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Abstract. This paper proposes a simple strategy for combining binary
classifiers with imprecise probabilities as outputs. Our combination strat-
egy consists in computing a set of probability distributions by solving an
optimization problem whose constraints depend on the classifiers out-
puts. However, the classifiers may provide assessments that are jointly
incoherent, in which case the set of probability distributions satisfying
all the constraints is empty. We study different correction strategies for
restoring this consistency, by relaxing the constraints of the optimization
problem so that it becomes feasible. In particular, we propose and com-
pare a global strategy, where all constraints are relaxed to the same level,
to a local strategy, where some constraints may be relaxed more than
others. The local discounting strategy proves to give very good results
compared both to single classifier approaches and to classifier combina-
tion schemes using a global correction scheme.

1 Introduction

In complex multi-class classification problems, a popular approach consists in
decomposing the initial problem into several simpler problems, training classifiers
on each of these sub-problems, and then combining their results. The advantages
are twofold: the sub-problems obtained are generally easier to solve and thus may
be addressed with simpler classification algorithms, and their combination may
yield better results than using a single classification algorithm.

In this paper, we consider a classical decomposition strategy where each sim-
ple problem is binary; then, each classifier is trained to separate two subsets of
classes from each other. When the binary classifiers return conditional probabil-
ities estimating whether an instance belongs to a given class subset or not, these
conditional probabilities are seldom consistent, due to the fact that they are only
approximations of the (admittedly) true but unknown conditional probabilities.
Usually, this inconsistency problem is tackled by considering some optimization
problem whose solution is a consistent probability whose conditional probabili-
ties are close to each of the estimated ones [5,9]. This consistent probability is
then considered as the final predictive model.

Imprecise probabilities are concerned with the cases where the available in-
formation is not sufficient (or too conflicting) to identify a single probability,



and are therefore well adapted to the problem mentioned above. Due to their ro-
bustness, imprecise probabilistic models appear particularly interesting in those
cases where some classes are difficult to separate, where some classes are poorly
represented in the training set or when the data are very noisy. In a previous
work [4], we proposed an alternative solution to classifier combination using im-
precise probability theory [8]. In this framework, binary classifiers return lower
and upper bounds instead of a single evaluation. The case of precise outputs is
retrieved when lower and upper bounds coincide.

As even imprecise outputs can turn out to be inconsistent, we initially pro-
posed to apply a global discounting factor (found through a heuristic) to the
classifiers. In this paper, we reformulate the problem so that discounting fac-
tors can be found by the means of efficient linear programming techniques. This
also allows us to easily affect a discounting factor specifically to each classifier,
thus adopting a local correction approach. In Section 2, we remind the necessary
elements about imprecise probabilities and their use in binary classifiers combi-
nation. Section 3 then describes and discusses our discounting strategies, both
the global and local one. Finally, we compare in Section 4 the two strategies for
the special case of one-vs-one classifiers on several classical real data sets.

2 Imprecise probability: a short introduction

Let X = {x1,...,2p} be a finite space of M elements describing the possible
values of (ill-known) variables (here, X’ represents the set of classes of an in-
stance). In imprecise probability theory, the partial knowledge about the actual
value of a variable X is described by a convex set of probabilities P, often called
credal set [6].

2.1 Expectation and probability bounds

A classical way to describe this set consists in providing a set of linear constraints
restricting the set of possible probabilities in P (Walley’s lower previsions [8]
correspond to bounds of such constraints). Let £(X') denote the set of all real-
valued bounded functions over X, and let K C L(X). Provided K is not empty,
one can compute expectation and probability bounds on a function f € K.

When one starts from some lower bound E : K — R, it is possible to associate
to it a (convex) set P(E) of probabilities such that

P(E) = {p € Px|E(f) = E(f) for all f € K}, (1)

where Py denotes the set of all probability masses over X.
Alternatively, one can start from a given set P and compute the lower ex-
pectation E : L(X) — R and upper expectation E : £L(X) — R such that

E(f)=sup E(f) and E(f)= inf E(f),
peEP peP

These functions are dual, in the sense that E(f) = —E(—f).



In Walley’s terminology [8], E is said to avoid sure loss iff P(E) # 0, and to
be coherent iff for any f € K we have E(f) = inf,cpg) E(f), i.e. E is the lower
envelope of P(E).

Lower and upper probabilities of an event A C X correspond to expectation
bounds over the indicator function 1(4) (with 1(4) (z) = 1if z € A, and 0
otherwise). When no confusion is possible, we will denote them P(A) and P(A)
and they are computed as

P(A) = Iyelgv P(A) and P(A) = 153217)3 P(A).

2.2 Imprecise probabilities and binary classifiers

The basic task of classification is to predict the class or output value x of an
object knowing some of its characteristics or input values y € ), with ) the
input feature space. Usually, it is assumed that to a given input y correspond
a probability mass p(x|y) modeling the class distribution, knowing that the in-
stance y has been observed. Then, classifying the instance amounts to estimating
p(z|y) as accurately as possible from a limited set of labeled (training) samples.
A binary classifier on a set of classes X aims at predicting whether an instance
class belongs to a subset A C X or to a (disjoint) subset B C X (i.e., ANB = ().
For probabilistic classifiers, the prediction takes the form of an estimation of the
conditional probability P(A|AUB,y) that the instance belongs to A (notice that
P(B|AUB,y)=1— P(A|AU B, y) by duality).

In the case of imprecise classifiers, the prediction may be expressed as a set
of conditional probabilities, expressed for example as a pair of values bounding
P(A|AUB) L. Let us denote by a;, 3; the bounds provided by the j'" classifier:

aj < P(A;]4; U B;) < ; (2)
and, by complementation, we have
lfﬂng(Bj\AjUBj)glfaj. (3)

Combining binary classifiers then consists in defining a set P of probability
distributions over X compatible with the available set of conditional assessments.
To get a joint credal set from these constraints, we will turn them into linear
constraints over unconditional probabilities. Assuming that P(A; U B;) > 0, we
first transform Equations (2) and (3) into

P(A)) P(B;)
P(A; U]Bj) <Fy and 1-5; < P(4; U]Bj) =1

These two equations can be transformed into two linear constraints over uncon-
ditional probabilities:

a; < — Q5.

@y

P(B;) < P(4;) and P(A;) < fjﬂ

! From now on, we will drop the y in the conditional statements, as the combination
always concerns a unique instance which input features remain the same.

o P(B;),



or equivalently

Oﬁ(l—aj)Zpi—aijm (4)

T €A, ;€8
0<8 Y pi—(1-8) Y mi (5)
z;€B; T €A,

where p; := p(z;). Such constraints define the set of probability distributions
that are compatible with the classifier outputs. Then, the probability bounds
on this set may be retrieved by solving a linear optimization problem under
Constraints (4) and (5), for all classifiers. Note that the number of constraints
grows linearly with the number IV of classifiers, while the number of variables is
equal to the number M of classes. As the quantity of classifiers usually remains
limited (between M and M?), the linear optimization problem can be efficiently
solved using modern optimisation techniques.

Ezxample 1. Let us assume that N = 3 classifiers provided the following outputs:

P({z1}{z1,22}) € [0.1,1/3],
P({z1} {1, 23}) € [Y/6,0.4],
P({z2}{x2,23}) € [2/3,0.8].

These constraints on conditional probabilities may be transformed into the fol-
lowing constraints over (unconditional) probabilities p;, ps, and ps:

Yopa < p1 < Y2py, Ysps < p1 < 2/3ps, 2ps < pa < 4ps,

Note that the induced set of probability distributions is not empty, since p; =
0.1,p2 = 0.6 and p3 = 0.3 is a feasible solution. Getting the minimal/maximal
probabilities for each class then comes down to solve 6 optimization problems
(i.e., minimising and maximising each of the unconditional probabilities p;, under
the constraints mentioned above), which yields

p1 € [0.067,0.182] po € [0.545,0.735] ps € [0.176,0.31].
Here, we can safely classify the instance into xs. O

Note that, in some cases, the classifiers may provide outputs that are not
consistent. This is particularly the case when the classifiers are trained from
distinct (non-overlapping) training sets, or when some of them provide erroneous
information. Then, P = (). A solution may still be found provided by (some of)
the constraints be relaxed in order to restore the system consistency.

2.3 Vacuous mixture as discounting operator

In some situations, it may be desirable to revise the information provided by a
source of information, in particular when the source is known to be unreliable



to some extent. Then, the knowledge induced by the source may be weakened
according to this degree of unreliability. In most uncertainty theories, this so-
called discounting operation consists in combining the original information with
a piece of information representing ignorance through a convex combination.
In imprecise probability theory, the piece of information representing igno-
rance is the vacuous lower expectation E, ;, defined such that for any f € L(X),

inf»

Eug(f) = int f(x).
Given a state of knowledge represented by a lower expectation £ on K, the
e-discounted lower expectation £ for any f € K is

EX(f) = (1 = O E(f) + By (6)

with e € [0,1]. We may interpret £ as a compromise between the information E
(which is reliable with a probability 1 — €) and ignorance. Note that we retrieve
E when the source is fully reliable (e = 0), and ignorance when it cannot be
trusted (e = 1).

2.4 Decision rules

Imprecise probability theory offers many ways to make a decision about the
possible class of an object [7]. Roughly speaking, classical decision based on
maximal expected value can be extended in two ways: the decision rule may
result in choosing a single class or in a set of possible (optimal) classes. We will
consider the maximin rule, which is of the former type, and the maximality rule,
of the latter type.

First, let us remind that for any z; € X', the lower and upper probabili-
ties P({x;}), P({x;}) are given by the solutions of the constrained optimisation
problem

P({z;}) =minp; and P({z;}) = maxp;

under the Constraints (4)-(5), and the additional constraints ) ., p; = 1,
p; > 0. Then, the maximin decision rule amounts to classify the instance into
class Z such that
Z := arg min P({x;}).
g min P({r.)

Using this rule requires to solve M linear systems with 2N + M + 1 constraints
and to achieve M comparisons.

The maximality rule follows a pairwise comparison approach: a class is con-
sidered as possible if it is not dominated by another one. Under the maximality
rule, a class z; is said to dominate x;, written z; >ar x;, if E(fi—;) > 0 with
fisj(zs) =1, finj(z;) = —1 and f,;(x) = 0 for any other element z € X. The
set of optimal classes obtained by this rule is then

5(\ = {.131 S Xl /gl‘j s.t.x; =um l‘z}



This rule has been justified (and championed) by Walley [8]. Note that finding X
requires at most to solve M? — M linear programs (one for each pair of classes).
Using the maximality rule may seem computationally expensive; however, its
computation is easier in a binary framework, as shows the next property.

Proposition 1. 0.5 < P(z;|z; Uz;) = z; & X

Proof. If 0.5 < P(x;|z; Ux;), then p; > p; according to Equation (4). Assuming
constraints (4) and (5) are feasible, i.e. induce a non-empty set P, computing
E(fi—;) > 0 comes down to solve the following optimisation problem:

min p; — p; (7)

with P € P. Since any probability in P is such that p; > p;, the value of p; — p;
is guaranteed to be positive, hence x; is preferred to z; (z; > x;).

Note that Proposition 1 only holds if the associated constraint has not been
discounted.

3 Discounting strategies for inconsistent outputs

As remarked in Section 2.2, multiple classifiers may provide inconsistent outputs,
in which case the constraints induced define an empty credal set P. In this
section, we explore various discounting strategies to relax these constraints in
order to make the set of probability distributions non-empty.

3.1 e-discounting of binary classifiers

In this paper, we perform an e-discounting for each classifier, in order to relax
Constraints (4)-(5) as described by Equation (6). For the j* classifier, we obtain
from Constraints (4)-(5) that E; =0 and E5 =0 with

1—ozj lf.%‘EAj B 1_6] lfSCGA]
ij(x) =4 —«a; ifzeB; and fi(x)=4q —-B; ifzeB;.
0 else 0 else

This gives the following discounted equations:

€j(—aj) < (1 —a;)P(4;) — a; P(B;), (8)
e;(1—8;) = (1= B;j)P(4;) — B; P(B;). 9)

Remark that the two discounted equations are here linear in variables p; and
€;. The constraints become empty when €¢; = 1 and are then equivalent to state
P(A;|A; UBj) € [0,1]. This means that there always exists a set of coefficients
{€;};=1,...,n that makes the problem feasible.

The question is now how to compute the discounting rates ¢;, j = 1,..., N
such that the constraints induce a non-empty credal set P while minimizing



the discounting in some sense. We propose the following approach to find the
coefficients ¢;:

N
min g €;
Jj=1
under the constraints

Zpizl, 0<p;<lforalli=1,...,M, 0<¢ <1lforallj=1,...,N,
xr,€X

and Constraints (8)—(9). It is interesting to notice that this new approach is
similar to strategies proposed to find minimal sets of infeasible constraints in
linear programs [2].

3.2 Credal discounting vs e-discounting

In a previous paper [4], we proposed a discounting strategy that was applied
to directly to bounds «;,3; before transforming Equation (2). The obtained
discounted equation for the jth classifier is

(1 —ej)a; < P(A;[A;UB)) <e;+(1—€)B5, j=1,....N.

However, applying such a discounting (or other correction) operation results in
quadratic constraints once Equation (2) is "deconditioned" and transformed in
Constraints (8)—(9). Discounted constraints on P(B;|A; U B;) are obtained by
complementation. Remark further that for each constraint, all the coefficients of
the square terms p? and 6? are zero. This implies that the associated quadratic
form is indefinite. Therefore, computing the minimum-norm vector of coefficients
€1,...,€N by solving an optimisation problem is very difficult, and searching the
space of all solutions is very greedy. To overcome this problem, all the discounting
factors were assumed to be equal, and were computed empirically by searching
the parameter space (if e; = --- = ey, a dichotomic search can be performed).

In the present approach, we have N discounting rates to compute. However,
they may be determined by solving a linear optimization problem under linear
constraints, which may be addressed more efficiently than searching the space
of discounting coefficients.

3.3 Global vs local discounting

In this work, we advocate a local discounting approach, where each classifier is
associated with a specific rate ¢;. In order to illustrate why this approach seems
preferable to a global strategy, where all discounting rates are assumed to be
equal, we concentrate on the one-vs-one problem (i.e., each classifier was trained
to separate a single class from another). Let us now consider the following simple
example:



Ezample 2. Consider X = {1, x2, x3, 24} and the following results:
P(xi|z;, 2;) € [0.6,1]

for all pair 1 < i < j < 4, except for P(x1|x1,24) € [0,0.4]. Thus, all classifier
outputs are consistent with p; > ps > ps > p4, except P(x1|x1,24) from which
one would conclude py > p;. Now, if we were to discount all of them in the same
way, we would obtain as a minimal discounting €;; = 1/6 (and ) ¢€;; = 1, with
€;; the discounting value of P(x;|z;,z;)), with p1 = ps = p3 = ps = 1/4 being
the only feasible solution. Thus, in this case, all the information provided by the
classifiers is lost, and we are unable to choose between one of the four classes.
Now, assume that each classifier is discounted separately from the others;
then, taking €4 = 1/3 restores consistency (e.g., p1 = 0.5, po = 0.31, p3 = 0.2,
pg = 0.09 is a solution) while still preserving the ordering p; > pa > p3 > pa4.

4 Experiments

In this section, we present some experiments performed on classical and simu-
lated data sets. We considered both decision rules presented in Section 2.4 to
make decisions. Since the maximality rule provides a set of possible classes, we
need to define a way to evaluate the accuracy of the decision system in this case.
Section 4.1 addresses this topic.

4.1 Evaluating classifiers performances

Combined classifiers used with a maximin rule can be directly compared to
classical classifiers or to more classical combinations, as both return a single
class as output. In this case, accuracy is simply measured as a classical accuracy
that will be referred to acc in the following. However, one of the main assets
of imprecise probabilistic approaches is the (natural) ability to return sets of
classes when information is ambiguous or not precise enough to return a single
class. In this case, comparing the imprecise classification output with a classical
unique decision is not straightforward.

A first (naive) solution consists in considering the classification as fully accu-
rate whenever the actual class of an evaluated data point belongs to the predicted
set of possible classes X. It amounts to consider that the final decision is left to
the user, who always makes the good choice. The error rate thus computed is an
optimistic estimate of the accuracy of the classifier. This estimate will thereafter
be referred to as set accuracy, or s — acc.

Another solution is to use a discounted accuracy. Assume we have T obser-
vations for which the actual classes z;,i = 1,...,T are known, and for which T’
sets of possible classes X7, ..., X7 have been predicted. The discounted accuracy
d — acc of the classifier is then

T
1 A;
d—acc=— E =,
T i=1 g(|XZD




with A; = 1if z; € )A(i, zero otherwise and g an increasing function such that
g(1) = 1. Although g(z) = = is a usual choice for the discounted accuracy, it has
recently been shown [11] that this choice leads to consider imprecise classification
as being equivalent to make a random choice inside the set of optimal classes.
This comes down to consider that a Decision Maker is risk neutral, i.e., does not
consider that having imprecise classification in case of ambiguity is an advantage.
This also implies that the robustness of an imprecise classification is rewarded
by concave (or risk-averse) functions g.

In our case, we used the function g(-) = log,,(-) that satisfies g(1) = 1 and
takes account of the number of classes. Indeed, in the case of two classes, we
should have g(2) = 2, because predicting two-classes out of two is not infor-
mative. However, as M increases, predicting a small number of classes becomes
more and more interesting. This is why we pick log,,.

4.2 Datasets and experimental setup

Table 1. UCI data sets used in experiments

Data set #classes #input #samples
name M features
glass 6 9 214
satimage 6 36 6435
segment 7 19 2310
vowel 11 10 990
waveform 3 8 5000
yeast 10 8 1484
700 7 18 101
primary tumor 21 17 339
anneal 5 38 898

We used various UCI data sets that are briefly presented in Table 1. For each
of these datasets, we considered the classical one-vs-one decomposition scheme,
in which each classifier is trained to separate one class from another. We used
as base classifiers CART decision trees (so that comparisons between the precise
and the imprecise approaches can be done) and the imprecise Dirichlet model [1]
to derive lower and upper conditional probability bounds. This model depends
on a hyper-parameter s that settles how quickly the probability converges to
a precise value. More precisely, if a;,b; are the two classes for the jth binary
classifier, and if ny; ny, are the number of training data having respectively a;
and b; for classes in the leaf of the decision tree reached by the instance, then

the bounds are
N

I
n;+s

Na, + s

i
n;+s



where n; = ng4; + np;. Then, s can be interpreted as the number of “unseen”
observations, and a; = 3; if s = 0.

Table 2 summarises the results obtained for s = 4. We compared our method
to a single CART decision tree (DT) and to Naive Bayes classifiers (NB). We
also displayed the accuracy obtained with maximin rule as well as the set ac-
curacy and the discounted accuracy obtained with the maximality rule, both
for the global and local correction methods. We used a 10-fold cross validation.
The significance of the differences between the results was evaluated using a
Wilcoxon-signed rank test at level 95%. The best results (outside set accuracy)
are underlined and results that are not significantly different are printed in bold.
Note that we excluded s-acc since it is strongly biased in favor of imprecise
decisions.

Table 2. UCI data sets used in experiments

Data set NB DT local global
acc s-acc d-acc acc s-acc d-acc
glass 70.55 71.00 74.77 < 79.59 74.29 73.73 7855 73.79

satimage 84.34 80.06 87.27  90.43 88.16 86.37 89.15 87.78
segment 96.19 85.88 95.58 97.36 96.63 96.37 96.88  96.50
vowel 78.88 72.10 80.32 82.84 81.32 77.58 77.88 77.27
waveform 71.10 80.94 73.24 81.70 75.11 73.44 81.86 75.28
yeast 48.84 45.33 57.13 68.32 61.94 55.11 62.39 59.19
Z00 95.17 90.17 96.17 96.17  94.59 96.17 96.17  94.59

p. tumor 38.05 48.38 45.75 45.75  45.75 42.22 42.22 42.22
anneal 95.99 93.10 81.74 81.74 81.74 81.86 81.86  81.86

Two main remarks can be made. First, the one-versus-one decomposition
strategy provides good results for most data sets, as it gives better results on 6
data sets out of 9. Second, it is clear that the local discounting strategy gives
significantly better results than the global discounting strategy. The local strat-
egy dominates the global one on most data sets and gives results very close to
the global one otherwise (here, for the “waveform” and “anneal” datasets).

Let us remark that the parameter s, which is directly proportional to the
amount of imprecision, has remained the same for all data sets. However, the re-
sulting imprecision also depends on the data. This partly explains the differences
between the set accuracy and the discounted accuracy obtained on the datasets:
for instance, the resulting imprecision is moderate for “glass” and “yeast”, but
zero for “anneal” and “primary tumor”).

In order to provide an idea of the impact of increasing the overall degree
of imprecision, Figure 1 shows the evolution of the discounted accuracy as a
function of log,(s) (let us remind that since g(|X;|) = log,,; (| X:|), the classifier
reaches a score of 0.5 when it retains all the classes for all the instances). It shows
that moderately increasing the imprecision can give better results (the maximum



is reached for s = 8) and that the discounted accuracy starts to decrease once
the degree of imprecision becomes too large. Similar behaviors could be observed
for other data sets.

d-acc
75 1

50 1

1 2 3 4 5 6 log,(s)

Fig. 1. Evolution of d — acc for data set glass

5 Conclusions

We addressed the problem of pattern classification using binary classifier combi-
nation. We adopted imprecise probability theory as a framework for representing
the imprecise outputs of the classifiers. More particularly, we consider classifiers
that provide sets of conditional probability distributions. It encompasses both
cases of precise and imprecise probabilistic outputs (including possibilistic, evi-
dential [3] and credal classifiers [10]). The combination of such classifiers is done
by considering classifier outputs as constraints. We presented a local discounting
approach for relaxing some of these constraints when the classifiers provide in-
consistent outputs. Our strategy computes the discounting rates by solving linear
optimization problems, which can be efficiently solved by standard techniques.

Experiments demonstrate that our method give good results compared to
the single classifier approach. Moreover, it performs almost always better than
the global discounting approach that was presented in a former paper. In fu-
ture works, we wish to extend our experimentation (by using precise classifiers
and genuine imprecise classifiers) and to make a deeper analysis of their results
(e.g., checking in which cases inconsistencies happen, verifying that imprecise
classification correspond to instances that are hard to classify). We also wish to
investigate on the properties of our approach from the point of view of decision
making under uncertainty.
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