionally the system can be
controlled in various ways, like boundary variations onwabelength scale or coupling variations. This
allows to verify experimentally various predictions giviey the effective Hamiltonian approach. Since
absorption often plays a crucial role for classical wavesas to be taken into account properly in the
theory. Thus, classical experiments in the realm of effeddamiltonians are a perfect tool to test theoret-
ical predictions and, additionally, are also a driving parthe further development and understanding of
effects, induced by the coupling to the environment, i.eaeffective Hamiltonian.

On the theoretical side, a continuous progress of statlstiescription of new quantities is going on,
where microwave experiments will be one of the major toolgeify these predictions. Recently for ex-
ample the distribution of 'width velocity’ has been preeidtby Fyodorov and Savin [59] which should
be accessible by microwave experiments. On the other haperiexental findings will trigger further
theoretical investigations as it has been the case fordimdueffects of absorption, for local level dynam-
ics [60] and for the coupling fidelity [11]. Experimentallyallenging is still the reliable extraction of
resonances in the strongly overlapping regime. This woivid gccess to follow the resonances far in the
complex plane and investigate nearest neighbor distdbuti the complex plane, resonance correlations
etc. One could also verify predictions for the fractal Wey1[61-63] which relates the average number
of resonances to the fractal dimension of the repeller ottassical dynamics.

We would like to acknowledge J. Barthélemy, P. Brouwer, BtD) R. Hohmann, B. Kdber, G. Luna-
Acosta, R. A. Méndez-Sanchez, E. Persson, C. Poli, |.eRdit. Savin, P. Sebbah, H.-J. Stockmann, and
O. Xeridat for discussion, data acquisition, data evatugtetc.
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