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Combining imprecise probability masses with
maximal coherent subsets: application to
ensemble classification.

Sébastien Destercke1 and Violaine Antoine2

Abstract
When working with sets of probabilities, basic information fusion operators

quickly reach their limits: intersection becomes empty, while union results in a
poorly informative model. An attractive means to overcome these limitations is
to use maximal coherent subsets (MCS). However, identifying the maximal coher-
ent subsets is generally NP-hard. Previous proposals advocating the use of MCS to
merge probability sets have not provided efficient ways to perform this task. In this
paper, we propose an efficient approach to do such a merging between imprecise
probability masses, a popular model of probability sets, and test it on an ensemble
classification problem.

1 Introduction

When multiple sources provide information about the ill-known value of some vari-
able X it is necessary to aggregate these pieces of information into a single model.
In the case where the initial uncertainty models are precise probabilities and where
the aggregated model is constrained to be precise as well, there are only a few op-
tions to combine the information (see [3] for a complete review)

The situation changes when one considers imprecision-tolerant uncertainty the-
ories, such as possibility theory, evidence theory or imprecise probability theory
(see [7]). As they extend both set-theoretic and probabilistic approaches1, these the-
ories can use aggregation operators coming from both frameworks, i.e., they can
generalise intersections and unions of sets as well as averaging methods.
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When there is (strong) conflict between information pieces, both conjunctive (in-
tersection) and disjunctive (union) aggregation face some problems: conjunction
results are often empty and disjunction results are often too imprecise to be really
useful. A theoretically attractive solution to these problems is to use maximal co-
herent subsets (MCS) [11], that is to consider subsets of sources who are consistent
and that are maximal with this property. Aggregation can then be done by combin-
ing conjunction within maximal coherent subsets with other aggregation operators,
e.g., disjunction. Practically, the main difficulty that faces this approach is to identify
MCS, a NP-hard problem in the general case.

Different solutions have been proposed to combine inconsistent pieces of in-
formation within the framework of imprecise probability theory. In [10] and [12],
hierarchical models are considered. In [1] and [8], Bayesian-like methods (i.e., us-
ing conditional probabilities) of aggregation are proposed. In [9] and [14], non-
Bayesian methods are studied (although [14] considers that combination methods
should commute with Bayesian updating). In the two latter references, MCS are
proposed as a solution to combine information pieces that are partially inconsistent,
but no practical methods are given to identify MCS.

In this paper, we concentrate on imprecise probability masses and propose a prac-
tical approach to apply MCS inspired combination methods to such models. We
work in a non-Bayesian framework. Section 2 recalls the necessary background on
imprecise probabilities and information fusion. Section 3 describes our approach, of
which the most important part is the algorithm to identify MCS. Finally, Section 4
presents an application to ensemble classification, in which resulting classification
models are combined using MCS.

2 Preliminaries

The theory of imprecise probabilities [15] is a highly expressive framework to rep-
resent uncertainty. This section presents the basics of imprecise probabilities.

2.1 Imprecise probabilities

Consider a variableX taking values in a finite domaineDx of n elements {x1, x2, . . . , xn}.
Basically, imprecise probabilities characterize uncertainty about X by a closed con-
vex set P of probabilities defined on Dx. To this set P can be associated Lower
and upper probabilities that are mappings from the power set 2Dx to [0, 1]. They
are respectively denoted P and P and are defined, for an event A ⊆ Dx, as
P (A) = infp∈P P (A) and P (A) = supp∈P P (A). These two measures are dual,
in the sense that P (A) = 1− P (Ac), with Ac the complement of A. Hence, all the
information is contained in only one of them.

Alternatively, one can start from a lower measure P and compute the convex
set PP = {P ∈ P(Dx)|P (A) ≥ P (A), ∀A ⊆ Dx} of dominating probability
measures (P(Dx) is the set of all probabilities on Dx). Note that the lower value
P∗(A) = infP∈PP

P (A) need not coincide with P (A) in general. If the equality
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P∗ = P holds, then P is said to be coherent. In this paper, we will deal exclusively
with coherent lower probabilities. Note that lower probabilities are not sufficient to
represent every possible convex sets of probabilities.To represent any convex set P ,
one actually needs to consider bounds on expectations (see [15]).

2.2 Imprecise probability masses (IPM)

Usually, the handling of generic sets P (and sets represented by lower probabilities)
represent a heavy computational burden. In practice using simpler models alleviate
this computational burden to the cost of a lower expressivity. Imprecise probability
masses [4] (IPM) are such simpler models.

IPM can be represented as a family of intervals L = {[li, ui], i = 1, . . . , n} veri-
fying 0 ≤ li ≤ ui ≤ 1∀i. The interval bounds are interpreted as probability bounds
over singletons. They induce a set PL = {p ∈ P(Dx)|li ≥ p(xi) ≥ ui, ∀xi ∈ Dx}.
An extensive study of IPM and their properties can be found in [4].

A set L of IPM is said to be proper if the condition
∑n

i=1 li ≥ 1 ≥
∑n

i=1 ui
holds, and PL 6= ∅ if and only if L is proper. Considered sets are always proper,
other types having no interest. To guarantee that lower and upper bounds are reach-
able for each singleton xi by at least one probability inPL, the intervals must verify:∑

i 6=j

lj + ui ≤ 1 and
∑
i6=j

uj + li ≥ 1 ∀i. (1)

If L is reachable, lower and upper probabilities of PL can be computed as follows:

P (A) = max(
∑
xi∈A

li, 1−
∑
xi /∈A

ui), P (A) = min(
∑
xi∈A

ui, 1−
∑
xi /∈A

li). (2)

If L is not reachable, a reachable set L′ is obtained by applying Eq. (2) to singletons.

2.3 Basic combinations of imprecise probabilities

When M sources provide information, there are three basic ways to combine this
information: through a conjunction, a disjunction or a weighted mean. When in-
formation is given by credal sets Pi, i = 1, . . . ,M , computing these basic com-
bination results present some computational difficulties [9]. Computations become
much easier if we consider a set L1, . . . , LM of IPM. In this case, if li,j , ui,j denote
respectively the lower and upper probability bounds on element xi given by source
j, (approximated) combinations are as follows:

• Weighted mean (L∑): li,∑ =
∑

j=1,M wj li,j , ui,
∑ =

∑
j=1,M wjui,j

• Disjunction (L∪): li,∪ = minj=1,M li,j , ui,∪ = maxj=1,M ui,j
• Conjunction (L∩):
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li,∩ = max( max
j=1,M

li,j , 1−
∑
k 6=i

min
j=1,M

ui,j), (3)

ui,∩ = min( min
j=1,M

ui,j , 1−
∑
k 6=i

max
i=1,M

li,j)

In general, the bounds obtained by conjunction (3) may be non-proper, i.e. may
result in an empty PL∩ . L1, . . . , LM have a non-empty intersection iff the following
conditions [4] hold:

max
j=1,M

li,j ≤ min
j=1,M

ui,j for every i ∈ [1, n] (4)∑
i=1,n

max
j=1,M

li,j ≤ 1 ≤
∑
i=1,n

min
j=1,M

ui,j (5)

The first condition ensures that intervals have a non-empty intersection for every
singleton, while the second makes sure that the result is a proper probability interval.

3 Maximal coherent subsets (MCS) and IPM

This section describes the methods to identify and combine MCS.

3.1 Identifying MCS

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I1

I2

I3

I4

a1 b1

a2 b2

a3 b3

a4 b4

(I1 ∩ I2)

(I2 ∩ I3 ∩ I4)

Fig. 1 Maximal coherent subsets on Intervals

When sources provide sets P1, . . . ,PM , finding MCS comes down to find every
subset K ⊆ [1,M ] such that

⋂
i∈K Pi 6= ∅ and such that K is maximum with

this property (i.e., adding a new set would make the intersection empty). Usually,
identifying every possible coherent subset among P1, . . . ,PM is NP-hard, making
it a difficult problem to solve in practice.

A particularly interesting case where MCS can be found easily is when each
sources provide intervals [ai, bi], i = 1, . . . ,M . In this case, Algorithm 1 given
in [6] finds MCS. It requires to sort values {ai, bi|i = 1, . . . ,M} (complexity in
O(M logM)), and is then linear in the number of sources.
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Algorithm 1: Maximal coherent subsets of intervals
Input: M intervals
Output: List of S maximal coherent subsets Kj

1 List = ∅, j=1, K = ∅ ;
2 Order in an increasing order {ai|i = 1, . . . ,M} ∪ {bi|i = 1, . . . ,M} ;
3 Rename them {ci|i = 1, . . . , 2M} with type(i) = a if ci = ak and type(i) = b if ci = bk ;
4 for i = 1, . . . , 2M − 1 do
5 if type(i) = a then
6 Add Source k to K s.t. ci = ak ;
7 if type(i+ 1) = b then
8 Add K to List (Kj = K) ;
9 j = j + 1 ;

10 else
11 Remove Source k from K s.t. ci = bk ;

Source1
x1 x2 x3

ui,1 0.6 0.5 0.2
li,1 0.4 0.3 0.

Source2
x1 x2 x3

ui,2 0.55 0.55 0.2
li,2 0.35 0.35 0.

Source3
x1 x2 x3

ui,3 0.5 0.2 0.6
li,3 0.3 0. 0.4

Source4
x1 x2 x3

ui,4 0.35 0.6 0.35
li,4 0.15 0.4 0.15

Table 1 Examples of IPM

This algorithm can be applied directly to IPM intervals to check MCS satisfying
Condition (4) (which is necessary for a subset of IPM to have a non-empty inter-
section). Indeed, consider a singleton xi and the set of intervals Li = [li,j , ui,j ],
j = 1,M : if K ⊆ [1,M ] is not a MCS of Li, then the credal sets {Pj |j ∈ K} do
not form a MCS. Hence, iteratively applying Algorithm 1 as exposed in Algorithm 2
allows to easily identify possible MCS among sets PL1

, . . . ,PLM
. In each iteration

(Line 2), Algorithm 2 refines the MCS found in the previous one (stored in List) by
finding MCS for probaiblity intervals of singleton xi (Line 5).

Algorithm 2: MCS identification for IPM
Input: M IPM
Output: List of S possible maximal coherent subsets Kj

1 List = {{1,M}} ;
2 for i = 1, . . . , n do
3 K=∅;
4 foreach subset E in List do
5 Run Algorithm 1 on [li,j , ui,j ], j ∈ E ;
6 Add resulting list of MCS to K;

7 List= K;

Example 1. Consider the IPM defined on Dx = {x1, x2, x3} and summarised in
Table 1. Running Algorithm 2 then provides successively the following MCS: K =
{{1, 2, 3}, {2, 3, 4}} after the first iteration (i = 1 in Line 2 of Algorihm 2); K =
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{{1, 2}, {3}, {2, 4}} after the second iteration, and K is not changed during the
third iteration.

Some subsets K1, . . . ,KS of sources resulting from Algorithm 2 do not satisfy
Condition (5). If K` is such a set, then one can either make an (exponential) ex-
haustive search of MCS within K`, or correct IPM in K` in a minimal way, so
that they satisfy (5). In this last case we can transform [9] bounds li,j and ui,j ,
j ∈ K`, i ∈ [1, n] into l′i,j = εli,j and u′i,j = εui,j + (1 − ε) with ε the minimal
value such that ∑

i=1,n

max
j∈K`

l′i,j ≤ 1 ≤
∑
i=1,n

min
j∈K`

u′i,j . (6)

This strategy makes the identification of MCS easy. Roughly speaking, it applies
Algorithm 1 to probabilistic (expectation) bounds coming from different sources but
bearing on common events (functions). Note that the same strategy can be applied
to models based on peculiar families of events (functions), such as p-boxes [5].

3.2 Combination with MCS

Once MCS K1, . . . ,KS of sources have been identified, they can be used to com-
bine inconsistent information. Without loss of generality, consider the indexing such
that |K1| ≥ . . . ≥ |KS | where |Ki| is the cardinality of Ki (i.e., the number of
sources within it).

We then propose two ways of combining the probability sets PL1
, . . . ,PLM

. In
both of them, we consider the IPM LK`

, ` = 1, . . . , S obtained by combining IPM
in K` according to the conjunctive rule (3).

The first rule combines disjunctively the first n IPM LKi
, that is

li,∪∩n
= min

`=1,n
li,K`

, ui,∪∩n
= max

`=1,n
ui,K`

(7)

where li,K`
, ui,K`

are the probability bounds given by LK`
on xi.

The second rule combines by a weighted mean the first n, LKi
, that is

li,∪∩n =
∑
`=1,n

w`,nli,K`
, ui,∪∩n =

∑
`=1,n

w`,nui,K`
(8)

where w`,n = |K`|/
∑

i=1,n |Ki| is the importance of K` in number of sources (a
similar strategy is used in [9]). If n = S the rules simply combine every MCS.

4 Application to ensemble classification

Combination is an essential feature of ensemble classification. As classifiers often
disagree together, using a MCS based approach to combine the different sources
appears sensible. We have therefore tested our approach in the following way: we
have trained forest of decision trees; for a given instance and for each decision trees,
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we have built an IPM model using the Imprecise Dirichlet model (IDM) with an
hyperparameter s = 4 (see [2] for details) and taking the samples in the tree leaves
as observations. We then combined the different IPM with the two rules (7) and (8)
(n=5) and selected the final class according to the maximin and maximality criterion
(see [13] for details). The former results in a unique decision while the latter results
in a set of possible optimal decisions.

Classifier performances are estimated using discounted accuracy: assume we
have T observations whose classes xi, i = 1, . . . , T are known and for which T
(possibly imprecise) predictions X̂1, . . . , X̂T have been made. The discounted ac-
curacy d− acc of the classifier is then

d− acc = 1

T

T∑
i=1

∆i

f(|X̂i|)
, (9)

with ∆i = 1 if xi ∈ X̂i, zero otherwise and f an increasing function such that
f(1) = 1. Set accuracy (s− acc) is obtained with f(|X̂i|) = 1.

Results are summarized in Table 2. Numbers of trees in the forest are {10, 20, 50}
and the data sets are Zoo, Segment and Satimage (taken from UCI), all of them
with 7 classes. Results were compared to a classical voting strategy. We have also
indicated the average CPU time needed to apply the different combination rules.
From the results, it appears that using a conjunctive rule between provided impre-
cise probabilistic models does not improve much the results of classical voting.
This is not surprising as we use precise decision trees and IDM to build our models,
and it would be worthwhile to check whether these conclusions still hold when us-
ing credal classifiers. The interest of using imprecise probabilistic models appears
when we allow for some imprecision, that is when we adopt a partially disjunctive
rule (Rule (7) with n=5). In this latter case, allowing for imprecise classification in-
creases the percentage of well-recognized instances while not decreasing too much
the precision. Finally, we can notice that the average computational time does not
increase much when the number of sources increases.

data Tree Single Votes Rule (7) (n=1) Rule (7) (n=5) Rule (8) (n=5) avg CPU
set nb tree d-acc s-acc acc d-acc s-acc acc d-acc s-acc acc time
Sat 10 0.81 0.88 0.87 0.88 0.87 0.64 0.98 0.81 0.87 0.89 0.87 15.16

20 0.81 0.89 0.88 0.89 0.88 0.61 0.98 0.82 0.88 0.90 0.88 23.80
50 0.81 0.89 0.89 0.90 0.89 0.63 0.97 0.85 0.89 0.90 0.89 61.28

Zoo 10 0.91 0.92 0.86 0.86 0.86 0.69 0.96 0.80 0.88 0.92 0.92 0.28
20 0.91 0.93 0.79 0.79 0.79 0.60 0.99 0.68 0.85 0.91 0.88 0.50
50 0.91 0.93 0.90 0.92 0.91 0.69 0.96 0.87 0.86 0.88 0.88 2.34

Seg 10 0.93 0.96 0.96 0.96 0.96 0.72 1.00 0.84 0.95 0.97 0.96 5.59
20 0.93 0.95 0.95 0.95 0.95 0.66 0.99 0.81 0.95 0.96 0.95 8.03
50 0.93 0.96 0.96 0.96 0.96 0.64 0.98 0.84 0.96 0.96 0.96 17.64

Table 2 Results summary. d-acc: discounted accuracy, s-acc: set accuracy, acc: standard accuracy
(with maximin)
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5 Conclusion

In this paper, we have proposed an efficient way to find MCS with imprecise prob-
ability masses, and have applied it to the combination of multiple classifiers. First
results indicate that using a disjunctive approach to combine conjunctively merged
MCS may quickly result in poorly informative models, hence it may be safer in
general to adopt other strategies (e.g., combining only a limited number of MCS or
using a weighted mean).

Note that the algorithms presented here can be applied to other imprecise proba-
bilistic models as well, as long as they are defined by probability bounds bearing on
the same events (or by expectation bounds bearing on the same function).

References

1. A. Benavoli and A. Antonucci. An aggregation framework based on coherent lower previsions:
Application to zadeh’s paradox and sensor networks. Int. J. Approx. Reasoning, 51(9):1014–
1028, 2010.

2. J. Bernard. An introduction to the imprecise dirichlet model for multinomial data. Interna-
tional Journal of Approximate Reasoning, 39(2-3):123–150, 2005.

3. R. Cooke. Experts in uncertainty. Oxford University Press, Oxford, UK, 1991.
4. L. de Campos, J. Huete, and S. Moral. Probability intervals: a tool for uncertain reasoning. I.

J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 2:167–196, 1994.
5. S. Destercke and D. Dubois. The role of generalised p-boxes in imprecise probability models,

pages 179–188. Number 1. 2009.
6. D. Dubois, H. Fargier, and H. Prade. Multi-source information fusion: a way to cope with

incoherences. In Cepadues, editor, Proc. of French Days on Fuzzy Logic and Applications
(LFA), pages 123–130, La rochelle, 2000. Cepadues.

7. D. Dubois and H. Prade. Decision-making Process: Concepts and Methods, chapter Formal
representations of uncertainty, pages 85–156. Wiley, 2009.

8. A. Karlsson, R. Johansson, and S. F. Andler. On the behavior of the robust bayesian combina-
tion operator and the significance of discounting. In ISIPTA’09: Proc. of the Sixth Int. Symp.
on Imprecise Probability: Theories and Applications, pages 259–268, 2009.

9. S. Moral and J. Sagrado. Aggregation of imprecise probabilities. In B. BouchonMeunier, ed-
itor, Aggregation and Fusion of Imperfect Information, pages 162–188. Physica-Verlag, Hei-
delberg, 1997.

10. R. Nau. The aggregation of imprecise probabilities. Journal of Statistical Planning end Infer-
ence, 105:265–282, 2002.

11. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision,
1:179–219, 1970.

12. M. Troffaes. Generalising the conjunction rule for aggregating conflicting expert opinions. I.
J. of Intelligent Systems, 21(3):361–380, March 2006.

13. M. Troffaes. Decision making under uncertainty using imprecise probabilities. Int. J. of
Approximate Reasoning, 45:17–29, 2007.

14. P. Walley. The elicitation and aggregation of beliefs. Technical report, University of Warwick,
1982.

15. P. Walley. Statistical reasoning with imprecise Probabilities. Chapman and Hall, New York,
1991.


