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A simple algebraic approach to synthesis Fibonacci Switched Capacitor Converters (SCC) is analyzed and the expected losses are estimated. The proposed approach reduces the power losses by increasing the number of target voltages. The synthesized Fibonacci SCC is compatible with the binary SCC and uses the same switch network. This feature is extremely beneficial since it provides the option to switch between the binary and Fibonacci target voltages, increasing thereby the resolution of attainable conversion ratios. The theoretical results were verified by experiments.

Introduction

Switched Capacitor Converters (hereinafter SCC for both singular and plural), which are often referred to as charge pumps, are embedded in VLSI chips and used as standalone power converters for low-power applications. It is well known that the SCC exhibits high efficiency only when its output voltage Vo is very close to the target voltage VTRG=M•Vin, where M is the no-load conversion ratio. The SCC efficiency can be approximated by η=Vo/VTRG and decreases when the SCC is loaded. This efficiency drop is due to the inherent power losses, which can be modeled by an equivalent circuit (Fig. 1) that includes the target voltage source VTRG and a single equivalent resistor Req. This resistor represents the losses due to power dissipation in switch resistances and capacitors' ESR [START_REF] Ben-Yaakov | Generic and unified model of switched capacitor converters[END_REF][START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF][START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF]. The simplified model of Fig. 1 does not take into account losses due to gate drives, leakage current and other parasitic effects which are not addressed in this work. Neglecting the parasitic effects, high efficiency is obtained if the equivalent resistor is small. In this case Vo will be very close to VTRG. In many applications there is a need to maintain a constant output voltage under input voltage variations or to provide different output voltages for different operational modes of a system. Such a voltage control can be accomplished by adjusting the parameters Req or M or both [START_REF] Ben-Yaakov | Analysis and implementation of output voltage regulation in multi-phase switched capacitor converters[END_REF]. The highest efficiency will be obtained if Req is kept as small as possible and M is changed as required. This, however, is a difficult problem since M depends on the SCC topologies and can take only discrete values. The attempts to introduce multiple values of M have resulted hitherto in a large number of capacitors and switches that increase the power losses.

An effective way to realize many target voltages is the binary SCC [START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF], [START_REF] Ben-Yaakov | Algebraic foundation of self-adjusting switched capacitor converters[END_REF] that exhibits a binary resolution. That is, for n capacitors the number of target voltages will be 2 n -1 with a resolution of 1/2 n . This binary behavior is depicted by solid line in Fig. 2 for n=3, while the values on the x-axis represent the binary conversion ratios. The objective of this study was to introduce additional target voltages to the binary SCC without adding capacitors or switches.

This paper covers in detail all the steps involved in the synthesis of a Fibonacci SCC proposed in [START_REF] Kushnerov | Algebraic synthesis of Fibonacci switched capacitor converters[END_REF], including the derivation of the analytical expressions of the losses that are Req. The dashed line in Fig. 2 depicts the additional efficiency peaks, which are obtained by the insertion of the proposed Fibonacci target voltages between their binary counterparts.

Signed Fibonacci Representation

The proposed approach to synthesis of Fibonacci SCC is based on the novel number system described in this section. For i >2 the Fibonacci numbers are defined as Fi = Fi-1 + Fi-2, where the initial values are F1=F2=1. First eight Fibonacci numbers are shown in Table I. According to Zeckendorf's theorem [START_REF] Zeckendorf | Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas[END_REF][START_REF] Brown | Zeckendorf's theorem and some applications[END_REF][START_REF] Vorobiev | Fibonacci numbers[END_REF][START_REF] Yaglom | Challenging mathematical problems with elementary solutions[END_REF][START_REF] Fraenkel | Systems of numeration[END_REF][START_REF] Butler | Redundant multiple-valued number systems[END_REF] any integer number Nn in the range (1, Fn+2) can be represented uniquely as a sum of distinct Fibonacci numbers:

     n j j n j n F A N 0 2 (1)
where Aj takes the values of 0 or 1; and n sets the resolution. Incrementing the index j, we get the largest Fibonacci number Fn+2 in the leftmost position as shown in Table II for n=6.

Table II. The Fibonacci weights for n=6 j 0 1 2 3 4 5 6 Fn-j+2 21 13 8 5 3 2 1

For the sake of brevity the Zeckendorf expansion of Nn is called hereinafter Z-code. Table III shows the Z-codes for different numbers Nn ≤ 5 (n = 1…3). Note that unlike the regular binary code, the Z-code does not comprise two consecutive "1"s.

Table III. The Z-codes for Nn ≤ 5

Nn A0 A1 A2 A3 1 0 0 0 1 2 0 0 1 0 3 0 1 0 0 4 0 1 0 1 5 1 0 0 0
We define the Signed Fibonacci Representation (SFN) for fractions Mn= Nn/Fn+2 in the range (0, 1) as follows: the expression (1) is normalized to the largest Fibonacci number Fn+2, and the coefficients Aj (j≥1) are allowed to take three values of 0, 1, and -1 as was done in [START_REF] Ligomenides | Multilevel Fibonacci conversion and addition[END_REF]. The SFN also includes a leading coefficient A0, which could be either 0 or 1. Namely,

       n j n j n j n F F A A M 1 2 2 0 (2)
where n sets the resolution. Due to Aj taking the extra value of -1, a number of different SFN codes can represent the same fraction Mn, for example:

These different codes can be obtained by the spawning rule, which is based on the identity 2Fi = Fi +1 +Fi-2.

This identity states in fact that addition of two "1"s in the Fibonacci code induces two carries. One goes one bit left, while the other goes two bits right [START_REF] Graham | Concrete mathematics: A foundation for computer science[END_REF], [START_REF] Fenwick | Zeckendorf integer arithmetic[END_REF].

A rule for spawning the SFN codes:

This procedure is iterative and starts with the Z-code of Mn. Skipping the zeros from the left add "1" to first Aj = 1. This will turn Aj to "0" and induce two carries. To keep the original Mn value add "-1" to the resulting Aj = 0 and generate thereby a new SFN code. The procedure is repeated for all Aj = 1 in the original code and for all Aj = 1 in each new SFN code.

Corollary 1: For a resolution n, the minimum number of SFN codes for a given Mn is n + 1. This is because each of the "1"s in the Z-code with resolution n produces a new SFN code and two carries. Further iterations cause the carries to propagate, so that each "0" in the Z-code is turned to "1", which is also operated on to spawn a new code. So, the minimum number of codes is the original code plus n that is, n +1.

Corollary 2: Each Aj = 1 in either the Z-code or spawned SFN code yields at least one Aj =-1 in the same position j of another SFN code. This is because the spawning procedure turns each "1" to "-1".

The example given in Fig. 3 shows how three different SFN codes for M3=3/5 are spawned from the Z-code {0 1 0 0}. Note that operating A3=1 in the code {1 -1 0 1} leads to the overflow, which can be disregarded since F0/F5=0. Another overflow takes place when "1" is added to A2 =1 in the SFN code {1 -1 1 -1}. Since F1/F5=1/5 we add "1" to A3=-1 and obtain "0". The SFN codes for other Mn, n=1…3 are given in Table IV.

1 3 /5 2 /5 1 /5
1 3 /5 2 /5 1 /5 1 /5 0 1 3 /5 2 /5 1 /5 1 /5

0 1 0 0 1 -1 0 1 1 -1 1 -1 +1 +1 +1 1 0 0 1 1 -1 1 0 0 1 1 0 0 -1 1 -1 -1 -1 1 -1 0 1 1 -1 1 -1 1 0 -1 0
Fig. 3: Spawning the SFN codes for M3=3/5 from the initial Z-code {0 1 0 0}.

Translating the SFN Codes to SCC Topologies

The rules for translating the SFN codes into SCC topologies follow the rules given in [START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF], [START_REF] Ben-Yaakov | Algebraic foundation of self-adjusting switched capacitor converters[END_REF]. Consider a step-down SCC including a voltage source Vin, a set of n flying capacitors Cj and output capacitor Co, which is paralleled with load Ro. For a given Mn the interconnections of Vin, Cj, and Co are carried out according to the next rules:

Table IV. The SFN codes for fractions Mn, n = 1…3 M3=1/5 M2=1/3 M3=2/5 M1=1/2 M3=3/5 M2=2/3 M3=4/5 A0 A1 A2 A3 A0 A1 A2 A0 A1 A2 A3 A0 A1 A0 A1 A2 A3 A0 A1 A2 A0 A1 A2 A3 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 -1 0 1 -1 0 1 -1 1 1 -1 1 -1 0 1 1 -1 1 1 -1 1 0 0 1 -1 0 1 -1 0 0 1 0 -1 1 -1 1 -1 1 0 -1 1 0 -1 1 1 -1 0 -1 1 -1 0 0 1 0 -1 0 1 0 0 -1 1) If A0 = 1 then Vin is connected in a polarity that charges the output. 2) If A0 = 0 then Vin is not connected. 3) If Aj = -1 then Cj is connected in charging polarity (same as the output). 4) If Aj = 0 then Cj is not connected. 5) If Aj = 1 then Cj is connected in discharging polarity
(opposite to the output). The above rules are illustrated by translating the SFN codes of M3=3/5 to topologies depicted in Fig. 4. Let us assume that under the steady-state condition all the capacitors in the topologies of Fig. 4 are charged to constant, but unknown voltages V1, V2, V3, and Vo. To find these voltages we apply Kirchhoff's Voltage Law (KVL) to each topology which leads to a system of four linear equations:

+ _ + + + + _ + Vin Co Ro + C3 Vo Vin Co Ro + Vo + Co Ro + Vo C 1 C2 C2 C1 + _ + + Vin Co Ro + Vo C1 C3 {0 1 0 0} {1 -1 0 1} {1 -1 1 -1} {1 0 -1 0}
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Solving (4) we obtain the voltages across the output and flying capacitors: Vo=V1=( 3 /5)Vin; V2=( 2 /5)Vin; V3=( 1 /5)Vin. Considering the fact that ( 4) is solvable it should also be solvable if Vin and Vo are interchanged. This means switching the input and output terminals and in fact, turning the stepdown SCC into a step-up as shown in Fig. 5.

+ _ + + + + Vin Co Ro + C3 Vo + C 1 C2 C2 C1 + + C1 C3 {0 1 0 0} {1 -1 0 1} {1 -1 1 -1} {1 0 -1 0} Co Ro + Vo + _ Vin + _ Vin + _ Vin Co Ro + Vo
Fig. 5: The topologies of step-up Fibonacci SCC with 1/M3=5/3.

The steady-state KVL equations for the topologies of Fig. 5 are:
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The solution of ( 5) is: Vo=( 5 /3)Vin; V1=Vin; V2=( 2 /3)Vin; V3=( 1 /3)Vin. It is evident that the step-up Fibonacci target voltage Vo=( 5 /3)Vin is reciprocal to its step-down counterpart Vo=( 3 /5)Vin as in the case of binary SCC [START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF], [START_REF] Ben-Yaakov | Algebraic foundation of self-adjusting switched capacitor converters[END_REF]. Note that for n flying capacitors, the highest conversion ratio is equal to (n+2)-th Fibonacci number Fn+2. Although various Fibonacci step-up SCC with the conversion ratio Fn+2 have been proposed earlier [START_REF] Makowski | Realizability conditions and bounds on synthesis of switched-capacitor DC-DC voltage multiplier circuits[END_REF][START_REF] Su | Design strategy for step-up charge pumps with variable integer conversion ratios[END_REF][START_REF] Kok | Design strategy for two-phase switched capacitor step-up charge pump[END_REF], there is no published report on SCC with fractional Fibonacci conversion ratio greater than one.

Taking all the aforesaid into consideration, we have six new Fibonacci conversion ratios: { 1 /5, 1 /3, 2 /5, 3 /5, 2 /3, 4 /5} in addition to the seven { 1 /8, 1 /4, 3 /8, 1 /2, 5 /8, 3 /4, 7 /8} of the binary step-down SCC for the same resolution n = 1…3, which should improve the efficiency as depicted in Fig. 2.

Derivation of Equivalent Resistor

As was shown in [START_REF] Ben-Yaakov | Generic and unified model of switched capacitor converters[END_REF][START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF][START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF] the total equivalent resistor in the class of SCC where the flying capacitors are always connected in series is given as:

         m i i i i s eq β C k f R 1 2 2 coth 2 1 ( 6 
)
where i is the topology number, ki=Ii/Io is the ratio of the average topology current Ii to the average output current Io; and βi=ti/τi is the ratio of the time ti allotted to topology i to its time constant τi=RiCi. To find the coefficients ki we consider the steady state operation of SCC. In this case the charge received by each flying capacitor must be equal to the delivered charge. If all the SCC topologies are configured for equal time intervals ti=t then the contribution of each Ii to Io can be found from the next system of linear equations:

0 1 ,    m i i j i I A and o m i i m i I I A   1 , ( 7 
)
where m is the total number of SCC topologies; and Ai,j is the SFN coefficients in topology i. As follows from ( 7) each equation for a fixed j can be obtained as a product of transposed j-th column Ai,j (i=1…m) and column of unknown currents Ii. In the considered case of M3=3/5 the system (7) is: The solution of ( 8) is I1=( 2 /5)Io; I2=I3=I4=( 1 /5)Io. For each SCC topology we can find a total capacitor Ci and a total resistor Ri, which are substituted into βi=t/RiCi.
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Table VI: The analytical expressions of Req Mn

Equivalent resistor expression
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Let us assume for simplicity that all the flying capacitors have an identical capacitance C. Since in each SCC topology of Fig. 4 the flying capacitors are connected in series, the ratio Ci/C is reciprocal to number of non-zero coefficients Aj (j>0) in Table IV. The coefficients required in Req derivation for all the Mn, n=1…3 are summarized in Table V.

It can be shown that number of switches used in the experimental setup to configure any SCC topology of Fig. 4 is constant and equal to four. Assuming an identical onresistance r of all the switches and neglecting other parasitic resistances (e.g. ESR) we define the total on-resistance as R=4r and the common time ratio β=t/RC, so that βi=(C/Ci)•β. Substituting it and the coefficients of Table V into (6) we get the analytical expressions of Req presented in Table VI.

The asymptotic limit of Req for β→0 was found using the definition Ts=(n+1)•t. This limit is called no-charge (NC) operation mode [START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF], [START_REF] Ben-Yaakov | Analysis and implementation of output voltage regulation in multi-phase switched capacitor converters[END_REF] (also known as FSL) and practically reached if the SCC operates with very high switching frequency, so that ti≪RiCi. The momentary topology current in this case is almost constant and therefore its RMS is minimal. Since the same current with minimal RMS flows through the switch resistances, the efficiency of SCC operating in the NC mode is maximal [START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF], [START_REF] Ben-Yaakov | Analysis and implementation of output voltage regulation in multi-phase switched capacitor converters[END_REF]. An important issue on this derivation is that the same Req was obtained for a pair of complementary conversion ratios Mn and 1-Mn.

Experimental Results

The experimental setup (Fig. 6) followed the same design as in [START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF], [START_REF] Ben-Yaakov | Algebraic foundation of self-adjusting switched capacitor converters[END_REF] was built around the CMOS bidirectional switches with an on-resistance r=1.2Ω, while C1=C2=C3=4.7μF, Co=470μF, and Vin=8V. The time slot allotted for each topology was 5μs. The output voltage was measured for Ro=300Ω and Ro=100Ω and shown in Fig. 7(a) by solid and dashed line respectively. The SCC efficiency is presented in Fig. 7(b), for Ro=300Ω (diamonds) and Ro=100Ω (squares). As evident from Fig 7(b), the measured efficiency is low for low conversion ratios Mn. This fact could be explained by that the real SCC has some constant losses, which have a larger effect at low Mn. Additional evidence for the constant losses is that for the very low Mn the efficiency is lower for light load. The equivalent circuit in Fig. 1 takes into account the conduction losses only, so that measured Req, which include additional losses, should deviate from the theoretical values. VI). The dashed line in Fig. 8 corresponds to the case of no-additional losses. Diamonds: Ro=300Ω. Squares: Ro=100Ω.

Discussion and Conclusions

A new SFN representation was derived from the Fibonacci number system. Based on the SFN representation, a simple algebraic approach to synthesis Fibonacci SCC is developed. This new class of SCC can be considered as computational hardware that solves a system of linear equations defined by the SFN codes. The main feature of the proposed SCC is the compatibility with the binary SCC that allows one to approximately double the number of the target voltages. This would reduce losses in regulated SCC where the output is maintained at a constant voltage under load and input voltage variations. The multi-target feature would also be beneficial in cases when the output voltage of the SCC need to be adjusted to different levels. The proposed approach produces 13 target voltages for the gain range of 0÷1. The efficiency at the target voltage will be maximal, limited by the equivalent resistance of the circuit and the parasitic losses. The experimental SCC unit that applied 1.2Ω switches reached, for most of the target ratios, above 90% efficiency. Gains in between the target points can be obtained by duty cycle control or frequency control [START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF][START_REF] Ben-Yaakov | Analysis and implementation of output voltage regulation in multi-phase switched capacitor converters[END_REF]. The gain control in these cases is obtained at the expense of increased losses [START_REF] Ben-Yaakov | On the influence of switch resistances on switched capacitor converter losses[END_REF] and consequently a lower efficiency. However, considering the close proximity of the target voltages, the expected efficiency reduction is rather small. The worst case is the gain range between 1/8 and 1/5 (Fig. 7). Applying the relationship η=Vo/VTRG, the minimum efficiency (just before reaching the 1/8 gain) is 62.5%. For the same gain range, the minimum efficiency of the binary SCC [START_REF] Kushnerov | High-efficiency self-adjusting switched capacitor DC-DC converter with binary resolution[END_REF], [START_REF] Ben-Yaakov | Algebraic foundation of self-adjusting switched capacitor converters[END_REF] would be 50%. Hence, considerable improvement is obtained even at the very low gains. For higher gains the expected minimum efficiency is considerably higher as is evident from Fig. 7b in which the estimated minimum efficiency in between the target points are marked by "X". It can thus be concluded that the proposed expansion of the multi-phase SCC in which the SFN codes are added to the Extended Binary Codes (EXB), improves the performance of the SCC. It is rather remarkable that this improvement is obtained at no cost since there is no need to add switched and/or capacitors to the circuit.
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 7 Fig. 7: The output voltage (a) and efficiency (b) of the experimental SCC. Diamonds: Ro=300Ω. Squares: Ro=100Ω. The curve of the higher output voltage in (a) is for Ro=300Ω, while the one of the lower output voltage is for Ro=100Ω. The points marked by "X" in (b) are estimates of minimum efficiency of a regulated version of proposed SCC in between target voltages.
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 5218 Fig. 8 compares the measured values of Req with the calculated ones (TableVI). The dashed line in Fig.8corresponds to the case of no-additional losses.
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 8 Fig. 8: Measured values of Req compared to the calculated ones. Diamonds: Ro=300Ω. Squares: Ro=100Ω.

Table I .

 I The Fibonacci numbers for i ≤ 8

	i	1 2 3 4 5 6 7 8
	Fi 1 1 2 3 5 8 13 21

Table V :

 V The coefficients required in Req derivation

/5 = 1 -1•( 3 /5) + 1•( 2 /5) + 0•( 1 /5) → {1 -1 1 0} 4 /5 = 1 + 0•( 3 /5) -1•( 2 /5) + 1•( 1 /5) → {1 0 -1 1} (3) 4 /5 = 1 + 0•( 3 /5) + 0•( 2 /5) -1•( 1 /5) → {1 0 0 -1}
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