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The description of open quantum system successfully uses the concept of the effective Hamiltonian, which
takes into account the coupling to the environment. The concept can be extended to classical waves. Exper-
imentally, classical waves are very convenient as they allow to control boundaries, coupling and absorption.
We combine here recent works with microwaves investigatingproperties of open systems which can be de-
scribed by an effective Hamiltonian. This ranges from spectral properties like modifications to level dynam-
ics, width distribution and coupling fidelity to spatial properties like intensity distributions and complexness
parameter which describes the non-orthogonality of eigenfunctions.
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1 Introduction

Any measurement opens a wave system. This coupling to the continuum drastically changes the system
properties by converting discrete energy levels into decaying resonance states and induces currents that
did not exist in the closed system. One possible descriptionis the effective Hamiltonian (see [1] for an
overview). Thus typical quantities investigated in the realm of quantum chaos [2] have to be modified like
nearest neighbor spacing distributions, avoided crossings, and new features occur like resonance width,
resonance trapping and current flows. In particular, we willbe interested in statistical properties in the case
of chaotic systems.

In this manuscript we review experimental investigations of those properties using two dimensional
microwave cavities. These experiments have the advantage that the time independent two dimensional
Schrödinger equation and the corresponding Helmholtz equation are mathematically equivalent [2]. The
experimental setup is simple and the main measurement device, a vector network analyser, is commercially
available. The coupling to the environment, typically to the analyser, can be either performed by microwave
waveguides, where each supported mode is an individual channel, or by coaxial antennas which typically
only support a single mode. The antennas have the advantage that they perturb the closed system only
weakly and they can be positioned arbitrarily in the two dimensional ’billiard’. Additionally they can
operate over the whole frequency range, whereas waveguideshave a lower cutoff frequency.

Microwave experiments have also induced the investigationof the effects of absorption on different
quantities like the Poisson kernel and the width distribution. Absorption can be introduced into the effec-
tive Hamiltonian by attaching ’infinitely’ many but weakly coupled channels additionally to the real chan-
nels. These absorptive channels have often similar effect as the dephasing probe introduced by Büttiker
to describe the electron transport [3], like broadening theresonances, but differences can be found if their
absorption or dephasing strength can be changed parametrically [4]. Additionally, there exists two type
of absorptions in microwave cavities, one which can be described just by an additional constant or more
precisely speaking weakly frequency depending width induced by top and bottom plates, and a mode de-
pendent additional term coming from the boundary [5,6]. Therefore the measured scattering matrix is only
subunitary.
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2 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

The measured quantities are reflection and transmission amplitudes through the introduced channels.
Thus, all elements of the scattering matrix are experimentally directly accessible including the phases [2].
Also, the systems can be controlled easily down to the sub-wavelength regime. It is the purpose of this
review to give an overview of different quantities using only a single description given in section 2. In gen-
eral the definition of the effective Hamiltonian and the scattering matrix elements differ by factors ofπ or
2 in coupling constants and the normalization to the mean level spacing enters at different places. From the
experimental point of view, the distribution of scatteringmatrix elements are better accessible than the res-
onances of the effective Hamiltonian. Often the resonancescan only be extracted in the regime of isolated
resonances, i.e. assuming only weak coupling. There are only a few results for strongly overlapping reso-
nances, e.g. for the resonance trapping (see Subsec. 3.3 and[7,8]) or for width distribution (see Subsec. 3.2
and [9]). Hopefully it will be possible in the future to extract the resonances reliably even in the strongly
overlapping regime and follow them parametrically in the complex plane. Thus one could directly relate
for example the already available results presented for thescattering fidelity (see Subsec. 3.4 and [10,11])
or the Poisson kernel (see Subsec. 3.2) to the dynamics of thecomplex resonances experimentally.

In Sec. 2 we give a short introduction to the effective Hamiltonian. As the effective Hamiltonian cannot
be measured directly we introduce the scattering matrix andrelate it to the effective Hamiltonian. We
fix our notation which will be used throughout the manuscriptand might differ from the original papers.
Experiments related to spectral properties are described shortly in the corresponding subsections of Sec. 3.
We start with the investigation of avoided crossings occurring for level dynamics under parametric changes
of the system (Sec. 3.1). The Poisson kernel and the corresponding width distribution are presented in
Sec. 3.2. The resonance trapping effect is investigated in Sec. 3.3 by increasing the coupling to the system
using a microwave cavity with attached waveguide, and the fidelity created by a variation of coupling is
shown in Sec. 3.4. Finally, we also present results on wave functions and measures of openness in Sec. 4
and then summarize the results and give an outlook in Sec. 5.

2 Effective Hamiltonian and scattering theory

2.1 Effective Hamiltonian for chaotic system

The general case ofM scattering channels connected toN levels of the closed cavity can be described in
terms of the following effective non-Hermitian Hamiltonian

Heff = H − i

M
∑

c=1

κcWcW
†
c . (1)

Here, the internal HamiltonianH of the closed system is represented by a HermitianN × N matrix,
whereasWc areM vectors of lengthN containing the information on the coupling of the levels to the
continuum throughM coupling channels. TheWc are assumed to be normalized to one,W †

cWc = 1, and
κc is the coupling constant of channelc. Have in mind that there exists a scale induced by the Hamiltonian
which is the mean level spacing∆.

Such an approach was initially developed in nuclear physics[12–14] and since then has been success-
fully applied to study various aspects of open systems, including wave billiards [2, 15–17]. Usually, the
phenomenological coupling constantsκc are considered as real numbers which enter the final expressions
via the so-called transmission coefficientsTc. However, in the general case of an experiment it might be
difficult to vary only the coupling of a channel without perturbing the system otherwise, thus leading to
complex coupling coefficientsκc. The only constraint isRe(κc) ≥ 0, due to the causality condition on the
S-matrix. We note that quite a similar problem of nonzeroIm(κc) arises in shell-model calculations due
to the principal value term of the self-energy operator, cf.[12] and [13].

In this paper we will restrict ourself to open systems, wherethe classical counterpart of the wave system
is fully chaotic and time reversal symmetry is respected. Inthis case, the Hamiltonian of the closed system
is described by a largeN ×N random Gaussian orthogonal matrix (GOE), in which case, universal fluctu-
ations are expected in the limitN ≫ 1 over a scale of the order of the mean spacing∆. More specifically,
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by restricting the study to the center of the spectrum, the level spacing is given by∆ = Λπ/N where2Λ
is the radius of the semicircle density for GOE [18]. Depending on the quantities of interest, the induced
energy dependence on the imaginary part can be incorporatedinto the statistics of the closed Hamiltonian,
i.e.H ′ = H − ∆Him with ∆Him =

∑M
c=1 Im(κc)WcW

†
c . One should have in mind that the GOE as-

sumption forH ′ is an approximation as the induced change of energy∆Him is not described by GOE. In
this paper∆Him is only playing an important role in section 3.4, where we investigate the fidelity of the
system under a change of the coupling.

The non-Hermiticity ofHeff yields a set of complex eigenvalues{En} associated to two distinct sets of
eigenvectors called left{〈ψL

n |} and right{|ψR
n 〉} eigenvectors:

Heff |ψR
n 〉 = En|ψR

n 〉 , 〈ψL
n |Heff = 〈ψL

n |En , (2)

where the complex eigenvalueEn = En − (i/2)Γn gives respectively the energyEn and the resonance
width Γn > 0 of thenth resonance. The left and right eigenvectors, which describe the resonance states,
satisfy the condition of bi-orthogonality,〈ψL

n |ψR
m〉 = δnm and completeness,

∑N
n=1 |ψR

n 〉〈ψL
n | = 1. In the

context of microwave cavities, the validity of model (1) hasbeen established in previous works [17, 19].
More general models of non-Hermitian Hamiltonian operators may be used to study open quantum systems
(see e.g. the topical review written by I. Rotter [1]). This formalism has been successfully applied to wave
billiards for which antennas and absorption are respectively described by physical and fictitious coupling
channels [19–21].

2.2 Scattering theory including the effective Hamiltonian

According to the general scattering formalism [12, 13, 22],the resonance part of theS-matrix at the scat-
tering energyE can be expressed in terms ofHeff as follows [11]:

Sab(E) = δab − 2i
√

Re(κa)Re(κb)W
†
a

1

E −Heff
Wb . (3)

In the case where the coupling amplitudes change slowly withthe energy, one may safely consider the
complex eigenvaluesEn of Heff as the only singularities of theS-matrix in the complex energy plane.

Using random matrix theory (RMT) for large matrices atE = 0, the transmission coefficients are given
in terms of the averageS-matrix diagonal elements〈Scc〉 = (1− κ∗c)/(1 + κc) by [11,13,18]

Tc ≡ 1− |〈Scc〉|2 = 1−
∣

∣

∣

∣

1− κ∗c
1 + κc

∣

∣

∣

∣

2

=
4Re(κc)

|1 + κc|2
, c = 1, . . . ,M. (4)

ThusTc is accessible directly from a reflection measurement andκc can be determined uniquely ifIm(κc) =
0. It is worth noting that, in the case of realκc, one getsTc = 4κc

(1+κc)2
∈ [0, 1], so thatTc ≪ 1 andTc = 1

correspond to an almost closed or perfectly open channelc, respectively. In the case of purely imaginaryκc
corresponding to perfect reflection, the channel is closed,Tc = 0. We will use this in the investigation of the
coupling fidelity (see Subsec. 3.4 and [11]), where the effect of adding a channel (i.e.Tc = 0 → Tc = 1)
is investigated in the scattering fidelity.

Typically, the elements of the scattering matrix can be written as a sum of Lorentzians assuming that
the coupling constantsκc have only a weak energy dependance within the resonance width, i.e. one is far
from energy thresholds

Sab(E) = δab − i
∑

n

an

E − En + i
2Γn

. (5)

wherean is the complex amplitude,En the eigenenergy andΓn the width of the resonance.Γn describes
in the time domain the exponential decay of thenth eigenstate. In the weak coupling regime (κ ≪ 1,
assuming realκ), the resonances do not overlap and the non-Hermitian part of Heff can be treated as a
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4 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

perturbation of the Hermitian partH and one can relate the parameters of the Lorentzians to the closed
system. In this Breit-Wigner approximation the elements ofthe scattering matrixS can be written as

Sab(E) = δab − 2i
∑

n

√

Re(κa)Re(κb)W
†
a,nWb,n

E − En + i
2Γn

. (6)

Assuming realκ, to leading order inκ, the real parts ofEn are given by the eigenenergies of the closed
system,H |n〉 = En|n〉, while their widths are given by :

Γn = 2

M
∑

c=1

κc〈n|WcW
†
c |n〉 . (7)

An investigation of the joint distribution of the complex reflection amplitudeS11 and the widthΓn is
presented in Subsec. 3.2. Likewise, the right eigenvectorsof Heff read :

|ψR
n 〉 = |n〉 − i

M
∑

c=1

κc
∑

m 6=n

(WcW
†
c )mn

En − Em
|m〉 . (8)

We investigate the eigenvectors, i.e. the eigenfunctions of the system in section 4. Often one can use a
2× 2 random matrix toy model to obtain analytic results. An example is shown in Subsec. 3.1.

3 Classical wave experiments on spectral properties

3.1 Level dynamics

It is often relevant to study the dynamics of levels when a parameter of the system is varied. For a com-
pletely uncorrelated spectrum typical of a system with regular dynamics, levels evolve ignoring the pres-
ence of others. It ensues that for certain values of the parameter, levels may become degenerate. On the
contrary, in a chaotic system, level repulsion precludes such a possibility. To characterize the parametric
dynamics of levels one may consider the statistics of local minima of level spacings, also called avoided
crossings. In this section, following [23], we recall how a two-level model with a large number of open de-
cay channels can be used to describe avoided level crossing statistics in open chaotic billiards. This model
allows us to describe the fundamental changes of the probability distribution of the avoided level crossings
compared with the case of a closed wave system [24]. In particular, it is found that the decay process due
to open channels induces a modification of the probability distribution of the avoided level crossings at
small spacings due to an attraction of the resonances. In a microwave experiment presented in [25] the
spectral properties of a superconducting two-dimensionalmicrowave billiard were investigated, where the
geometry of the cavity is varied by rotating a dielectric (Teflon) wedge creating an evolution of the levels
(see inset of Fig. 1). The resonator modeled an open quantum billiard whose classical dynamics is chaotic
with the antennas acting as single scattering channels [23]. The influence of the flux of microwave power
was so weak that it could not be detected through spectral quantities like the nearest neighbor spacing
distribution or the spectral rigidity at a fixed value of the parameter. But the distribution of the avoided
crossings is more sensitive to small effects showing clear deviations from the GOE result, which could be
attributed to the openness of the cavity.

In reference [23], an effective HamiltonianHeff(µ) (see Eq. (1)) which depends on a continuous pa-
rameterµ through its Hermitian partH(µ) is used [25]. The HamiltonianH(µ) of the closed system
is modeled by a2 × 2 random matrix and the coupling to the environment in terms ofM equivalently
coupled open channels (κc ≡ κ). The eigenvalues of the effective Hamiltonian are complexand read
ǫ± = E± − (i/2)Γ±, whereE± andΓ± are, respectively, the two eigenenergies and the two spectral
widths of the 2-level model. For the study of statistical propertiesH(µ) is replaced by a Gaussian random
matrix [2] and the coupling matrix elements

√
κWc,n are chosen to be real Gaussian-distributed with zero
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mean and varianceσ2 = κ∆/π, where∆ is the mean level spacing of the closed system [5]. In the eigen-
basis ofH(µ) (theµ-dependence will be omitted in the following), the effective Hamiltonian is written
as

Heff =

(

E1 0
0 E2

)

− i

2

(

Γ11 Γ12

Γ21 Γ22

)

, (9)

whereE1,2 are theµ-dependent eigenenergies ofH (E2 > E1 is assumed) andΓnp = κ
∑M

c=1Wc,nWc,p.
The complex eigenvalues of the effective HamiltonianHeff in Eq. (9) read

ǫ± =
E1 + E2 − i

2 (Γ11 + Γ22)±
√
D

2
with D =

(

(E1 − E2) +
i

2
(Γ22 − Γ11)

)2

−Γ12Γ21 . (10)

Thus the spacing between the two eigenenergies is given byd = ǫ+ − ǫ− = Re(
√
D). Considering

the limit of a large number of open channelsM in the weak coupling regime, we may apply the central
limit theorem and replace the random variables depending onthe coupling amplitudes by their averages
〈Γnn〉 =Mσ2 and〈ΓnpΓpn〉 =Mσ4. Then the spacingd is given by

d =

{√
s2 −Mσ4 if s >

√
Mσ2

0 otherwise
, (11)

wheres = E2−E1 is the spacing of the eigenenergies of the closed system. Note that sinceMσ4 = var(Γ),
it means that the changes of the spacings due to the openness of the system are related to the fluctuations
of the spectral widths [26]. In the limitM → ∞ andσ2 → 0 with Mσ2 = 〈Γ〉 fixed, var(Γ) → 0 and thus
the spacing between eigenenergies of the open system converges to that of the closed system,d → s, in
spite of non-vanishing losses. This implies that the valuesof the parameterµ at the avoided crossings are
the same for the closed and the open system. Thus, to obtain the distribution of avoided crossingsc of the
open system, the spacingss are assumed to be distributed as the avoided crossings of thecorresponding
closed system. With Eq. (11) the probability distribution of the avoided level crossingsp(c) is given by

p(c) =
〈

δ(c)θ(
√
Mσ2 − s)

〉

+
〈

δ
(

c−
√

s2 −Mσ4
)

θ(s−
√
Mσ2)

〉

, (12)

whereθ is the Heaviside step function and the triangular brackets denote averaging with respect to the
spacings.

Using the probability distribution of avoided crossings for (closed) chaotic systems with time reversal

symmetry calculated by Zakrzewski and Kuś [24],p(s) =
√

2
πα2 e

−s2/(2α2), where the mean value ofs is

given by〈s〉 = α
√

2/π, and averaging overs yields

p(c) = erf
(

√
Mσ2

√
πα

)

δ(c) +

√

2

πα2

c e−(c2+Mσ4)/(2α2)

√
c2 +Mσ4

, (13)

whereα fixes the average ofc. Note that the linear behavior of the distributionp(c) at small spacings in-
duces a dip and the local minima of the spacings have a zero-crossings contribution leading to the presence
of a δ-peak at the origin.

In the experiment described in [25], only finite spacings could be measured due to the finite frequency
resolution implied by the discrete sampling of the data. Therefore, it is more convenient to consider the
distribution of nonvanishing avoided crossings (the second term in the right-hand-side of (13) with proper
normalization) to compare theory and experiment. The experimental results of [25] were obtained using a
superconducting microwave cavity, thus minimizing dissipative processes. Three antennas were attached
to the cavity: they correspond, in our model, toM = 3 open channels [27]. Absorption into the walls
could be safely neglected in the analysis of the experimental data. The analytic result obtained through a
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6 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

Fig. 1 Probability distribution of non vanishing avoided crossings. In blue, the experimental histogram ( [25]). In red
the analytical prediction withκfit=0.182 (obtained through a least square procedure withM = 3). Inset: schematic
representation of the cavity with a rotating Teflon wedge (see [25]).

fit usingκ as a parameter (continuous curve) is shown in Fig. 1. The 2-level model result follows closely
the experimental histogram. This provides a clear confirmation of the interpretation drawn in [25] that the
deviation of the avoided-crossings distribution from the predicted GOE result for closed systems was due
to the measurement process, i.e. the influence of the three antennas, which couple the cavity modes inside
the resonator to the outside.

In other microwave experiments, exceptional points (EP) have been investigated [28,29]. At an EP, two
or more eigenvalues and also the associated eigenvectors coalesce [1,30]. To investigate the EP, resonances
are moved in the complex plane by varying two parameters. Typically one parameter is mainly inducing
a shift of the real part, whereas the other corresponds to an imaginary perturbation inducing a change of
resonance width. Let us assume now a typical EP which involves only two eigenvalues. By encircling the
EP parametrically once the two resonances are exchanged while only one wave function acquires a sign.
Encircling a second time another exchange occurs but the twowavefunctions differ now by a phase ofπ
from the starting situation. Finally the original situation is restored when encircling the EP 4 times [31].
This behavior has been demonstrated using microwave cavities [28,29].

3.2 Poisson kernel and width distribution

Often, one cannot extract the resonances and a direct investigation of the effective Hamiltonian is not
accessible, but information of theS-Matrix like reflection and transmission amplitudes are. Aswe are
interested not in the individual properties of the system but in statistical properties, the distribution of
amplitudes and phases are of interest. In this section we will restrict to a system coupled only via a single
channel to the environment and rely on the references [20,21]. The statistical distributions of theS-matrix
elements with imperfect coupling have been addressed by several authors [32–38]. Experimentally not
only the direct processes have to be taken into account but also losses or absorption. When absorption is
present,S is a subunitary matrix and in the single-channel case theS matrix can be parametrized using
the reflection coefficientR asS =

√
Reiθ The coupling between the scattering channels and the interior

region is given by the transmission coefficientTa = 1− |〈S〉|2 (see Eq. 4). The subindexa will be used to
denote the antenna coupling. The distributionPR,0(R) ofR is known [17,39] and there exists an analytical
approximation for GOE (β = 1) which we will use here [21]

PR,0(R0) = C
e−α/(1−R)

(1−R)2+1/2

[

Aα−1/2 +B(1−R)1/2
]

, (14)

whereα = γ/2, A = α (eα − 1), B = (1 + α − eα), C = α3/2/Γ(3/2) andΓ is the upper incomplete
Gamma function.γ is the absorption strength, e.g. the exponentiel decay rateof the intensity, inside the
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Fig. 2 Joint distributionP (R, θ) of the S-matrix for different coupling and absorption regimes: (a)γ = 0.56,
Ta = 0.116 (weak absorption-weak coupling) (b)γ = 2.42, Ta = 0.754, and (c)γ = 8.40, Ta = 0.989 (stronger
absorption-nearly perfect coupling). The upper, middle rows correspond to experiment and theory, respectively (see
[21]). Note the change of scales forR andθ. Below the corresponding normalized width distribution isshown. The
black histogram was obtained from the experiment using the harmonic inversion. The solid line corresponds to the
theoretical prediction from [17] taking additionally fluctuating absorption into account [41] (see [21,41]).

closed system. We denote a system with absorption strengthγ and perfect coupling (Ta=1) by S0 =√
R0e

iθ0 . Introducing theS-matrix of the antenna [36, 40] and using the combination rule ofS-matrices,
the distributionPS(S) for the system including direct processes was derived as [21]

PS(S) =

∣

∣

∣

∣

∂(R0, θ0)

∂(R, θ)

∣

∣

∣

∣

PS,0(S0) =

(

1− 〈S〉2
|1− S〈S〉|2

)2
1

2π
PR,0(R0). (15)

The experimental realization using microwaves has been performed by a rectangular cavity where a
movable half circle is attached to one wall. The microwaves excite the cavity via a single antenna, where
the antenna coupling is frequency dependent. Details of theexperimental description can be found in
Refs. [9,20,21]. In Fig. 2 the joint probabilityP (S) = P (R, θ) is shown for three different absorption and
coupling regimes (columns a-c). In the upper row the experimental distributions and in the middle row the
theoretical distributions are shown. A good agreement is found especially if one takes into account that all
parameters of the theory can be fixed in advance by average quantities.

To make a more direct relation to the effective Hamiltonian,we will now investigate the resonances,
more precisely the distribution of resonance widthΓ. From the previous reflection measurements the poles
of theS-matrix in the complex plane have been determined [41]. The resonances have been extracted by
means of the harmonic inversion [42]. Thus it became possible to resolve the resonances in a regime where
the line widths exceed the mean level spacing up to a factor of10. The obtained experimental distributions
of line widths are shown in the lower row of Fig. 2. The distributions are in agreement with predictions
from random matrix theory [17] when wall absorption and fluctuations caused by couplings to additional
absorbing channels are considered [41].

The joint probability distributionsP (R, θ) shown in the upper row of Fig. 2 is induced by the resonances
and eigenfunctions of the effective Hamiltonian. The presented width distribution shown in the lower part
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8 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

is only one part necessary to generate theP (R, θ). The other parts are the distribution of the resonances
including their correlations to the widths and the value of eigenfunctions at a fixed positionr (antenna
position). It will be a future challenge to derive all this correlations theoretically and experimentally.

In a recent work the same data has been used to investigate theWigner surmise of the nearest neighbor
spacing for an open system [43]. Using the effective Hamiltonian approach in the2 × 2 approximation
(see Sec. 3.1) the authors were able to derive an analytical formula and an agreement to the experimental
nearest neighbor spacing distribution was found [43].

In this subsection we have shown the width distribution for different coupling strength. In the following
subsection we will investigate how the resonances, especially their widths, will change when gradually
changing the coupling to a single channel.

3.3 Resonance trapping

Resonance trapping is a phenomenon appearing in strongly open quantum systems. We will present results
from [7,8] using a slightly different notations. For details refer to the original works. Resonance trapping
is caused by the interaction of overlapping resonance states via the continuum of scattering states by which
some of the states align with the channels by trapping other ones. Therefore the total coupling strength is
given by

Γtot =
N
∑

n=1

Γn ≈ Γalign =
M
∑

n=1

Γn i.e. Γtrap =
N
∑

n=M+1

Γn ≈ 0 , (16)

whereN is the total number of states andM states are strongly coupled to the environment. Due to the
reordering processes, the otherN − M states are only weakly coupled to the environment. Resonance
trapping can be observed if the total coupling strength is varied.

Starting from weak coupling where the resonance states are still isolated, we have Breit-Wigner reso-
nances (see Eq. 6) and the HamiltonianHeff is almost diagonal. Increasing the coupling the resonances
start to overlap and a redistribution in the spectrum of the system takes place due to the non-diagonal terms
of the non-Hermitian partκWW † of Heff . The HamiltonianHeff has to be diagonalized,

Heff |ψ̃n〉 =
(

Ẽn − i

2
Γ̃n

)

|ψ̃n〉 . (17)

leading to

Sab(E) = δab − 2i
∑

n

√

Re(κ̃a)Re(κ̃b) W̃
†
a,nW̃b,n

E − Ẽn + i
2 Γ̃n

. (18)

where
√

Re(κ̃a)W̃ = 〈
√

Re(κa)W |ψ̃n〉. W̃ , Ẽn and Γ̃n are generally energy dependent andW̃ is
complex. The poles of theS matrix are obtained from the solutions of the fixed-point equations

En = Ẽn

∣

∣

∣

E=En

and Γn = Γ̃n

∣

∣

∣

E=En

. (19)

which determine the energiesEn and widthsΓn of the resonance states. The eigenfunctionsψ̃n of Heff

are bi-orthogonal. The resonances are no longer of Breit-Wigner type because of the energy dependencies
of W̃ andΓ̃n (see [44,45]). The energy dependencies ensure the unitarity of theS matrix.

This effect was demonstrated by a microwave experiment [7, 8], where the coupling to the cavity via
a waveguide was varied by a slit (see inset of Fig. 3). The reflection was measured via a waveguide of
widthD = 23.2mm where a slit was positioned at distanceL = 16mm from the attachment to the cavity.
The cavity has a form of a quarter Sinai shape with lengtha = 285mm, widthb = 200mm, and radius
of the quarter circle ofr = 70mm. The slit openingd was varied in steps of 0.1 mm and the resonance
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Fig. 3 Eigenvalues, obtained by fitting the experimental reflection data to Lorentzians, for slit positionL = 16 mm.
The open circles denote the eigenvalues by full opening (d = D). The inset shows a sketch of the billiard with attached
waveguide and slit within the waveguide (a = 285mm, b = 200mm, r = 70mm,L0 = 204mm,D = 23.2mm,
L = 16mm) (see [8]).

extracted by fitting a superposition of Lorentzians. In Fig.3 the resonances in the frequency range from
11 to 11.6 GHz are shown as a function of the slit opening. The open circles denote the eigenvalues by
full opening (d = D). Clearly a trapping effect is visible for several resonances, where the widthΓ for the
full opening is smaller than the maximum width observed for smaller openings. For the cavity parameters
roughly a quarter of all resonances investigated are trapped. The observed frequency shift in Fig. 3 is due
to both the real and imaginary part ofκ.

It is worthwhile to note that the width distribution once theresonance trapping has happened contains
two contributions. One distributionP (Γtrap) of the trapped states which is similar to using a corresponding
weak coupling and another partP (Γalign) of the broad aligned states. In the previous subsection the width
distribution of the trapped states is shown, but in the case of the joint probability distributionP (R,Θ) both
contributions are included (see Fig. 2c).

3.4 Scattering Fidelity for varying coupling

In this section we want to investigate the effect of opening the system by adding one additional channel,
where another channel is used to measure the scattering matrix. We present here only a short theoretical
description, which follows [11] (refer to this reference for details of the theory). In contrast to [11] we will
compare here the perfectly reflecting to the perfectly absorbing channel, whereas in [11] a variation of the
reflection was presented.

The quantity we want to use is the scattering fidelity [10] which is related to the fidelity [46, 47]. Both
measure the stability of a wave system against perturbations. The fidelity is the time dependence of the
overlap of the same initial pulse propagated by a ’slightly’different Hamiltonian, whereas the scattering
fidelity amplitudefab corresponds to the properly normalized spectral cross correlation function of scat-
tering matrix elementsSab for ’slightly’ different systems [10]:

fab(t) =
〈Ŝab(t)Ŝ

′∗
ab(t)〉

√

〈Ŝab(t)Ŝ∗
ab(t)〉〈Ŝ′

ab(t)Ŝ
′∗
ab(t)〉

. (20)

This definition ensures thatfab(0) = 1. Furthermore, an overall decay of the correlation functions due
to absorption or other open channels drops out, provided thedecay is the same for the parametric cross-
correlation functions in the nominator and the autocorrelation functions in the denominator. The scattering
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fidelity itself is

F (t) = |fab(t)|2 . (21)

For chaotic systems and weak coupling of the measuring antenna the scattering fidelity approaches the
ordinary fidelity [48]. The timet is given in units of the Heisenberg timetH = 2πh̄/∆, with ∆ being the
mean level spacing.

The scattering fidelity presented here will be denoted ascoupling fidelity. We present here a sketch of an
exact RMT prediction (for details see [11]). The coupling constant of the added channel will be denoted by
κ for Ŝab(t) andκ′ for Ŝ′∗

ab(t). The derivation is general but later the reference system isthe system without
channel, i.e.κ′ = 0. For the case whereκ = κ′ the parametric correlation functions〈Ŝab(t)Ŝ

′∗
ab(t)〉 in

Eq. (20) reduces to the autocorrelation function, which is given by the famous Verbaarschot-Weidenmüller-
Zirnbauer (VWZ) integral [13]. For the case ofκ 6= κ′ the correlator〈Ŝab(t)Ŝ

′∗
ab(t)〉 yields [11]

〈Ŝab(t)Ŝ
′∗
ab(t)〉 = 〈Ŝeff

ab (t)Ŝ
eff∗
ab (t)〉. (22)

Thus the parametric cross correlation function reduces to an autocorrelation function〈Ŝeff
ab (t)Ŝ

eff∗
ab (t)〉

given by the VWZ integral, where the transmission coefficient (Eq. (4)) of the varied channel has to be
replaced by

T eff =
2 (κ+ κ′∗)

(1 + κ) (1 + κ′∗)
. (23)

One can interpretT eff as an effective transmission coefficient due to a parametricvariation of the coupling
strength in the varied channel. Forκ = κ′, the effective transmission coefficientT eff becomes equal to
the conventional transmission coefficient (Eq. (4)). In contrast to the transmission coefficient in Eq. (4)
the effective transmission coefficientT eff is generally complex. The subsequent evaluation of the coupling
fidelity cannot be done analytically and will be performed numerically.

As in our case only one channel with a coupling strength that depends on frequency is added, and the
reflection is measured using the only other channel, i.e. viaan attached antenna, the theoretical description
of the scattering fidelity can be simplified. By denoting “c” the added antenna and “a” the measuring
antenna, the effective HamiltonianHeff may be writtenHeff = Ha

eff − iκaWaW
†
a whereHa

eff is defined
as [11]

Ha
eff = H − iκcWcW

†
c . (24)

Note that the coupling constantκa is generally complex and takes into account the effects of both the
channel coupling and any reflection and phase shifts coming from the imperfect experimental environment,
e.g. slight mismatches of cable analyzer connection etc.

Through this description, the2× 2 scattering matrix for both channels has thus been reduced toa1× 1
scattering matrix for the measuring antenna only

Saa =

1− iκ∗aW
†
a

1

E −Ha
eff

Wa

1 + iκaW
†
a

1

E −Ha
eff

Wa

. (25)

As a basis system for the measurement we use a chaotic quarterSinai cavity with lengthl = 472mm,
widthw = 200mm and a quarter-circle of radiusr = 70mm. Additional elements were inserted to reduce
the influence of bouncing balls and a rotatable ellipse was introduced close to the center for ensemble
averaging. The two antennas are situated such that there is no direct view of each other. The added
perturbing antenna is directly attached to a vector networkanalyzer, mimicking an infinitely long channel.
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Fig. 4 Fidelity |f(t)|2, real fR(t), and imaginary partfI(t) of the fidelity amplitude. Filled symbols show the
experimental results and the theoretical curves are dottedfor experimental parameter and dashed for fitting parameter.
In the upper row the chosen frequency ranges are:8.7 − 9.2GHz (black triangles) withκexp

c = 0.24, κfit
c = 0.21

and9.8 − 10.3GHz (green diamonds) withκexp
c = 0.43, κfit

c = 0.46. In the lower row the frequency range is
7.2 − 7.7GHz. Filled circles show the experimental results. The theoretical curves are dotted for experimental
parameterκexp

c = 0.19; dashed black for real valued fitting parameterκfit
c = 0.37 and dashed red for complex valued

fitting parameterκfit,im
c = 0.19 + i0.20.

This gives us also the possibility to measure directly the reflection at the added channelScc and calculate
the coupling strengthTc = 1 − | < Scc > |2, where the average is taken over different ensembles and a
small energy window. Assuming that the couplingκc has only a real part we can determineκc uniquely
from Tc.

In the upper part of Fig. 4 the fidelity introduced in Eq. (21) is plotted for two frequency ranges corre-
sponding to two different coupling strengthsκc. Using the experimentally determinedκc here denoted as
coupling parameterκexpc , a good agreement between experimental results (filled symbols) and theoretical
curves (dotted line) is found without any fit. A fit ofκc to the experimental curves to the scattering fidelity
|f(t)|2 (the corresponding values are denoted byκfitc ) which is plotted as dashed line shows only a minor
improvement for the correspondence between experiment andtheory. In both cases an agreement is found.

In the lower part of Fig. 4 we present the fidelity decay for thefrequency range7.2− 7.7GHz. Here we
find an obvious deviation between the experimental results (filled circles) and the theoretical curve based
on the experimental parameterκexpc (dotted line). To determine the decay of the experimental fidelity decay
we tried two possible ways of fittingκc to the experimental data. The first is fitting|f(t)|2 using a real
valuedκfitc and the second is fitting the complexf(t) using a complexκfit,imc .

While for the fidelity decays both fitting procedures lead to agood agreement between experiment
and theory, the corresponding realfR(t) and imaginaryfI(t) parts of the fidelity amplitude presented in
Fig. 4 is described satisfyingly only by the red dashed curve, which is generated with the complex valued
fitting parameterκfit,imc . Thus in the frequency range from 7.2-7.7GHz the attached antenna cannot be
described solely by an additional coupling but it has a non negligible scattering part inside the billiard. It is
worthwhile to note that the real part ofκfit,imc is matching the experimentalκexpc thus showing a consistent
description. In case of the two other ranges shown in Fig. 4 the imaginary part is small and Im(κc) = 0 is
a reasonable assumption.
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12 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

Fig. 5 Coupling constantκc as a function of the mean frequencyν; determined from the experimental transmission
coefficientTc (black triangles) and as real valued fitting parameter to theexperimental fidelity decay (red diamonds).

In Fig. 5 we plotted the coupling constantκc determined from the experimental transmission coefficient
Tc asκexpc (black triangles) and from the fit to the experimental fidelity decayκfitc (red diamonds). For
frequencies from about 6 GHz up to 10 GHz the experimentally determined coupling constant and the
fitting parameter do not deviate much from each other apart from some significant peaks like the one
around 7.5 GHz which results from system specific features, probably antenna resonances. Beyond 11 GHz
the way of determining the coupling constant via a reflectionmeasurement at the perturbing antennac does
not lead to convincing results. This might be due to the resonance trapping effect which was observed in
similar microwave billiards (see section 3.3 and [7, 8]). Ifthe coupling of the newly attached channel
is sufficiently strong, thus leading to a reorientation of the eigenvalues, an imaginary part of the coupling
constant has to be taken into account. Typically the coupling constant and antenna transmissionTc increase
with frequency and above 10 GHzTc > 0.8. Thus in the regime of resonance trapping, taking the complex
coupling coefficient into account is crucial for the coupling fidelity.

4 Classical wave experiments on spatial properties

4.1 Wave functions

We now turn to examine the consequences of openness on the spatial properties of the field.
While field statistics of open chaotic systems have been systematically studied for a given energy and

considering the energy as a continuous parameter (see [21] and references therein), statistics of resonance
states i.e. left and right eigenvectors ofHeff are less understood. The impact of the openness is to turn real
eigenfunctions into complex internal wavefunctions associated to resonances. This complexness being
uniquely related to the presence of currents inside the system [49,50]. In order to quantify the presence of
currents, one can use the complexness parameterq2n = 〈(Imψn)

2〉/〈(Reψn)
2〉 introduced by Lobkis and

Weaver [51] as the ratio of the variance of the imaginary and real parts of thenth resonance state (after a
phase rotation leading to independent real and imaginary components [52]). These authors experimentally
obtained the complexness parameter from the distribution of the phaseϕ of the spatial component of the
field : ψ = |ψ|eiϕ. By considering that the real and imaginary parts of the fieldare independant Gaussian
random variables, they obtained:

P (ϕ) =
q

2π

1

q2 cos2 ϕ+ sin2 ϕ
. (26)

This distribution is closely related to the Poisson kernel (eq. 15) for a given frequency. This expression
is peaked around0 andπ for purely standing waves in a closed cavity. As losses increase, the phase
probability distribution broadens corresponding to a growing traveling-wave component of the mode. The
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Fig. 6 Distribution of intensities for three different wave functions at frequenciesν =8.0 (a), 16.9 (b), and 15.4 GHz
(c) are shown with different phase rigidities|ρ|2. The solid line represents the distribution from eq. (28). In the inserts
the corresponding modulus of the wave function is shown (see[56]).

latter feature has been recently experimentally verified bymeans of elastic waves in a chaotic plate [53].
In the context of microwave cavities, a derived distribution had been obtained by J. Barthélemyet al. [54].

A related quantity, namely the phase rigidity|ρ|2 can be expressed as a function of the complexness
parameter:

|ρ| =
〈

ψ2
R

〉

−
〈

ψ2
I

〉

〈ψ2
R〉+ 〈ψ2

I 〉
=

1− q2

1 + q2
. (27)

By considering the phase rigidity as a continuous function of frequency, P. Brouwer studied the effect of
openness [55] and derived the theoretical distribution of|ρ|2, which has been experimentally verified by
Kim et al. in an open microwave cavity [50,56].

For fixed phase rigidity|ρ|2 the distribution of wave function intensities is given by [55,57]

Pρ(I) =
1

√

1− |ρ|2
exp

[

− I

1− |ρ|2
]

I0

[ |ρ|I
1− |ρ|2

]

. (28)

For |ρ|2 → 1, Pρ is approaching a Porter-Thomas, whereas it is an exponential distribution for |ρ|2 =
0. Porter-Thomas and single exponential distributions areχ2 distributions for one and two degrees of
freedom, reflecting the fact that in closed systems the wave function is real, whereas in fully open systems
it contains a real and an imaginary part of comparable magnitude. In Fig. 6 the distribution of intensities
for three different wave functions of an open microwave cavity is shown with different phase rigidity values
ranging from nearly closed (|ρ|2 ≈ 1) to nearly completely open (|ρ|2 ≈ 0). A good agreement is seen,
especially as the only parameter, the phase rigidity|ρ|2, has been fixed beforehand (for details see [50,56]).

The complexness parameterqn has been investigated both experimentally [53, 54] and theoretically
[5,26] through the scope of its relationship to the resonance width. In particular, in Ref. [5] the authors have
established that the complexness parameter is also a measure of the non-orthogonality of eigenfunctions in
the case of inhomogeneous losses.

A linear relationship betweenqn andΓn was first noticed by Barthélemyet al. [54] analyzing hundreds
of resonance states of a 2D chaotic microwave cavity at room temperature. This result was then confirmed
using the effective Hamiltonian formalism in the limitM ≫ 1, relevant in the experiment [5]. A linear
relationship betweenqn andΓn was also verified in an elastodynamics experiment for a givenresonance
when a spatially extended coupling is varied [53]. The complexness parameter was also investigated at
arbitraryM by means of its probability distribution in the regime of weak coupling [26]. There, it was
shown that the average value ofq2n is directly proportional to the variance ofΓn, which constitutes the
natural measure of the fluctuations of the widths.

In reference [6], the authors confronted theoretical predictions presented in [26] to numerical solutions
of the Maxwell equations in a 2D chaotic microwave cavity with lossy boundaries subject to Ohmic dis-
sipation. In the regime of weak coupling, which correspondsto the condition

√

var(Γ) ≪ ∆, where∆
is the mean level spacing, the anti-Hermitian part ofHeff is small compared to the Hermitian part and
perturbation theory can be applied.
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14 U. Kuhl, O. Legrand, and F. Mortessagne: Microwave experiments in the realm of the effective Hamiltonian

Fig. 7 Real (on the left) and imaginary (on the right) component of the 500th resonance state obtained by means of
the Finite Element Method (see [6]).

We define the rescaled widthsγ = πΓ/(2κ∆) with 〈γ〉 = M where we assume a single and real
coupling constantκ for theM fictitious channels accounting for absorption. Considering that the widths
are given by a sum ofM squared independent Gaussian random variables, they follow a χ2 distribution
with M degrees of freedom:

χ2
M (γ) =

1

2M/2Γ(M/2)
γM/2−1e−γ/2 , (29)

whereΓ(·) is the Euler gamma function.
The distribution of the rescaled complexness parameterXn ≡ q2n/κ

2, was obtained by making use of
group integral methods [58] and reads:

PGOE
M (X) =

M

6X2

1 + (3 +M)X−1

(1 +X−1)M/2+2
, (30)

where strong mode-to-mode fluctuations clearly appear, embodied in the power law tail1/X2 of the dis-
tribution.

The chaotic cavity considered in [6] has a quarter of a stadium shape with a radius ofR = 1m and a
length ofl = 2m (see Fig. 7). In order to reduce the bouncing ball modes between the two parallel sides,
an oblique cut is performed on one side and a movable perfectly reflecting half disk of diameterd = 0.3m
is placed on the opposite side. The absorbing boundary condition is imposed on an adjustable part of the
boundary of the cavity. The number of channelsM is related to the effective absorbing lengthlabs along
the boundary and the wavelengthλ through:

M =
labs
λ/2

. (31)

Note thatM is also related to the first two moments of the width distribution (29):

M =
2

〈γ2〉 / 〈γ〉2 − 1
. (32)

Fig. 8 shows the distributions of the complexness parameterX compared to the theoretical distribution
(30). Three different sets of values of the absorbing lengths, conductivities and frequency ranges are used
(see caption). For each frequency interval, the numberM of channels used for the comparison corresponds
to the nearest integer value of relation (31) computed with the median value of the wavelength in each
interval (the estimates (31) and (32) agree within a few percents). The excellent agreement, even in the tail
of the distribution (as shown in inset forM = 38), confirms that the prediction (30), obtained within the
perturbation theory, contains the essential features to account for the non-orthogonality of the resonance
states due to spatially continuously distributed losses.

Note that in the width distributions presented in Subsec. 3.2 in the lower row of Fig. 2, the above
presented distributions of the complexness parameter correspond to the additional fluctuating absorption,
which must be taken into account to obtain a good agreement between theory and experiment [41].
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Fig. 8 Distributions of the complexness parameter for different absorbing lengths, conductivities and frequency
ranges: (a)labs = π/18, σc = 80Sm−1 and from the 300 th to the 400th resonances; (b)labs = π/6, σc = 400Sm−1

and from the 700 th to the 800th resonances; (c)labs = π/2, σc = 1000Sm−1 and from the 700 th to the 800th reso-
nances. The histograms show the numerical distributions. The solid lines correspond to the theoretical prediction (30)
where the numberM of channels corresponds to the nearest integer value of relation (31) computed with the median
value of the wavelength in each frequency interval (see [6]).

5 Summary and Outlook

We have shown that classical wave experiments are perfectlysuited to investigate systems which can be
described by the effective Hamiltonian approach. They permit easy access to the full complex scattering
matrix, thus giving the possibility to fix relevant parameters beforehand. Additionally the system can be
controlled in various ways, like boundary variations on subwavelength scale or coupling variations. This
allows to verify experimentally various predictions givenby the effective Hamiltonian approach. Since
absorption often plays a crucial role for classical waves, it has to be taken into account properly in the
theory. Thus, classical experiments in the realm of effective Hamiltonians are a perfect tool to test theoret-
ical predictions and, additionally, are also a driving partin the further development and understanding of
effects, induced by the coupling to the environment, i.e. byan effective Hamiltonian.

On the theoretical side, a continuous progress of statistical description of new quantities is going on,
where microwave experiments will be one of the major tools toverify these predictions. Recently for ex-
ample the distribution of ’width velocity’ has been predicted by Fyodorov and Savin [59] which should
be accessible by microwave experiments. On the other hand experimental findings will trigger further
theoretical investigations as it has been the case for including effects of absorption, for local level dynam-
ics [60] and for the coupling fidelity [11]. Experimentally challenging is still the reliable extraction of
resonances in the strongly overlapping regime. This would give access to follow the resonances far in the
complex plane and investigate nearest neighbor distribution in the complex plane, resonance correlations
etc. One could also verify predictions for the fractal Weyl law [61–63] which relates the average number
of resonances to the fractal dimension of the repeller of theclassical dynamics.

We would like to acknowledge J. Barthélemy, P. Brouwer, B. Dietz, R. Höhmann, B. Köber, G. Luna-
Acosta, R. A. Méndez-Sánchez, E. Persson, C. Poli, I. Rotter, D. Savin, P. Sebbah, H.-J. Stöckmann, and
O. Xeridat for discussion, data acquisition, data evaluation, etc.
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[60] M. Barth, U. Kuhl, and H. J. Stöckmann, Phys. Rev. Lett.82, 2026 (1999).
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