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COVARIANCE CONTROL PROBLEMS OVER MARTINGALES WITH FIXED

TERMINAL DISTRIBUTION ARISING FROM GAME THEORY.

FABIEN GENSBITTEL

Abstract. We study several aspects of covariance control problems over martingale processes in Rd with

constraints on the terminal distribution, arising from the theory of repeated games with incomplete information.

We show that these control problems are the limits of discrete-time stochastic optimization problems called
problems of maximal variation of martingales meaning that sequences of optimizers for the problems of length n,

seen as piecewise constant processes on the uniform partition of [0, 1], define relatively compact sequences having

all their limit points in the set of optimizers of the control problem. Optimal solutions of this limit problem
are then characterized using convex duality techniques and the dual problem is shown to be an unconstrained

stochastic control problem characterized by a second order nonlinear PDE of HJB type. We deduce from this

dual relationship that solutions of the control problem are the images by the spatial gradient of the solution
of the HJB equation of the solutions of the dual stochastic control problem using tools from optimal transport

theory.

1. Introduction

We study in this work several aspects of constrained covariance control problems of the form

(1) Wac(µ) , sup
X∈Mac(�µ)

E[

∫ 1

0

r(
d

ds
〈X〉s)ds],

where Mac(�µ) is the set of distributions of martingales (Xt)t∈[0,1] with continuous trajectories, having a
quadratic variation process (〈X〉t)t∈[0,1] which is absolutely continuous with respect to the Lebesgue’s measure,

and such that the law of X1 is dominated by µ in the sense of convex ordering1. Our aim is to characterize
the solutions of this problem and to relate them with the limits of the maximizers of discrete-time functionals
Ψn defined below arising from the study of repeated games with incomplete information. The functionals
Ψn have been introduced in De Meyer [9] in order to solve the problem of optimal revelation over time for
an informed agent in financial exchange games (see also Gensbittel [13] for the multi-dimensional extension).
The maximizers of these discrete-time optimization problems are equilibrium price processes in these games.
Our main convergence results (Theorems 1.3 and 1.4 below) identify the continuous-time limits of these price
processes as solutions of (1). Moreover, our motivation for studying both the continuous-time and the discrete-
time problems in the same work is motivated by the fact that the control problem cannot be directly interpreted
as a continuous-time game of the same type as the games introduced in [9]. Indeed, convergence involves a
Central Limit Theorem, and thus a loss of information on the data of the discrete-time problem. Let us
mention however that control problems similar to (1) but depending on the position of the martingale and
not on its infinitesimal covariance appear in the study of differential games with incomplete information (see
Cardaliaguet-Rainer [7]).

In a first part, the value function of the control problem (1) will be shown to be the limit of the discrete-time
optimization problems constructed with Ψn and called problems of maximal variation of martingales. These
problems generalize the problem of maximal L1-variation introduced in Mertens-Zamir [18] to more general
functions than the L1-norm. In a second part, we analyze the convex dual problem of (1) which is shown to be
an unconstrained stochastic control problem (actually a simple case of the G-expectation introduced by Peng
[20]) characterized by a nonlinear second-order HJB equation. We finally prove that the primal solutions of
(1) are the images by the gradient of the solution of the HJB equation of the dual solutions, using tools from
Optimal Transport theory.

The problem of maximal variation. Given some real-valued function V defined on the set of probabilities
over Rd, let us introduce a functional called the V -variation, defined over the setMn(µ) of Rd-valued martingales
of length n whose terminal distribution is dominated by µ in the sense of convex ordering1. The V -variation of
length n of the martingale (Lk)k=1,..,n is defined as

Ψn[V ]((Lk)k=1,..,n) , E[

n∑
k=1

V (JLk − Lk−1 | (Li, i ≤ k − 1)K)],

Key words and phrases. Stochastic Control, Repeated Games, HJB equations, Duality.

This paper is a revised version of the second chapter of the authors’s Ph.d. thesis [12].
1ν is dominated by µ (denoted ν � µ) if

∫
fdν ≤

∫
fdµ for all closed convex functions f (see Definition 5.6)
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2 FABIEN GENSBITTEL

where JLk − Lk−1 | (Li, i ≤ k − 1)K denotes the conditional law2 of Lk − Lk−1 given (Li, i ≤ k − 1) with the
convention L0 = E[L1]. The normalized value function of the above problem is denoted

Vn(µ) ,
1√
n

sup
(Lk)k=1,..,n∈Mn(µ)

Ψn[V ]((Lk)k=1,..,n).

The asymptotic behavior of such discrete-time functionals has been recently studied in De Meyer [9] for
the case d = 1. The main result in [9] is two-fold. At first, a characterization of the limit V∞ = limn Vn
as a maximal covariance function is given but without the corresponding continuous-time control formulation
introduced in the present work. Then, it is shown that any sequence of asymptotically optimal martingales
for Vn, considered as piecewise constant continuous-time processes, converges in law to a specific continuous-
time martingale called Continuous Martingale of Maximal Variation (CMMV) when n goes to ∞. The most
surprising aspect of this result is that the law of the limit process CMMV does not depend on V , and neither
does V∞ up to a multiplicative constant. We will show that in the general case, discrete-time maximizers still
converge to the set of solutions of (1), which is not necessarily reduced to a point and characterized by a dual
HJB equation. The invariance property in higher dimension is expressed through the integral cost r of the
limiting control problem which is the upper envelope of V with respect to equivalence classes of laws having
the same covariance matrices.

Assumptions on V . We introduce five assumptions denoted A1-A5 on the function V . A1-A4 are the natural
generalizations of the assumptions given in [9], while A5 is specific to the multi-dimensional case. Let ∆2 denote
the set of probabilities with finite second-order moments over Rd and ∆2

0 the subset of centered probabilities.
Let L2 denote a space of Rd-valued square-integrable random variables defined on some atomless probability
space. We assume that the function V : ∆2

0 → R has the following properties:

(A1) V ≥ 0 and has no degenerate directions: ∀x ∈ Rd,∃µ ∈ ∆2
0 such that µ(Rx) = 1 and V (µ) > 0.

(A2) V is γ-Lipschitz for the Wasserstein distance3 of order p for some p ∈ [1, 2).
(A3) V is positively 1-homogenous: for all centered random variable X ∈ L2 and λ > 0,

V (JλXK) = λV (JXK), where JXK denotes the law of X.

(A4) V is concave on ∆2
0 (seen as a convex subset of the space of Radon measures on Rd).

The last assumption requires the introduction of the auxiliary functions r and R. The function r is an upper
envelope that depends only on the covariance matrices of the probabilities in ∆2

0 (denoted cov(µ)). Precisely, r
and R are defined by

(2) ∀P ∈ Sd+, r(P ) , sup
ν∈∆2

0:cov(ν)=P

V (ν) ; ∀µ ∈ ∆2
0, R(µ) , r(cov(µ)),

where Sd+ denotes the set of non-negative symmetric matrices of size d. Note also that R defines naturally a
function on L2 by Y → R(JY K) = r(cov(Y )). Our last assumption is

(A5) R is quasiconvex on L2 i.e. ∀α ∈ R, {Y ∈ L2 | R(JY K) ≤ α} is convex in L2.

Remark 1.1. Note that the function R is concave on ∆2
0 and convex on L2 (from A1,A3 and A5), hence

for different linear structures. If d = 1, it is easy to check that A5 is always true and that r =
√
. up to a

multiplicative constant (see Proposition 4.3).

A simple example fulfilling A1-A5 is given by the Lp-norm µ → ‖µ‖p , (
∫
|x|pdµ(x))

1
p for some p ∈ [1, 2). A

larger class of functions is obtained by considering the upper envelopes of maximal covariance functions (see
section 5.1)

(3) µ→ sup
ν∈I

C(µ, ν),

where I ⊂ ∆2
0 is convex, has uniformly bounded moments of order q for some q > 2, and contains some ν such

that cov(ν) in non-degenerate. The function C is defined by

(4) C(µ, ν) , sup
JXK=µ , JY K=ν

E[〈X,Y 〉],

where 〈., .〉 denotes the scalar product in Rd, and the maximum is over all the joint distributions of pairs (X,Y )
fulfilling the marginal constraints JXK = µ and JY K = ν.

2Recall that JLk − Lk−1 | (Li, i ≤ k − 1)K defines a σ(Li, i ≤ k − 1)-measurable random variable with values in the set of

probabilities over Rd (see e.g. Proposition 7.26 in [3]).
3We will assume without loss of generality in the proofs that 1 < p < 2.
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Main results. In order to state the first result, we need the following definition.

Definition 1.2. Given the function r defined above, the subsets F , G and Γ of Sd+ are defined by

F , {P ∈ Sd+ : r(P ) ≤ 1}, G , {P ∈ Sd+ : sup
M∈Md :MMT∈F

Tr(
√
PM) ≤ 1} and Γ , co(G),

where co(.) denotes the convex hull, Md the set of d× d matrices and
√
P the non-negative square root of P .

G is actually the“polar” set of F induced by the linear structure of L2 (see Lemma 2.3). Our first main
Theorem shows that limn Vn depends only on V through Γ, hence through the auxiliary function r.

Theorem 1.3. Under assumptions A1-A5, the limit V∞ of the sequence Vn exists and is given by

∀µ ∈ ∆2, lim
n→∞

Vn(µ) = V∞(µ) , max
J(Zt)t∈[0,1]K∈QΓ , JLK=µ

E[〈L,Z1〉]

where QΓ is the compact convex set of laws of martingales (Zt)t∈[0,1] with continuous trajectories whose quadratic
covariation process 〈Z〉 is such that with probability 1

(5) Z0 = 0 and ∀ 0 ≤ s < t ≤ 1, (t− s)−1(〈Z〉t − 〈Z〉s) ∈ Γ.

The proof of this Theorem has two distinct parts. The first one shows that the function V∞ is an upper
bound for limsupnVn, and relies on Limit Theorems for martingales (see Proposition 3.4). The second part
shows that V∞ is a lower bound for liminfnVn. This lower bound property relies on the reformulation of the
problem V∞ as the covariance control problem (1) (Lemma 3.6), which allows us to prove in Proposition 3.5
that for an ε-optimal X ∈Mac(�µ), there exists a sequence of discretizations Xn = (Xn

k )k=1,..,n of X that are
asymptotically ε-optimal for Vn (i.e. such that liminfn Ψn[V ](Xn) ≥ Wac(X) − ε). We emphasize that our
approximation procedure is not only the usual time-discretization, since we have to introduce a second level of
discretization based on the Central Limit Theorem for the Wasserstein distance.

The second part of this work is devoted to characterize the maximizers of (1) and to relate them to the limits
of optimizers of Ψn[V ]. Precisely, given a discrete-time process (L1, .., Ln), the continuous-time version of this
process is defined by

Xn
t , Lbntc for t ∈ [0, 1],

where bac denotes the greatest integer less or equal to a. We aim to characterize the limits in law of the
continuous-time versions of asymptotically optimal sequences in Mn(µ) for the problem Vn(µ). At first, we
introduce the following reformulation of V∞

V∞(µ) = W (µ) , max
X∈M(�µ)

H(X),

whereM(�µ) is the set of distributions of martingales (Xt)t∈[0,1] with càdlàg trajectories whose final distribution
is dominated by µ. The functional H is defined in section 4.1 and extends the integral functional given in (1)
to the setM(�µ). This second formulation is introduced in order to obtain compactness, and to show that the
set of maximizers of W contains the set of accumulation points of the maximizers of the discrete-time problems.

Theorem 1.4. Let (Ln) be an asymptotically maximizing sequence of Vn(µ) in Mn(µ). Then the continuous-
time versions of these martingales define a weakly relatively compact sequence of laws for the Meyer-Zheng
topology (see [19]) and any limit point belongs to

P∞(µ) , argmax
X∈M(�µ)

H(X).

We deduce directly from this result the former results obtained in [9] for the particular case d = 1 (see
Proposition 4.3). In order to study the general case, we introduce the convex dual problem of V∞ defined on
the set of proper closed convex functions Conv(Rd) by

V ∗∞(φ) , sup
J(Zt)t∈[0,1]K∈QΓ

E[φ∗(Z1)],

where φ∗ denotes the Fenchel transform of φ. A dual equality is proved in Proposition 4.4 using results
appearing in the theory of Optimal Transport. This dual problem is then shown to be a PDE problem of
HJB type appearing in Stochastic Control theory (Proposition 4.6). This dual formulation is used to derive a
characterization of the elements of P∞. Let us mention here the following result which is a Corollary of the
main Verification Theorem 4.13.

Theorem 1.5. Let u(t, x) be the unique viscosity solution of the following HJB equation

(6)

{
− ∂
∂tu−

1
2 sup
P∈Γ

Tr(P∇2u) = 0 in [0, 1)× Rd

u(1, x) = f(x) in Rd
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where f is a C1 Lipschitz-convex function on Rd. Assume that u is a classical C1,2 solution. Let Z be a
martingale whose law P is in QΓ and such that

(7) d
dt 〈Z〉t ∈ argmax

P∈Γ
Tr(P∇2u(t, Zt)) dt⊗ dP almost surely.

Then, if µ , J∇f(Z1)K, the set P∞(µ) is exactly the set of laws of the martingales

(Xt)t∈[0,1] = (∇u(t, Z̃t))t∈[0,1],

where the law of Z̃ runs through all the laws in QΓ verifying (7) and J∇f(Z̃1)K = µ.

The paper is organized as follows. Section 2 presents the main properties of the maximal variation problem.
Section 3 is devoted to the proof of Theorem 1.3 and section 4 to the characterization of the solutions of the
control problem. The last section is an appendix collecting some classical results reproduced for convenience of
the reader and/or because precise references are difficult to find, it also contains some technical proofs which
can be omitted at a first reading.

Glossary of notations. In order to lighten several proofs and statements that will appear throughout this
work, some non-standard notations will be used, essentially in Probability Theory. A glossary of the most
frequent ones is provided below for the convenience of the reader. Notations which are related to Stochastic
Processes Theory will be given at the beginning of section 3

• ∆(E) denotes the set of probabilities defined on the borel σ-field of a topological space E, endowed
with the usual weak* topology. ∆2(Rd) (∆2 for short) is the subset of probabilities with finite second
order moments. ∆2

0 denotes the subset of laws with zero mean.
• Let E,E′ be two separable metric spaces and A,A′ two subsets of ∆(E) and ∆(E′). P(A,A′) denotes

the set of probabilities over E ×E′ whose marginal distributions over E and E′ belongs respectively to
A and A′.If A = {µ}, we simply write P(µ,A′).

• Let E be a Polish space and X be an E-valued random variable defined on (Ω,F ,P).
– JXK denotes the law of X.
– Given a sub-σ-field G, JX | GK denotes a version of the conditional law of X given G, hence a G

measurable random variable with values in ∆(E).
• dWq denotes the Wasserstein distance of order q (see section 5).

2. Properties of the discrete-time problem.

In this section, we study the auxiliary functions R and r. Next, using their properties, we provide an upper
bound for the V -variation which will be a key argument for the main convergence result in section 3.

2.1. Properties of the auxiliary functions R and r. The next Lemma is based on [8].

Lemma 2.1. For all P,Q ∈ Sd+ and µ ∈ ∆2 such that cov(µ) = P , we have

sup
ν∈∆2

0:cov(ν)≤Q
C(µ, ν) = sup

ν∈∆2
0:cov(ν)=Q

C(µ, ν) = Tr
(

(
√
PQ
√
P )

1
2

)
= sup
D∈Md :DDT=Q

Tr(NTD)

where the last equality holds for any N such that NNT = P (in particular for N =
√
P ).

Proof. If X ∼ µ and Y ∼ ν are given random variables such that Q− cov(ν) ≥ 0, we can construct a variable Z
independent of (X,Y ) such that E[Z] = 0 and cov(Z) = Q− cov(ν). It follows that E[〈X,Y + Z〉] = E[〈X,Y 〉]
and cov(Y + Z) = Q, which proves the first equality. The second equality follows from Theorem 2.1 in [8],
where a characterization is given which implies moreover that the supremum is reached. For the third equality,
given a variable X of law µ, define U = N−1(X−E[X]), where (.)−1 denotes the Moore-Penrose pseudo-inverse.
Since cov(U) ≤ Id, we can construct a random variable V with values in Ker(N), independent of X and such
that cov(U +V ) = Id. It follows that X = N(U +V ) and with Y = D(U +V ), we have E[〈X,Y 〉] = Tr(DNT ).

This implies the result since the supremum is reached with D = MN for M =
√
P
−1

(
√
PQ
√
P )1/2

√
P
−1

. �

In the following, L2 denotes the space L2([0, 1], dx;Rd) and L2
0 its subspace of centered random variables.

Definition 2.2. The polar set C◦ of C ⊂ L2
0 is defined by C◦ , {X ∈ L2

0 : sup
Y ∈C

E[〈X,Y 〉] ≤ 1}.

The following Lemma lists the main properties of r.

Lemma 2.3. The function r is non-negative, concave, non-decreasing, continuous on Sd+ and

r(P ) = max
µ∈∆2

0 : cov(µ)≤P
V (µ),(8)

∀λ > 0, r(λP ) =
√
λr(P ),(9)

∀M ∈Md, r(MMT ) = max
N∈Md :NNT∈G

Tr(MN).(10)



COVARIANCE CONTROL PROBLEMS ARISING FROM GAME THEORY. 5

Moreover, G is a compact neighborhood of 0 in Sd+ and M → r(MMT ) is Lipschitz.

Proof. Note at first that the dWp
-closure of {ν ∈ ∆2

0 : cov(ν) = P} is {ν ∈ ∆2
0 : cov(ν) ≤ P} (see Lemma 5.13),

so that (8) follows from A2. Since cov is linear and V is 1-homogenous, non-negative and concave, the non-
negativeness, concavity and (9) are obvious. Note that the subset {µ ∈ ∆2

0 : cov(µ) ≤ P} is dWp -compact since
moments of order 2 > p are uniformly bounded. The continuity of r follows therefore from Berge’s Maximum
Theorem (see [2] p116) since the set-valued mapping P → {µ ∈ ∆2

0 : cov(µ) ≤ P} is both upper and lower
semi-continuous when ∆2

0 is endowed with the metric dWp
. Using then that r is continuous, (9) and A1, F is a

compact neighborhood of 0 in Sd+. R being sublinear in L2
0, it is the support function of the polar set of

F̂ , {X ∈ L2
0 | cov(X) ∈ F} = {X ∈ L2

0 |R(JXK) ≤ 1}.

Let us prove that F̂ ◦ = Ĝ , {X ∈ L2
0 : cov(X) ∈ G}. Since r is nondecreasing,

F̂ = ∪Q∈F {Y ∈ L2
0 : cov(Y ) ≤ Q}.

Next, we claim that if X ∈ L2
0 is µ-distributed, then

(11) sup
Y ∈L2

0 : cov(Y )≤Q
E[〈X,Y 〉] = sup

ν∈∆2
0:cov(ν)≤Q

C(µ, ν).

The left-hand side is obviously lower or equal than the right-hand side. To prove the converse, given X ∈ L2

and π ∈ P(µ, ν) such that cov(ν) ≤ Q, we can construct a pair (X,Y ) of law π on an enlarged probability

space, and replace Y by φ(X) , E[Y | X] ∈ L2
0. We check easily that E[〈X,Y 〉] = E[〈X,φ(X)〉] and that

cov(φ(X)) ≤ cov(Y ) ≤ Q. It follows from Lemma 2.1 that with cov(X) = P

sup
Y ∈F̂

E[〈X,Y 〉] = sup
Q∈F

sup
Y ∈L2

0 : cov(Y )≤Q
E[〈X,Y 〉] = sup

Q∈F
sup

M :MMT=Q

Tr(M
√
P ),

which proves that F̂ ◦ = Ĝ. R is therefore the support function of Ĝ and (10) follows from the definition of G.
Using lemma 2.1, we have

G = {P ∈ Sd+ | sup
Q∈F

Tr
(

(
√
PQ
√
P )

1
2

)
≤ 1}.

This equality implies thatG is itself a compact neighborhood of 0. Indeed, F being compact the above supremum
defines a continuous function. This function is positive for P 6= 0 since Q = λP ∈ F for sufficiently small λ > 0
and this proves that G is a neighborhood of 0. Compactness of G follows then from (9) and directly implies the
announced Lipschitz property for M → r(MMT ). �

Our main result in this section is the following upper bound for V , which is a modification of R that takes
into account the Lipschitz assumption A2.

Proposition 2.4.
∀µ ∈ ∆2

0, V (µ) ≤ R′(µ) , sup
ν∈T

C(µ, ν),

where T , {ν ∈ ∆2
0 : cov(ν) ∈ Γ , ‖ν‖p′ ≤ 2γ} and p′ is the conjugate exponent of p.

Proof. For q ≥ 1 and m ≥ 0, define Bqm , {µ ∈ ∆2
0 : ‖µ‖q ≤ m} and B̃qm , {X ∈ L2

0 : JXK ∈ Bqm}. Recall

also the definitions of F̂ , Ĝ given in the proof of the previous Lemma. We claim that

(12) co(F̂ ∪ B̃p1/γ) is a closed convex set and is included in {X ∈ L2
0 | V (JXK) ≤ 1}.

Using A5 and Lemma 2.3, F̂ is weakly compact and convex. Since B̃p1/γ is weakly closed and convex, the convex

envelope is weakly closed, hence closed in L2
0 for the norm topology. Let X ∈ F̂ , Y ∈ B̃p1/γ and λ ∈ [0, 1]. Using

the Lipschitz property of V , we deduce

V (JλX + (1− λ)Y K) ≤ V (JλXK) + γ ‖(1− λ)Y ‖Lp ≤ λr(cov(X)) + (1− λ) ≤ 1,

which proves (12). Define Γ̂ , {X ∈ L2
0 : cov(X) ∈ Γ}. From the definition of T ,

(13) ∀X ∈ L2
0, R

′(JXK) = sup{E[〈X,Y 〉] | Y ∈ Γ̂ ∩ B̃p
′

2γ}.
The proof of (13) proceeds as for (11) since T is stable by conditional expectations. Note that by definition

F̂ ◦ = Ĝ ⊂ Γ̂ and that (B̃p1/γ)◦ ⊂ B̃p
′

2γ , which follows from the classical Lp/Lp
′

duality (the coefficient 2 appears

since the case of equality in Hölder’s inequality is not necessarily attained for centered random variables). We

deduce that (F̂ ∪ B̃p1/γ)◦ ⊂ (Γ̂ ∩ B̃p
′

2γ) and using properties of support functions, the inclusion

(Γ̂ ∩ B̃p
′

2γ)◦ = {X ∈ L2
0 | R′(X) ≤ 1} ⊂ co(F̂ ∪ B̃p1/γ) = (F̂ ∪ B̃p1/γ)◦◦.

Finally, we deduce from the preceding inclusions that

(14) {X ∈ L2
0 | R′(JXK) ≤ 1} ⊂ {X ∈ L2

0 | V (JXK) ≤ 1}
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which concludes the proof since these functions are positively homogenous (A3). �

2.2. Properties of the V -variation. We provide here an upper bound based on the inequality proved in
Proposition 2.4. At first, as it will be convenient to consider martingales defined with respect to a larger
filtration than the filtration generated by the process itself, let us now introduce an equivalent formulation of
the V -variation.

Definition 2.5. Mn(µ) is the collection of martingales (Lk,Fk)k=1,..,n defined of some filtered probability space
(Ω,A, (Fk)k=1,..,n,P), of length n and whose final distribution is dominated by µ (JLnK � µ). By convention,

we set F0 , {Ω, ∅}.

With a slight abuse of notations, we extend the definition of the V -variation to martingales in Mn(µ) by

(15) Ψn[V ]((Lk,Fk)k=1,..,n) = E[

n∑
k=1

V (JLk − Lk−1 | Fk−1K)].

Lemma 2.6.

(16) Vn(µ) =
1√
n

sup
((Lk,Fk)k=1,..,n)∈Mn(µ)

Ψn[V ]((Lk,Fk)k=1,..,n).

Proof. Given a distribution J(L1, .., Ln)K ∈ Mn(µ), then the two notions of V -variation agree if we define
(FLk )k=1,..,n as the natural filtration of (L1, .., Ln), i.e.

Ψn[V ]((Lk)k=1,..,n) = Ψn[V ]((Lk,FLk )k=1,..,n), with FLk = σ(L1, .., Lk) for k = 1, .., n and F0 = {(Rd)n, ∅}.
This proves that Vn is not greater than the right-hand side of (16). To prove the reverse inequality, let
((Lk,Fk)k=1,..,n) ∈Mn(µ). Since V is concave and dWp

-Lipschitz, it follows from Jensen’s inequality (Lemma
5.10 in the appendix) that for all k = 1, .., n

V (JLk − Lk−1 | Fk−1K) ≤ V (JLk − Lk−1 | FLk−1K).

The proof follows then by summation over k. �

Notation 2.7. In order to shorten notations, the function V is extended to ∆2 by the relation

(17) ∀X ∈ L2, V (JXK) , V (JX − E[X]K).

The same convention will be used in the next sections with the functions R and R′. Using the above convention,
it follows from the martingale property that

Ψn[V ]((Lk,Fk)k=1,..,n) = E[

n∑
k=1

V (JLk | Fk−1K)].

This relation also holds for the R′-variation, which will be denoted Ψn[R′].

Using the preceding results, we obtain the following upper bound for Vn.

Lemma 2.8. √
nVn(µ) ≤ sup

(Lk,Fk)k=1,..,n∈Mn(µ)

Ψn[R′]((Lk,Fk)k=1,..,n).

Proof. Since we proved in Proposition 2.4 that V ≤ R′, we have

Ψn[V ]((Lk,Fk)k=1,..,n) ≤ Ψn[R′]((Lk,Fk)k=1,..,n),

for any martingale. The conclusion follows by taking the supremum over Mn(µ). �

Let us now reformulate this upper bound in a more tractable way.

Definition 2.9. Define Tn as the set of distributions ν ∈ ∆((Rd)n) of sequences (S1, ..Sn) such that

∀k = 1, .., n, JSk | S1, ..., Sk−1K ∈ T, ν − a.s.

Lemma 2.10.

sup
(Lk,Fk)k=1,..,n∈Mn(µ)

Ψn[R′]((Lk,Fk)k=1,..,n) = max
J(Sk)k=1,..,nK∈Tn,JLK�µ

E[〈L,
∑n
k=1Sk〉].

Proof. At first, note that Tn is convex and weakly compact since ν ∈ Tn is equivalent to

Eν [f(S1, .., Sk−1)Sk] = 0, Eν [f(S1, .., Sk−1)|Sk|p
′
] ≤ (2γ)p

′
Eν [f(S1, .., Sk−1)],

∀P ∈ Sd+, Eν [f(S1, .., Sk−1)Tr(PSkS
T
k )] ≤ Eν [f(S1, .., Sk−1)]sup{Tr(PQ) : Q ∈ Γ},

for all k = 1, .., n, where f runs through all nonnegative continuous functions bounded by 1. Indeed, using
monotone or dominated convergence, these equalities extend to indicator functions, and the equivalence follows
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easily. Since all these constraints are affine and continuous, it defines a closed convex set, and relative com-
pactness follows from the uniform bound on the moments of order 2. Existence of a maximum follows therefore
from the Lemmas 5.1 and 5.3. For any law of martingale J(Lk)k=1,..,nK ∈ Mn(µ), denoting (FLk )k=1,..,n the
natural filtration of (Lk)k=1,..,n, we will prove

(18) Ψn[R′]((Lk,FLk )k=1,..,n) ≤ max
S∈Tn,JLK�µ

E[〈L,
∑n
k=1 Sk〉].

Recall that for κ ∈ ∆2, with R′ extended on ∆2 by the relation (17)

R′(κ) = sup
ν∈T

C(κ, ν) = max
π∈P(κ,T )

∫
〈x, y〉dπ(x, y).

The set-valued map κ→ P(κ, T ) is compact valued and upper semi-continuous, and the map π →
∫
〈x, y〉dπ(x, y)

is continuous on P(Br, T ) for any r ≥ 0 where Br , {κ ∈ ∆2 : ‖κ‖2 ≤ r}. Therefore, using a Measurable
Selection Theorem (see Proposition 7.33 in [3]), the set-valued map κ→ argmax{

∫
〈x, y〉dπ(x, y) | π ∈ P(κ, T )}

admits a measurable selection f(κ) on Br for any r > 0 and thus on ∆2. Since the martingale has finite second
order moments, the conditional second order moments are almost surely finite and there exists a family of
versions of the conditional laws JLk | L1, .., Lk−1K with values in ∆2. Up to enlarging the probability space,
we assume the existence of a sequence (Ui)i=1,..,n of independent uniform random variables independent of
(L1, .., Ln). Then we can construct4 a sequence of random variables (S1, .., Sn) as a measurable function of
(Lk, Uk)k=1,..,n such that the conditional laws are optimal, i.e.

∀k = 1, .., n, J(Lk, Sk) | L1, .., Lk−1K = f(JLk | L1, .., Lk−1K) a.s.

By construction, and using the martingale property

E[〈Ln, Sk〉 | L1, .., Lk−1] = E[〈Lk, Sk〉 | L1, .., Lk−1] = R′(JLk | L1, .., Lk−1K).

We deduce by summation that Ψn[R′]((Lk,FLk )k=1,..,n) = E[〈Ln,
∑n
k=1 Sk〉] and inequality 18 follows. The

converse inequality is straightforward. Given a pair (L, (Sk)k=1,..,n), define a martingale by projecting (using
conditional expectations) L on the natural filtration of (Sk)k=1,..,n and the proof follows from the definition of
R′. �

3. Convergence to the control problem.

This section is devoted to the proof of Theorem 1.3, which is divided in the two Propositions 3.4 and 3.5.

3.1. Convergence of the upper bound. We study here the asymptotic behavior of the upper bound in-
troduced in the preceding section, starting from the formulation obtained in Lemma 2.10. The main result is
Proposition 3.4 below and is based on classical Limit Theorems for martingales. For this reason, let us recall
some standard notations from the theory of stochastic processes.

Notation 3.1.

• D([0, 1],Rd) : set of càdlàg functions endowed with the Skorokhod topology.
• C([0, 1],Rd) : set of continuous functions identified with a subset of D([0, 1],Rd).
• M (resp. Mc) denotes the subset of ∆(D([0, 1],Rd)) (resp. ∆(C([0, 1],Rd))) of martingale distributions.
• For a martingale (Zt)t∈[0,1] we denote (FZt )t∈[0,1] the right-continuous filtration it generates defined by

FZt , ∩s>tσ(Zu, u ≤ s) and by 〈Z〉 its predictable quadratic covariation process.

Notation 3.2.

• QΓ is the subset of probabilities P in Mc such that, with P-probability 1,

(19) Z0 = 0 and ∀ 0 ≤ s < t ≤ 1, (t− s)−1(〈Z〉t − 〈Z〉s) ∈ Γ,

where Z denotes the canonical coordinate process on C([0, 1],Rd).

• QΓ(t) denotes the set of laws of variables Zt when the law of the process Z runs through QΓ.
• πt(QΓ) denotes the set of laws of processes (Zs)s≤t when the law of the process Z runs through QΓ.

In the sequel, Md and Sd+ are endowed with the Euclidean norm |M | = Tr(MMT )1/2.

Lemma 3.3. QΓ is closed, convex and tight (hence compact) and is a face of the convex set Mc.

Proof. Fix P ∈ QΓ, then
∑d
i=1(〈Zi〉t − 〈Zi〉s) ≤

√
dCΓ(t − s), with CΓ = sup{|M | | M ∈ Γ}. Hence using the

Propositions VI.3.35 and VI.4.13 in [15], QΓ is tight and using Proposition VI.6.29 in [15], for any sequence
Pn ∈ QΓ converging to some limit P, we have that the sequence of distributions of (Zn, 〈Zn〉) under Pn converges
to the law of (Z, 〈Z〉) under P in ∆(C([0, 1],Rd×Sd+)). As a consequence, the sequence of laws of 〈Zn〉 converges
to the law of 〈Z〉 so that P fulfills property (19) and thus belongs to QΓ (since the set of continuous functions

4see Theorem 5.8 and the following discussion in the appendix.
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verifying (19) is closed). To prove convexity, if P = λP1 + (1 − λ)P2 with P1,P2 ∈ QΓ and λ ∈ (0, 1), then for
i = 1, 2, it follows from the characterization of the quadratic covariation that

(20) ∀ε > 0, Pi(dΓ(
1

t− s
Tns,t(Z)) ≥ ε) −→

n→∞
0,

where Tns,t(Z) =
∑∞
k=0(Z(s+ k+1

n )∧t−Z(s+ k
n )∧t)(Z(s+ k+1

n )∧t−Z(s+ k
n )∧t)

T and dΓ(x) is the usual distance between

x and and the compact set Γ. Therefore the same property holds for P and this implies (19) (the property
holds with probability 1 for s, t rational, and therefore for all s, t by continuity), which in turn implies P ∈ QΓ.
Finally, if P = λP1 + (1− λ)P2 with P1,P2 ∈ Mc, λ ∈ (0, 1) and P ∈ QΓ then property (20) holds for P. This
property holds then also for P1 and P2, and this implies P1,P2 ∈ QΓ. �

The following result is the upper bound part of Theorem 1.3.

Proposition 3.4.

limsup
n→∞

Vn(µ) ≤ sup
J(Zt)t∈[0,1]K∈QΓ,JLK�µ

E[〈L,Z1〉]

Proof. Using Lemma 2.10, we have to prove that

limsup
n→∞

sup
J(Sk)k=1,..,nK∈Tn,JLK�µ

E[〈L, 1√
n

n∑
k=1

Sk〉] ≤ sup
J(Zt)t∈[0,1]K∈QΓ,JLK�µ

E[〈L,Z1〉].

Let (Ln, (Snk )k=1,..,n) be a maximizing sequence. Let us define Pn as the set of distributions of the continuous-

time processes Znt = n−
1
2

∑bntc
k=1 S

n
k . The sequence Pn is tight since Znt are martingales with respect to the

right-continuous filtration Fnt = σ(Snk , k ≤ bntc) and their predictable quadratic covariation is C-tight. To

prove the last point, note that 〈Zn〉t is piecewise constant on the intervals [ kn ,
k+1
n ) and that

(21) n(〈Zn〉 k+1
n
− 〈Zn〉 k

n
) = E[Snk+1(Snk+1)T | Sn1 , ..Snk ] ∈ Γ.

Since Γ is bounded by the constant CΓ, the trace of this matrix-valued process is strongly majorized by the

process t →
√
dCΓbntc
n so that the associated sequence of laws is C-tight (see Proposition VI.3.35 in [15]). To

prove that the sequence Pn is itself C-tight, it’s sufficient according to Lemma VI.3.26 in [15] to prove that

∀ε > 0, Pn( sup
t∈[0,1]

| ∆Znt |> ε) −→
n→∞

0,

where ∆Znt = Znt − Znt− is the jump of Zn at time t. We have:

Pn( sup
t∈[0,1]

| ∆Znt |> ε) ≤
n−1∑
k=0

Pn(| Snk+1 − Snk |> ε
√
n) ≤

n−1∑
k=0

EPn [| Snk+1 − Snk |p
′
]

(ε
√
n)p′

≤ n (2γ)p
′

(ε
√
n)p′

−→
n→∞

0.

Suppose now that some subsequence still denoted Pn converges to P. Then the sequence of laws Qn ∈
D([0, 1],Rd × Sd+) of (Zn, 〈Zn〉) is also C-tight (corollary VI.3.33 in [15]) and converges to some law Q (up
to the extraction of some subsequence) of a process (Z,A) such that Z has law P. Now the sequences of pro-
cesses Zn and Zn(Zn)T − 〈Zn〉 are martingales with respect to Fn and uniformly integrable since respectively

bounded in L2 and Lp
′/2. Applying Proposition IX.1.12 in [15] to each coordinate of these processes, we con-

clude that Z and ZZT − A are martingales relative to the filtration F generated by (Z,A). The process A is
F-predictable since it is F-adapted and has continuous trajectories. Therefore, P(∀t ∈ [0, 1], 〈Z〉t = At) = 1
and this implies that for all 0 ≤ s < t ≤ 1 and ε > 0,

(22) P(dΓ(
1

t− s
(〈Z〉t − 〈Z〉s)) > ε) ≤ lim inf

n
Pn(dΓ(

1

t− s
(〈Zn〉t − 〈Zn〉s)) > ε).

Using then (21):

Pn(
1

t− s
(〈Zn〉t − 〈Zn〉s) ∈

bntc − bnsc
n(t− s)

Γ) = 1⇒ Pn(dΓ(
1

t− s
(〈Zn〉t − 〈Zn〉s)) > |1−

bntc − bnsc
n(t− s)

|CΓ) = 0.

This last equality implies that the right-hand side of (22) is equal to zero for all ε, which in turn implies (19) and
we deduce finally that P ∈ QΓ. The conclusion follows now easily, any sequence of maximizing joint distributions
(Ln, Zn1 ) is tight in ∆(Rd × Rd) and from the preceding discussion it converges to the law of (L,Z1) fulfilling
the constraints JLK � µ and JZ1K ∈ QΓ(1) by construction. Since Zn1 has bounded second order moments and
Ln has uniformly integrable second order moments (its law is dominated by µ), we have from Lemma 5.3 that

E[〈Ln, Zn1 〉] −→
n→∞

E[〈L,Z1〉].

�
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3.2. The control problem and the discretization procedure. The main result of this section is the lower
bound part of Theorem 1.3 given below.

Proposition 3.5.

liminf
n→∞

Vn(µ) ≥ V∞(µ).

This Proposition will be proved using the first reformulation Wac of V∞ announced in the introduction.
The key argument of the proof is a two-scales discretization of the control problem based on a Central Limit
Theorem. Let us at first prove that both problems are equal.

Lemma 3.6.

V∞(µ) = Wac(µ) , sup
X∈Mac(�µ)

E[

∫ 1

0

r(
d

ds
〈X〉s)ds],

where Mac(�µ) ⊂Mc is the subset of distributions of martingales (Xt)t∈[0,1] whose final distribution is domi-
nated by µ, and such that with probability 1, the quadratic variation process (〈X〉t)t∈[0,1] is absolutely continuous
with respect to Lebesgue’s measure. Moreover, the supremum in Wac can be restricted to martingales with respect
to a fixed d-dimensional Brownian filtration.

Proof. We assume without loss of generality that µ ∈ ∆2
0. We prove at first that Wac ≤ V∞. Let X be

a martingale whose law is in Mac(�µ). Then there exists on an extension5 denoted (Ω,F , (Ft)t∈[0,1],P) of
our filtered probability space a d-dimensional Brownian motion W and an F-progressively measurable process

qs ∈ Md such that Xt =
∫ t

0
qsdWs (see e.g. [16] Theorem 3.4.2). Moreover, we have 〈X〉t =

∫ t
0
qsq

T
s ds. Define

the progressively measurable process σs = φ(qs) where φ is some measurable selection of the set-valued map

M ∈ Md → argmax{Tr(MN) | N ∈ Md : NNT ∈ G}. The law of the process (
∫ t

0
σsdWs)t∈[0,1] is by

construction in QΓ and we have

(23) V∞(µ) ≥ E[〈X1,
∫ 1

0
σsdWs〉] = E[

∫ 1

0
Tr(qsσs)ds] = E[

∫ 1

0
r( dds 〈X〉s)ds],

where the last equality follows from Lemma 2.3. Let us prove the reverse inequality V∞ ≤ Wac. Consider
the canonical space C([0, 1],Rd) endowed with the standard d dimensional Wiener measure P0. Let (Bt)t∈[0,1]

denote the canonical process, FB its natural filtration and HG be the set of Md-valued FB-progressively

measurable processes ρ such that ρρT ∈ G. Define Q̃G(1) as the set of laws of variables
∫ 1

0
ρsdBs with ρ ∈ HG.

Then, using Caratheodory’s Theorem, Q̃G(1) is dense in QΓ(1) (see Lemma 5.12). Using Lemma 5.3, it follows

that V∞(µ) = sup{C(µ, ν) | ν ∈ Q̃G(1)}. From this equality, for all ε > 0, there exists an ε-optimal pair

(L, (Zt)t∈[0,1]) defined on the same probability space as B such that Zt =
∫ t

0
σsdBs for some FB progressive

process σ such that σsσ
T
s ∈ G, JLK � µ, and E[〈L,Z1〉] ≥ V∞(µ)− ε. We can assume that L is FB1 -measurable

up to replace L by its conditional expectation given FB1 . Using the predictable representation property of the

Brownian filtration, there exist an FB progressive process λs such that L =
∫ 1

0
λsdBs. We deduce that

V∞(µ)− ε ≤ E[〈L,Z1〉] = E[
∫ 1

0
Tr(λsσ

T
s )ds] ≤ E[

∫ 1

0
r(λsλ

T
s )ds] ≤Wac(µ),

which completes the proof of the second inequality and of the last assertion concerning the Brownian filtration.
�

Some Technical Results. The proof of the Proposition 3.5 is based on the following three technical Lemmas
3.7, 3.8 and 3.9, whose proofs are standard and therefore postponed to section 5.2. The first Lemma is the usual
Central Limit Theorem for the Wasserstein distance. Let RC1(q, C) , {µ ∈ ∆2

0 : cov(µ) = Id, ‖µ‖q ≤ C}.
Define then RCn(q, C) as the set of rescaled convolutions of these distributions, precisely all distributions of

the variables (n−
1
2

∑n
k=1 Si), where (Si)i=1,..,n is an i.i.d. sequence of law µ ∈ RC1(q, C). We will also use the

notation µ⊗n for the law (in ∆((Rd)n)) of (Si)i=1,..,n.

Lemma 3.7. Using the previous notations and with N (0, Id) being the standard centered gaussian distribution
in Rd, we have for all q > 2:

lim
n→∞

sup
ν∈RCn(q,C)

dW2
(ν,N (0, Id)) = 0.

Moreover, for any fixed q, C, there exists a measurable selection µ ∈ RC1(q, C)→ π(µ) ∈ P(µ⊗n,N (0, Id)) such
that:

Eπ(µ)[‖n−
1
2
∑n
k=1Si −N‖2] ≤ sup

ν∈RCn(q,C)

dW2
(ν,N (0, Id)) with J(Si)i=1,..,n, NK = π(µ).

Due to the Lipschitz property of V with respect to the Wasserstein distance of order p, we have the following
approximation results

5All the extensions we consider in this work are always the canonical Wiener extensions as defined in e.g. [14].
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Lemma 3.8. For all q > 2 we have lim
C→∞

z(q, C) = 0 with

z(q, C) = sup
M∈Md : |M |=1

(
r(MMT )− sup

ν∈RC1(q,C)

V (M]ν)

)
,

where M]ν denotes the image probability of ν induced by the linear map x → Mx. Moreover, there exists a
measurable selection M ∈Md → χ(M) ∈ RC1(q, C) such that

r(MMT )− V (M]χ(M)) ≤ |M |z(q, C).

Lemma 3.9. Let (Xk, Yk)k=1,..,n be two Rd-valued martingales defined on the same probability space with respect
to the same filtration (Fk)k=1,..,n. Then

|Ψn[V ]((Xk,Fk)k=1,..,n)−Ψn[V ]((Yk,Fk)k=1,..,n)| ≤
√
nγ‖Xn − Yn‖L2 .

Let us turn to the proof of the main Proposition.

Proof of Proposition 3.5. Let B be a d-dimensional Brownian motion and FB its natural filtration. We assume
without loss of generality that µ ∈ ∆2

0. According to Lemma 3.6, for all ε > 0, there exists an FB martingale

(Lt =
∫ t

0
λsdBs)t∈[0,1] such that JL1K � µ and

E[
∫ 1

0
r(λsλ

T
s )ds] ≥ V∞(µ)− ε.

Applying Lemma 5.11 to λ, there exists a sequence of simple processes λn, constant on the intervals [ kn ,
k+1
n )

such that E[
∫ 1

0
|λs − λns |

2
ds] −→

n→∞
0. Let us denote λns =

∑n
k=1 u

n
k1I[ k−1

n , kn )(s) and note that un1 is deterministic.

Using the regularity for r given in Lemma 2.3, we deduce

(24) 1
nE[
∑n
k=1 r(u

n
k (unk )T )] = E[

∫ 1

0
r(λns (λns )T )] −→

n→∞
E[
∫ 1

0
r(λsλ

T
s )ds].

The idea of this proof is to construct a discrete-time approximation of the martingale (Lt)t∈[0,1] using two steps

of discretization. The first step is the usual time-discretization on the intervals [ kn ,
k+1
n ) and the second acts on

the integrator B. Each increment ∆n
kB , Bk/n−B(k−1)/n will be replaced by a sufficiently long normalized sum

of i.i.d. random variables whose laws will be chosen in order for the V -variation to be close to the R-variation.
Up to enlarging the probability space, we assume that there is a sequence (Ui)i∈N∗ of uniform random variables

independent of B. Let us fix C > 0 and q > 2. According to Lemma 3.7, given a sequence εn converging to
zero, there exists an increasing sequence Nn of integers such that

∀m ≥ Nn, sup
µ∈RCm(q,C)

dW2
(µ,N (0, Id)) ≤ εn.

For a vector (N(k, n))k=1,..,n of integers such that N(k, n) ≥ Nn, define the partial sums D(k, n) =
∑k
i=1N(i, n)

and D(0, n) = 0. Using the notations of Lemma 3.8, define the sequence (νnk )k=1,..,n of Rd-valued transition
probabilities by νnk = χ(unk ), having the property that for any variable Y such that JY | unkK = νnk

(25) r(unk (unk )T )− V (JunkY | unkK) ≤ |unk |z(q, C),

where z(q, C) is defined in Lemma 3.8. This allows us to construct by induction (on k = 1, .., n) a family
of random variables (Si)i=1,..,D(n,n) and a filtration (Hi)i=1,..,D(n,n) (both depending on n and of the chosen
sequence N(k, n)) as follows. Consider the measurable selection given by Lemma 3.7,

π(νnk ) ∈ P((νnk )⊗N(k,n),N (0, Id)).

DefineH0 = σ(∅). At step k, using the variable Uk as a generator, construct the sequence (Si)i=D(k−1,n)+1,..,D(k,n)

such that the conditional law of ((Si)i=D(k−1,n)+1,..,D(k,n),
√
n∆n

kB) given HD(k−1,n) is π(νnk )6 and the filtration

Hi = σ((unk+1,∆
n
kB), k ≤ k∗(i) ; Sj , j ≤ i) for i = D(k − 1, n) + 1, .., D(k, n),

where k∗(i) is defined by the relation D(k∗(i), n) ≤ i < D(k∗(i) + 1, n). It follows from the Lemmas 3.7 and 3.8
that

(26) E


∣∣∣∣∣∣n 1

2 ∆n
kB −

D(k,n)∑
i=D(k−1,n)+1

Sni√
N(k, n)

∣∣∣∣∣∣
2

|HD(k−1,n)

 ≤ ε2
n, JSi | Hi−1K = νnk∗(i) ∈ RC

1(q, C).

Consider then the martingale (Mi = E[L | Hi], i = 0, .., D(n, n)) and its approximation

M̃i =

k∗(i)∑
k=1

D(k,n)∑
j=D(k−1,n)+1

unkSj√
nN(k, n)

+

i∑
j=D(k∗(i),n)+1

unk∗(i)+1Sj√
nN(k∗(i), n)

,

6See the discussion following Theorem 5.8 in the appendix.
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which is also an H-martingale. Using Lemma 3.9, we have

(27)
∣∣∣ΨD(n,n)[V ]((Mi,Hi)i=1,..,D(n,n))−ΨD(n,n)[V ]((M̃i,Hi)i=1,..,D(n,n))

∣∣∣ ≤ γ√D(n, n)
∥∥∥L− M̃D(n,n)

∥∥∥
L2
,

where we replaced MD(n,n) by L using the martingale property and Jensen’s inequality. Moreover:

∥∥∥L− M̃D(n,n)

∥∥∥
L2
≤ E[

∫ 1

0

|λs − λns |2ds]
1
2 + E

 n∑
k=1

E[|unk (∆n
kB −

D(k,n)∑
i=D(k−1,n)+1

Sni√
nN(k + 1, n)

)|2 | FBk−1/n]

 1
2

≤ E[

∫ 1

0

|λs − λns |2ds] + αεnE[

∫
|λns |2ds]

1
2 −→
n→∞

0,

using (26) and where α is a constant such that |Px| ≤ α|P ||x| for all P ∈ Md and x ∈ Rd. Using (27), these

inequalities reduce our problem to the study of the V -variation of M̃ .

ΨD(n,n)[V ]((M̃i,Hi)i=1,..,D(n,n)) = E

 n∑
k=1

D(k,n)∑
i=D(k−1,n)+1

V (JM̃i | Hi−1K)


≥ E

 n∑
k=1

D(k,n)∑
i=D(k−1,n)+1

r(unk (unk )T )− |unk |z(q, C)√
nN(k, n)

 = E

[
n∑
k=1

1

n

√
nN(k, n)(r(unk (unk )T )− |unk |z(q, C))

]

≥
√
D(n, n)

(
E[

∫ 1

0

r(λns (λns )T )ds]− z(q, C)E[

∫ 1

0

|λns |ds]

− max
k=1,..,n

∣∣∣∣∣
√
nN(k, n)√
D(n, n)

− 1

∣∣∣∣∣
∣∣∣∣E[

∫ 1

0

r(λns (λns )T )ds]− z(q, C)E[

∫ 1

0

|λns |ds]
∣∣∣∣
)
,

where the first inequality follows from (25). Using the former results, for any sequence of vectors N(k, n) indexed
by n such that

(28) max
k=1,..,n

∣∣∣∣∣
√
nN(k, n)√
D(n, n)

− 1

∣∣∣∣∣ −→n→∞0,

we have

liminf
n→∞

ΨD(n,n)[V ]((M̃i,Hi)i=1,..,D(n,n))√
D(n, n)

≥ V∞(µ)− z(q, C)E[

∫ 1

0

|λs|ds]− ε.

The condition (28) is not restrictive since for fixed n, any vector of integers N(k, n) ∈ {m;m+ 1} for m ≥ Nn
is such that

max
k=1,..,n

∣∣∣∣∣
√
nN(k, n)√
D(n, n)

− 1

∣∣∣∣∣ ≤ 1

Nn
,

and then any value above nNn is admissible for D(n, n). It implies that

liminf
n→∞

Vn(µ) ≥ V∞(µ)− z(q, C)E[

∫ 1

0

|λs|ds]− ε.

The result follows by sending C to +∞ and ε to 0. �

4. Characterization of the solutions.

In this section we prove at first that the solutions of the discrete-time problem converge to the solution of
the control problem (Theorem 1.4). This result is based on a reformulation of the control problem which is
proved to admit maximizers. Using this reformulation, we solve directly the problem in the unidimensional case,
obtaining thus the main Theorem which was proved in [9]. However, the method we use does not extend to
higher dimension. In order to solve the general case, we study the dual problem and prove that it is related to
a PDE problem using tools from Optimal Transport theory. The main result is then the Verification Theorem
4.13, which relates primal and dual solutions through the gradient of the solution of the dual PDE.

4.1. A first reduction. Before going to the proof of Theorem 1.4, let us recall some properties of the Meyer-
Zheng topology (denoted M-Z hereafter, see [19]) on the space of martingale distributions. This topology is the
weak convergence on ∆(D([0, 1],Rd)) when the set D([0, 1],Rd) of càdlàg functions is endowed with the topology
of convergence in measure with respect to Lebesgue’s measure (denoted λ) together with the convergence of the
value at time 1 : a sequence yn converges to y in D([0, 1],Rd) if

∀ε > 0, λ({|yn(x)− y(x)| ≥ ε}) −→
n→∞

0, and yn(1) −→
n→∞

y(1).

Note that this topology is a product topology, i.e. topologies of D([0, 1],Rd) and D([0, 1],R)d coincide.
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Lemma 4.1. The sets of (laws of) martingales uniformly bounded in Lq for some q ≥ 1 and the set M(�µ) of
martingales whose law at time 1 is dominated by µ are compact subsets of ∆(D([0, 1],Rd)) for the M-Z topology.

Proof. The topology introduced in [19] was defined on D([0,∞),Rd) and the definition given above is just the
induced topology on D([0, 1],Rd) which is seen as the closed subset of functions that remain constant after time
1. The first result is therefore a Corollary of Theorem 2 in [19]. The second follows from the fact that the
projection (Xt)t∈[0,1] → X1 at time 1 is continuous and that the condition JX1K � µ is closed. �

Lemma 4.2.

(29) V∞(µ) = W (µ) , max
J(Xt)t∈[0,1]K∈M(�µ)

H(J(Xt)t∈[0,1]K) with H(P) , max
J(Xt,Zt)t∈[0,1]K∈M(P,QΓ)

E[〈X1, Z1〉],

whereM(P, QΓ) is the set of martingales laws in ∆(D([0, 1],R2d)) of processes (X,Z) such that J(Xt)t∈[0,1]K = P
and J(Zt)t∈[0,1]K ∈ QΓ (using the identification of the continuous functions as a subset of D). The set of
maximizers is a non empty (M-Z)-compact convex subset of M(�µ) denoted P∞(µ).

Proof. From the definition of V∞, we have

V∞(µ) = max
J(Zt)t∈[0,1]K∈QΓ,JLK�µ

E[〈L,Z1〉].

Therefore,

W (µ) = max
J(Xt,Zt)t∈[0,1]K∈M(�µ,QΓ)

E[〈X1, Z1〉] ≤ V∞(µ) where M(�µ, QΓ) , ∪P∈M(�µ)M(P, QΓ),

since the marginal distribution of JX1, (Zt)t∈[0,1]K fulfills the constraints of the definition. For the converse

inequality, just define Xt , E[L | Zs, s ≤ t]. The set M(�µ, QΓ) is (M-Z)-compact convex since it is
the intersection of the set of martingale distributions uniformly bounded in L2 by (CΓ + ‖µ‖2) and of the
set P(M(�µ), QΓ). Compactness and convexity of P(M(�µ), QΓ) follow from Lemma 5.1. Indeed, the M-Z
topology is a product topology and it is weaker than the Skorokhod’s topology (so that QΓ is M-Z compact). The
application J(Xt, Zt)t∈[0,1]K −→ E[〈X1, Z1〉] is (M-Z)-continuous and affine on M(�µ, QΓ) since the projection
at time 1 is linear and continuous and using Lemma 5.3. We deduce that the set of maximizers is nonempty
and compact convex. Its marginal projection P∞(µ) on the first coordinate of the product D([0, 1],Rd)2 is then
compact convex. �

Proof of Theorem 1.4. Using the proof of Lemma 2.10, given an optimal sequence of martingales ((Lnk )k=1,..,n)n∈N,
we can construct a sequence ((Lnk , S

n
k )k=1,..,n)n∈N such that J(Snk )k=1,..,nK ∈ Tn and

Ψn[V ]((Lk)k=1,..,n) ≤ E[〈Lnn,
∑n
k=1S

n
k 〉].

Define Znt , n−
1
2

∑bntc
k=1 S

n
k and Xn

t , Lnbntc. Zn is martingale from the definition of Tn (see Definition 2.9)

and the sequence of joint distributions J(Xn
t , Z

n
t )t∈[0,1]K is (M-Z)-relatively compact from Lemma 4.1 since

JXn
1 K � µ and cov(Zn1 ) ∈ Γ. Any limit distribution is a martingale using that the sets of uniformly L2 bounded

martingale’s distributions are closed. The marginal laws of the coordinate processes of any limiting distribution
are respectively in the compact sets M(�µ) by Lemma 4.1 and QΓ using Proposition 3.4 (convergence to an
element of QΓ holds for a stronger topology along a subsequence). Moreover, using Lemma 5.3, the application

J(Xn
t , Z

n
t )t∈[0,1]K −→ E[〈Xn

1 , Z
n
1 〉]

is continuous and since by hypothesis E[〈Xn
1 , Z

n
1 〉] −→

n→∞
V∞(µ), we deduce that the limiting distribution of

J(Xn
t )t∈[0,1]K belongs to P∞(µ). �

4.2. The unidimensional case. In the following, Fν , F
−1
ν denote respectively the distribution function of

a probability ν ∈ ∆(R) and its right-continuous generalized inverse, and N (0, η) is the centered gaussian
distribution with variance η > 0.

Proposition 4.3. Assume that d = 1 and A1-A4. Then for all µ ∈ ∆2, P∞(µ) is reduced to a point which is
the law of the martingale X defined by

∀t ∈ [0, 1], Xt , E[fµ(B1) | FBt ],

with B a standard Brownian motion, fµ , F−1
µ ◦ FN (0,ρ2), and ρ , r(1).

Proof. Using Lemma 2.3 (which does not rely on A5), the set F = {r ≤ 1} is the interval [0, 1/ρ2] where ρ2 > 0

using A1. The set F̂ is the closed ball in L2
0 of radius 1/ρ2, and this clearly implies A5. Now Ĝ is the ball

of radius ρ2 and therefore QΓ is the set of distributions of continuous R-valued martingales such that 〈Z〉 is
ρ2-lipschitz with respect to the time-variable. From Theorem 1.3, we have

V∞(µ) = sup{C(µ, ν) | ν ∈ QΓ(1)}.
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Let us prove that this problem admits a unique solution which is the joint law of the pair (fµ(B1), B1). At
first, note that the Gaussian law N (0, ρ2) is the unique maximal element in QΓ(1) for the convex order and the
unique maximizer of the above problem. To see this let h be a non-linear closed convex function, Z a process

in QΓ, and q be a process with values in [0, ρ] such that 〈Z〉t =
∫ t

0
qsds. Given W a standard Brownian motion

independent of Z, define

Bt = Zt +

∫ t

0

√
ρ− qsdWs.

Then B is a Brownian motion with variance ρ2 and the conditional law of B1 given FZ1 is a gaussian distribution

with variance
∫ 1

0
(ρ − qs)ds (see Proposition 1.1 in [14]). If Z 6= B, then P(

∫ 1

0
(ρ − qs)ds > 0) > 0, and

E[h(B1) | FZ1 ] > h(Z1) on this set so that E[h(B1)] > E[h(Z1)]. Using Theorem 5.4, and assuming that µ is not
a Dirac mass (otherwise the result is obvious), then there exists a non-linear convex function h such that

C(µ, JZ1K) ≤ 〈h∗, µ〉+ 〈h, JZ1K〉 < 〈h∗, µ〉+ 〈h, JB1K〉 = C(µ, JB1K)

Finally, the problem C(µ,N (0, ρ2)) is known to admit a unique solution (see e.g. [1] Theorem 6.0.2) which is
the law of the pair (fµ(B1), B1). Uniqueness implies that this relation is met by any maximizer of E[〈X1, Z1〉] in
M(µ,QΓ): Any optimal (X,Z) is such that Z =

√
ρB with B a standard Brownian motion and X1 = fµ(B1).

To conclude, elements in M(µ,QΓ) being martingales, B is an FX,B-Brownian motion. Therefore,

∀t ∈ [0, 1], Xt = E[X1 | FX,Bt ] = E[fµ(B1) | FBt ] = u(t, Bt),

where u is the solution of the backward heat equation with terminal condition u(1, x) = fµ(x). �

We recover exactly the main Theorem given in [9], where this particular martingale is called continuous
martingale of maximal variation (CMMV) with terminal law µ. Moreover, the limiting martingale having
continuous trajectories, the convergence given in Theorem 1.4 extends to convergence for the usual Skorokhod’s
topology (see [21]). This method does not work anymore in higher dimension, since uniqueness of a maximal
element for the convex order in QΓ(1) fails. However, the link with a PDE problem outlined in the preceding
proof can be generalized as shown in the following results.

4.3. The dual problem. From this point, we will restrict our attention to laws concentrated on some fixed
compact convex subset K ⊂ Rd in order to shorten the proofs. We mention that all our results can be easily
extended on ∆2 using ad hoc growth or integrability assumptions on the dual variables. Let us prove the
following dual representation for V∞ which is very similar to Kantorovitch Duality Theorem (see Theorem 5.5)

in the theory of Optimal Transport. In the following, we use the notation 〈φ, µ〉 , Eµ[φ(L)] for expectations.

Proposition 4.4.

∀µ ∈ ∆(K), V∞(µ) = inf
φ∈C(K)

(〈φ, µ〉+ V ∗∞(φ)) = min
φ∈Conv(K)

(〈φ, µ〉+ V ∗∞(φ))(30)

with V ∗∞(φ) , sup
ν∈QΓ(1)

〈φ∗, ν〉,

where C(K) denotes the set of continuous functions on K, Conv(K) the proper closed convex functions from
Rd to R ∪ {+∞} such that Dom(f) ⊂ K, and φ∗ the Fenchel transform of φ. Let us also denote

∂V∞(µ) , argmin
φ∈Conv(K)

(〈φ, µ〉+ V ∗∞(φ)).

Proof. Note at first that we can replace the constraint JLK � µ given in the definition of V∞ by JLK = µ since
the maximal covariance functions C(., ν) defined in section 5 are nondecreasing for the convex order (see Lemma
5.7). Applying then Theorem 5.4, we obtain

V∞(µ) = max
ν∈QΓ(1)

inf
(φ− 1

2 |.|2,ψ−
1
2 |.|2)∈Cb(Rd)2;φ+ψ>〈.,.〉

(〈φ, µ〉+ 〈ψ, ν〉).

QΓ(1) is a compact subset of ∆2, and weak convergence coincides in this set with the dW2
-convergence since

moments of order q > 2 are uniformly bounded. Therefore and since the function ψ in the above expression of
V∞(µ) has at most quadratic growth, the application ν → 〈ψ, ν〉 is affine and weakly continuous on QΓ(1). On
the other hand, the application (φ, ψ)→ (〈φ, µ〉+ 〈ψ, ν〉) is affine on the convex set

{(φ, ψ) ∈ (
1

2
|.|2 + Cb(Rd))× (

1

2
|.|2 + Cb(Rd)) : φ+ ψ > 〈., .〉},

so that the Minmax Theorem ([22]) implies:

V∞(µ) = inf
(φ− 1

2 |.|2,ψ−
1
2 |.|2)∈Cb(Rd)2;φ+ψ>〈.,.〉

(〈φ, µ〉+ max
ν∈QΓ(1)

〈ψ, ν〉).
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Any φ ∈ C(K) is identified with the function equal to φ on K and to +∞ otherwise. Since for any pair (φ, ψ)
we have (φ∗)∗ ≤ φ and φ∗ ≤ ψ, we infer:

(31) V∞(µ) = inf
φ

(〈φ, µ〉+ sup
ν∈QΓ(1)

〈φ∗, ν〉),

where the infimum is taken over convex functions φ ∈ 1
2 |.|

2 +Cb(Rd). Finally, equality still holds for φ ∈ C(K)
using Fenchel’s Lemma. Let now (φn, ψn) be a minimizing sequence with φn ∈ C(K) and ψn = φ∗n. Replacing
(φn, ψn) by (φn − α,ψn + α) with α = min

x∈K
φn(x), we obtain that

∀x ∈ Rd, φn(x) ≥ 0, ψn(x) ≥ −CK |x|, ψn(0) = 0.

The functions ψn being uniformly Lipschitz, Ascoli’s Theorem implies that the sequence ψn is relatively compact
in C(Rd) for the uniform convergence on compact sets. Let ψ denote the limit of some convergent subsequence
also denoted ψn. Pointwise convergence implies that ψ(0) = 0, and we deduce therefore from Fatou’s Lemma
that

sup
ν∈QΓ(1)

〈ψ, ν〉 ≤ liminf
n→∞

sup
ν∈QΓ(1)

〈ψn, ν〉.

For ` ∈ N, let ξB` the convex indicator function equal to 0 on B` and +∞ otherwise. For any function f , we
define f∗` = (f + ξB`)

∗, so that the sequence f∗` is nondecreasing and converges pointwise to f∗. Using that
Fenchel transform is an isometry for the uniform norm, ` being fixed, ψ∗`n converges uniformly to ψ∗` when n
goes to +∞. Using these notations∫

ψ∗`dµ = lim
n→∞

∫
ψ∗`n dµ ≤ liminf

n→∞

∫
ψ∗ndµ.

Monotone convergence implies lim
`→∞

∫
ψ∗`dµ =

∫
ψ∗dµ, and therefore

∫
ψ∗dµ ≤ liminf

n→∞

∫
φndµ. Finally, the

pair (ψ∗, ψ) is optimal and has the required properties. �

The next result is quite similar to the characterization given in Theorem 5.5.

Lemma 4.5. In the following, φ ∈ Conv(K), µ denotes the law of the variable L in ∆(K), and Z is a process
whose law is in QΓ, both defined on the same probability space. The two following assertions are equivalent

i) L ∈ ∂φ∗(Z1) almost surely, and E[φ∗(Z1)] = sup
ν∈QΓ(1)

〈φ∗, ν〉.

ii) The joint distribution of (L,Z1) is optimal for V∞(µ) and φ ∈ ∂V∞(µ).

Proof. It follows directly from the definition of V∞ and Fenchel’s Lemma. Indeed, suppose ii)

V∞(µ) = E[〈L,Z1〉] ≤ E[φ(L) + φ∗(Z1)] ≤ 〈φ, µ〉+ sup
ν∈QΓ(1)

〈φ∗, ν〉 = V∞(µ).

Therefore, all the above inequalities are equalities, and 〈L,Z1〉 = φ(L)+φ∗(Z1) with probability 1 which proves
the result by Fenchel’s Lemma. Conversely, if i) is true, then it follows from (30) that

V∞(µ) ≥ E[〈L,Z1〉] = E[φ(L) + φ∗(Z1)] = 〈φ, µ〉+ sup
ν∈QΓ(1)

〈φ∗, ν〉 ≥ V∞(µ),

which completes the proof. �

Let us now characterize V ∗∞ as a second-order nonlinear PDE problem (HJB) using classical stochastic
control results. We know from Proposition 4.4 and Lemma 4.5 that all the optimizers of V∞ are linked with
the optimizers of the dual problem V ∗∞. Moreover, the set of dual variables φ can be restricted to the set of
functions such that φ∗ is a CK-lipschitz function such that φ∗(0) = 0. Define the associated time-dependent
value function

u : (0, 1]× Rd −→ R : (t, x) −→ sup
P∈QΓ

EP[φ∗(x+X1−t)].

Then we have, with ∇2 for the spatial hessian matrix:

Proposition 4.6. The function u is the unique continuous viscosity solution of

(32)

{
− ∂
∂tu−

1
2 sup
P∈Γ

Tr(P∇2u) = 0 in [0, 1)× Rd

u(1, x) = φ∗(x) in Rd

in the class of CK-Lipschitz functions. Moreover, V ∗∞(φ) = u(0, 0).

Proof. Using Lemma 5.12, we recover the classical framework of stochastic control, and the result can be found
in [11]. Note also that our formulation is a special case of the G-expectation (see e.g. [10]) introduced by
Peng. �
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4.4. A verification Theorem. Based on the dual equality (Proposition 4.4) and on the relationships between
optimal variables of the primal and dual problems obtained in Lemma 4.5, we will provide a characterization of
the set P∞ of optimal solutions for our control problem. Our main result is the Verification Theorem 4.13. The
main ingredients of the proof are the dynamic programming equation given in Lemma 4.9 and the increasing
property of V∞ given in Lemma 4.10 which allow to prove that the constraint of domination with respect to
the convex order is always active.

In order to study the dynamic properties of the control problem, we introduce below a time-dependent value
function. Let us also recall Notation 3.2 for the sets QΓ(t) and πt(QΓ).

Definition 4.7.

U(t, µ) , sup
ν∈QΓ(t)

C(µ, ν).

Lemma 4.8. For all t ∈ [0, 1] and µ ∈ ∆2, we have U(t, µ) =
√
tV∞(µ).

Proof. If (Zt)t≥0 is a martingale, then Yt = (α−
1
2Zαt) is a martingale such that 〈Y 〉t = α−1〈Z〉αt. It follows

easily that QΓ(t) =
√
t]QΓ(1) (i.e. the image probabilities induced by the map x→

√
tx) and we conclude the

proof using that ν → C(µ, ν) is positively homogenous in the sense (A3). �

In the following Lemma, we prove a dynamic programming equation associated to the control problem.

Lemma 4.9. Let µ1 � µ2 ∈ ∆2 and (S1, S2) be a martingale such that Si ∼ µi for i = 1, 2. Then,

∀t ∈ [0, 1], V∞(µ2) ≥ U(t, µ1) + E[U(1− t, JS2 | S1K)].

Moreover, for all (law of) martingale (Xs)s∈[0,1] in P∞(µ) and t ∈ [0, 1], we have

V∞(µ) = U(t, JXtK) + E[U(1− t, JX1 −Xt | XtK)].

Proof. Let us prove the first assertion. Note at first that the cases t = 0 and t = 1 follow respectively from
Jensen’s inequality (Lemma 5.10 in the appendix) and from the convex nondecreasing property of V∞ (which is

a supremum of nondecreasing functions). Let t ∈ (0, 1) and (Ŝ1, (Ws)s∈[0,t]) be optimal for the problem U(t, µ1),
which means

JŜ1K = µ1, J(Ws)s∈[0,t]K ∈ πt(QΓ), and U(t, µ1) = E[〈Ŝ1,Wt〉].
Let F (x) be a version of the conditional law of S2 given S1 = x and let Ψ be a measurable selection on ∆2 of
the set-valued mapping (see Proposition 7.33 in [3])

µ→ argmax
π∈P(µ,π1−t(QΓ))

∫
〈x, y(1− t)〉dπ(x, y(.)).

Construct on an enlarged probability space a variable (Ŝ2, (Yu)u∈[0,1−t]) whose conditional law given (Ŝ1, (Ws)s∈[0,t])

is Ψ(F (S1)). The law of the process Ẑs , Ws∧t + Y(s∨t)−t is in QΓ (using e.g. Lemma 6.1.1 in [23] for the
martingale property and the fact that π1−t(QΓ) is a closed convex set) and

U(t, µ1) + E[U(1− t, JS2 | S1K)] = E[〈Ŝ1,Wt〉] + E[E[〈Ŝ2, Y1−t〉 | Ŝ1, (Ws)s∈[0,t]]]

= E[〈Ŝ2, Ẑ1〉] ≤ V∞(µ2).

Let us prove the second assertion. Using Lemma 4.2, for any law in P∞(µ), there exists a (law of) martingale
(Xs, Zs)s∈[0,1] maximizing E[〈X1, Z1〉] in M(�µ, QΓ) such that (Xs)s∈[0,1] follows the chosen law. Note at first
that the martingale property implies

V∞(µ) = E[〈X1, Z1〉] = E[〈Xt, Zt〉] + E[〈X1 −Xt, Z1 − Zt〉]

Assume that E[〈Xt, Zt〉] < U(t, JXtK). Let Φ(x) be a version of the conditional law of (X1 −Xt, (Zs − Zt)s≥t)
given Xt = x. That Φ has its values almost surely in P(∆2, π1−t(QΓ)) follows from the fact that the conditional
law of (Zs − Zt)s≥t given Xt is almost surely a law of martingale (see e.g. Theorem 1.2.10 in [23]) as well
as the face property given in Lemma 3.3. Let (S, (Ws)s∈[0,t]) be a pair such that JSK = JXtK, J(Ws)s∈[0,t]K ∈
πt(QΓ) and E[〈S,Wt〉] = U(t, JXtK). Construct on a possibly enlarged probability space a pair (T, (Ys)s∈[0,1−t])

whose conditional law given (S, (Ws∈[0,t])) is Φ(S). It follows that JS + T K = µ, J(Ẑs)s∈[0,1]K ∈ QΓ with

Ẑs ,Ws∧t + Y(s∨t)−t and

E[〈S + T, Ẑ1〉] = E[〈S,Wt〉] + E[〈T, Y1−t〉] > V∞(µ)

which contradicts the definition of V∞(µ). The second part of the proof is similar to the proof of the first
assertion. �

Lemma 4.10. The function V∞ is strictly increasing with respect to the convex order.
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Proof. Let µ1 � µ2 ∈ ∆2 and let (S1, S2) a martingale such that Si ∼ µi for i = 1, 2. Assume that V∞(µ1) =
V∞(µ2). From Lemma 4.9, we have for all t ∈ (0, 1)

V∞(µ2) ≥ U(t, µ1) + E[U(1− t, JS2 | S1K)] =
√
tV∞(µ1) +

√
1− tE[V∞(JS2 | S1K)].

This implies

E[V∞(JS2 | S1K)] ≤
1−
√
t√

1− t
V∞(µ2),

and we deduce that the first term is equal to zero by sending t to 1. In order to conclude that µ1 = µ2, it remains
to prove that V∞(µ) = 0 implies that µ is a Dirac mass. Recall that V∞(µ) = sup{C(µ, ν) | ν ∈ QΓ(1)}. Using
Lemma 5.7, it is then sufficient to prove that QΓ(1) contains a law which is absolutely continuous with respect
to Lebesgue’s measure. But QΓ contains the laws of Brownian motion processes with constant instantaneous
covariance equal to a non-degenerate matrix P ∈ Γ (which exists since G is a neighborhood of 0) and this
concludes the proof. �

Notation 4.11. Given some function φ ∈ Conv(Rd), and some Rd-valued random variables Z,X, then

X = ∇φ(Z) means

{
P(Z ∈ {x ∈ Rd : ∇φ exists}) = 1

P(X ∈ ∂φ(Z)) = 1
.

In this case, the random variable ∇φ(Z) is well-defined and is almost surely equal to g(Z) for any measurable
selection g of the subdifferential of φ.

Proposition 4.12. Let µ ∈ ∆(K) and φ ∈ ∂V∞(µ). Then for any optimal joint distribution of (L,Z1) in the
problem V∞(µ), we have

L = ∇φ∗(Z1) almost surely.

Moreover, for any (law of) martingale (Xt, Zt)t∈[0,1] in M(�µ, QΓ) maximizing E[〈X1, Z1〉], we have for all
t ∈ [0, 1]

Xt = ∇u(t, Zt) almost surely,

where u is the solution of (32).

Proof. Using Lemma 4.5, for any optimal variables (L,Z1) we have L ∈ ∂φ∗(Z1) almost surely. It follows that

V∞(µ) = E[〈L,Z1〉] = E[〈g(Z1), Z1〉] = V∞(µ̂),

where µ is the law of L and µ̂ the law of g(Z1) = E[L | Z1]. The last equality follows from Lemma 4.5 since
g(Z1) ∈ ∂φ∗(Z1) using that the subdifferential of φ∗ has closed convex values. On the other hand, µ̂ � µ.
Using Lemma 4.10, V∞ is strictly increasing and therefore µ = µ̂ which implies L = g(Z1). To conclude,
define the variable Y such that its conditional law given Z1 is uniform on the set7 (g(Z1) +B(0, ε)) ∩ ∂φ∗(Z1)

and a Dirac mass on ∇φ∗(Z1) when this set is reduced to a single point. Y ∈ L2 and Ŷ = E[Y | Z1] ∈ L2

since |Y − L| ≤ ε. Applying again the Lemmas 4.5 and 4.10, we deduce as above that Y = Ŷ almost surely,
which implies g(Z1) = ∇φ∗(Z1). Let us now prove the second assertion. Given a martingale (Xt, Zt)t∈[0,1] in
M(�µ, QΓ) maximizing E[〈X1, Z1〉], it follows from the preceding result that X1 has law µ. If it was not true,
we could construct a variable L of law µ as a function of X1 and an independent uniform variable Y such that

X1 = E[L | FX,Z1 ]. We would have E[〈L,Z1〉] = E[〈X1, Z1〉] = V∞(µ) and therefore L = ∇φ∗(Z1) which is
absurd. It follows that X1 = ∇φ∗(Z1) and for all t ∈ [0, 1]

Xt = E[X1 | FX,Zt ] = E[∇φ∗(Z1) | FX,Zt ].

But from the second part of Lemma 4.9, we know that E[〈Xt, Zt〉] = U(t, JXtK). Using then Proposition 4.4 and
the Lemmas 4.5, 4.8 and 4.12, we deduce that Xt = ∇ψt(Zt) almost surely for some function ψt ∈ Conv(Rd).
It follows that Xt is Zt-measurable so that

Xt = E[X1 | Zt] = E[∇φ∗(Z1) | Zt].
Let v denote a measurable selection of ∂φ∗ (hence bounded). We have by definition

∀z, h ∈ Rd, φ∗(z + h) ≥ φ∗(z) + 〈v(z), h〉.
Replacing z by Z1 and taking conditional expectations, we obtain

u(t, Zt + h) ≥ E[φ∗(Zt + h+ (Z1 − Zt)) | Zt]
≥ E[φ∗(Zt + (Z1 − Zt)) | Zt] + 〈E[v(Zt + (Z1 − Zt)) | Zt], h〉.

The process (Zt)t∈[0,1] being optimal, the standard dynamic programming principle of stochastic control implies
u(t, Zt) = E[φ∗(Zt + (Z1−Zt)) | Zt]. Moreover, since X1 = v(Z1), Xt = E[v(Zt + (Z1−Zt)) | Zt] and it follows
that

u(t, Zt + h) ≥ u(t, Zt) + 〈Xt, h〉.

7The probability whose density is the normalized indicator function of the set with respect to the Lebesgue’s measure on the

affine subspace it generates.
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We conclude that Xt ∈ ∂u(t, Zt) since the above inequality holds almost surely for a countable dense subset of
h in Rd. The end of the proof is similar to the proof of the first assertion. �

We can now state our main Verification Theorem.

Theorem 4.13. Under the same hypotheses as Proposition 4.12 and if the solution u is C1 with respect to the
space variable, then P∞(µ) is the set of all laws of processes

(Xt)t∈[0,1] = (∇u(t, Zt))t∈[0,1],

where the law of the process Z runs through the set of maximizers of V ∗∞(φ) such that J∇φ∗(Z1)K = µ.

Proof. For any (law of) martingale (X,Z) in M(�µ, QΓ) maximizing H, we have from Proposition 4.12 with
probability 1,

∀t ∈ [0, 1], t rational, Xt = ∇u(t, Zt).

The process in the right-hand side has continuous trajectories and X has càdlàg trajectories so that the equality
can be extended to all t ∈ [0, 1]. The results follows then from Proposition 4.12. �

Let us finally prove the result announced in the introduction.

Proof of Theorem 1.5. In view of the previous results, we only need to prove that Z is a maximizer of V ∗∞(φ)
if and only if property (7) is true. But this follows directly from Ito’s formula since u is assumed to be C1,2. �

5. Appendix

5.1. Auxiliary results. We present in this section results about Optimal Transportation and Wasserstein
distances. This material is well-known and can be found in [24] or [1].

Lemma 5.1. Let E,E′ be two separable metric spaces and A,A′ two tight (resp. closed, convex) subsets of
∆(E) and ∆(E′). Then the set P(A,A′) is itself tight (resp. closed, convex).

The Wasserstein distances. The Wasserstein distance of order p is defined on the set ∆p(Rd) of probabilities
with finite moment of order p by

dWp
(µ, ν) , min

π∈P(µ,ν)
(

∫
|y − x|pdπ(x, y))

1
p = min{‖X − Y ‖Lp | X ∼ µ , Y ∼ ν}.

The metric space (∆p(Rd), dWp
) is Polish. Convergence for dWp

is equivalent to classic weak convergence
together with the convergence of the moments of order p. The sets of probabilities with uniformly integrable
moments of order p are relatively compact. Moreover, we have the following useful Lemma.

Lemma 5.2. For any continuous function f and K > 0 such that | f(x) |≤ K(1+ | x |p), the application

∆p(Rd)→ R : π →
∫
f(x)dπ(x) is dWp continuous.

Lemma 5.3. (Lemma 5.2.4 in [1]) Let E = E′ = Rd and πn ∈ ∆(E×E′) be a weakly converging sequence with
limit π such that

sup
n

∫
|x|p + |y|qdπn(x, y) <∞ for some p, q ∈ (1,∞) such that

1

p
+

1

q
= 1.

If the sequence of marginals µn on E has uniformly integrable moments or order p (resp. νn on E′ has uniformly
integrable moments of order q) then ∫

〈x, y〉dπn(x, y) −→
n→∞

∫
〈x, y〉dπ(x, y).

Maximal covariance functions. These functions are also optimal transport value functions, related to the
square Wasserstein distance. Precisely , the maximal covariance between two probabilities on Rd is defined by

C : ∆2 ×∆2 −→ R : (µ, ν) −→ max
π∈P (µ,ν)

∫
〈x, y〉dπ(x, y).

We have then the straightforward relation

∀µ, ν ∈ ∆2, d2
W2

(µ, ν) = ‖µ‖22 + ‖ν‖22 − 2C(µ, ν).

Theorem 5.4. For all µ, ν ∈ ∆2, we have the following equalities

max
π∈P(µ,ν)

∫
〈x, y〉dπ(x, y) = inf

(φ− 1
2 |.|2,ψ−

1
2 |.|2)∈Cb(Rd)2;φ+ψ>〈.,.〉

(

∫
φdµ+

∫
ψdν)

= min
φ∈Conv(Rd)

∫
φdµ+

∫
φ∗dν,

where φ + ψ > 〈., .〉 means φ(x) + ψ(y) > 〈x, y〉 for all x, y ∈ Rd and Cb(Rd) denotes the set of real-valued
bounded continuous functions on Rd.
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Let us also mention the following characterization where ∂φ denotes the subdifferential

Theorem 5.5. For all µ, ν ∈ ∆2, we have the following equivalence

π∗ ∈ argmax
π∈P(µ,ν)

∫
〈x, y〉dπ(x, y)⇐⇒ ∃φ ∈ Conv(Rd), y ∈ ∂φ(x) π∗ -almost surely.

Convex order.

Definition 5.6. The convex order (also called Choquet or Blackwell order) is defined on ∆2 by

(33) µ1 � µ2 ⇔ ∀f ∈ Conv(Rd),
∫
fdµ1 ≤

∫
fdµ2.

Moreover, µ1 � µ2 ∈ ∆2 iff there exists a martingale X1, X2 such that JXiK = µi for i = 1, 2 (see [4]).

Let us now list some useful properties

Lemma 5.7. The set {ν ∈ ∆2 : ν � µ} is dW2
-compact (hence weakly compact). The function µ→ C(µ, ν) is

nondecreasing for the convex order, strictly if ν is absolutely continuous with respect to the Lebesgue’s measure.

Proof. For the first assertion, uniform integrability of the second order moment follows from the Jensen inequal-
ity and the martingale characterization of the convex order. Closedness follows from the convex representation
(33) since the map µ →

∫
fdµ is lower continuous for any f ∈ Conv(Rd). For the second assertion, let ν be

absolutely continuous and µ1 � µ2 ∈ ∆2. Using Theorem 5.5, we have

C(µi, ν) = min
φ∈Conv(Rd)

∫
φdµi +

∫
φ∗dν.

Let φ2 be optimal in the above minimization problem for µ2. If φ2 is also optimal for µ1, then Theorem 5.5
implies ∇φ2]ν = µ1 = µ2 since ν is absolutely continuous. Therefore, if µ1 6= µ2, φ2 is not optimal for µ1, and
we deduce from (33) that

C(µ1, ν) <

∫
φdµ1 +

∫
φ∗dν ≤

∫
φdµ2 +

∫
φ∗dν = C(µ2, ν).

�

Conditional laws. The following Theorem is well-known and allows to construct variables with prescribed
conditional laws.

Lemma 5.8. (Blackwell-Dubins [5])
Let E be a Polish space with ∆(E) the set of Borelian probabilities on E, and ([0, 1],B([0, 1]), λ) the unit interval
equipped with Lebesgue’s measure. There exists a measurable mapping

Φ : [0, 1]×∆(E) −→ E

such that for all µ ∈ ∆(E), the law of Φ(U, µ) is µ where U is the canonical element in [0, 1].

In the proofs of Lemma 2.10 and Proposition 3.5, we use indirectly this result together with the Disintegration
Theorem. Precisely :

Lemma 5.9. Let X,Y be E-valued random variables defined on the same probability space, U an uniform
random variable independent of (X,Y ) and f a measurable mapping from E to ∆(E2). Let f1(x) be the
marginal law of f(x) on the first coordinate. If f1(X) is a version of the conditional law of Y given X, then
there exists a random variable Z = ϕ(X,Y, U) such that f(X) is a version of the conditional law of (Y,Z) given
X.

Proof. One can define using Theorem 5.8 a variable (Ỹ , Z̃) = Φ(U, f(X)) having the property that f1(X) is a

version of the conditional law of Ỹ given X. Let g(X, Ỹ ) be a version of the conditional law of Z̃ given (X, Ỹ ),
it follows easily that Z = Φ(U, g(X,Y )) fulfills the required properties. �

Jensen Inequality. Let p ∈ [1,∞) and ∆p(Rd) the set of probabilities with finite moment of order p. The
vector space Mp of finite signed borel measures µ on Rd such that

∫
Rd |x|

pd|µ| < ∞ is endowed with initial

topology generated by the set Cp(Rd) of continuous functions on Rd with at most polynomial growth of order
p. Recall that the induced topology on ∆p is metrizable by the Wasserstein distance dWp

.

Lemma 5.10. Let (Ω,A,P) a probability space, G ⊂ F two sub σ-algebra of A, and f a concave upper semi-
continuous mapping from ∆p to R which is bounded by C(1 + dWp

(δ0, .)). Then, for all Rd-valued random
variable X with finite moment of order p

f(JXK) ≥ E[f(JX | FK)] and f(JX | GK) ≥ E[f(JX | FK) | G] almost surely.
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Proof. Note that all the expectations in the proof are well-defined using the bound on f and the integrability
condition on X. Since X has a finite moment of order p, we can assume that the random variable JX | FK
is ∆p-valued. Let Φ denote its distribution (in ∆(∆p(Rd))). f being concave and upper semi-continuous, it is
sufficient to prove that µ = JXK is the barycenter of Φ. But, for all h ∈ Cp(Rd), it follows from the properties
of the conditional expectation that∫

〈h, ν〉dΦ(ν) = E[E[h(X) | F ]] = E[h(X)] = 〈h, µ〉,

which proves the first result. The second assertion follows by the same method. It is sufficient to prove that
JX | GK is almost surely the barycenter the ∆(∆p(Rd))-valued G-measurable random variable

Ψ = JJX | FK | GK.
Applying the previous argument to a well-chosen countable subset C0 of Cp(Rd) and by using the definitions of
conditional laws and conditional expectations, we have with probability one

(34) ∀h ∈ C0,
∫
〈h, ν〉dΨ(ν) = E[E[h(X) | F ]G] = E[h(X) | G].

Now C0 can be taken as the union of x→ (1+ |x|p) and of a countable convergence determining subset of Cb(Rd)
(see e.g. [1] p106-107). The property (34) can therefore be extended to all h ∈ Cp(Rd). The proof is complete
now. �

The two following Lemmas show an useful approximation result for processes on a fixed sequence of partitions
for which we didn’t find references.

Lemma 5.11. Let c be a measurable and adapted Rd-valued process defined on some filtered probability space
such that

E[

∫ 1

0

|cs|2ds] <∞.

Then

i) limh→0 E[
∫ 1

0
|ct − ct−h|2dt] = 0 with the convention ct = 0 for t < 0.

ii) There exists a sequence δn ∈ [0, 1] and a sequence of simple processes cn such that

limn→∞E[

∫ 1

0

|ct − cnt |2dt] = 0 and cnt =

n−1∑
k=0

c k−δn
n

1I[ kn ,
k+1
n )(t).

Proof. We only sketch the proof for d = 1, the generalization is straightforward. Note that it is a slight
modification of Lemma 4.4(d) p96 in [17] (see also [16] problem 2.5 p134). For i), since ct = 0 for t < 0, if
cN = c1I|c|≤N then for all h ≥ 0

E[

∫ 1

0

(cNt−h − ct−h)2dt] ≤ E[

∫ 1

0

(cNt − ct)2dt] −→
N→+∞

0.

This implies i) since the above quantity is bounded by ε for sufficiently large N ,

E[

∫ 1

0

(ct − ct−h)2dt]
1
2 ≤ E[

∫ 1

0

(ct − cNt )2dt]
1
2 + E[

∫ 1

0

(cNt − cNt−h)2dt]
1
2 + E[

∫ 1

0

(cNt−h − ct−h)2dt]
1
2

≤ 2ε+ E[

∫ 1

0

(cNt − cNt−h)2dt]
1
2 ,

and the last term goes to zero with h (see [16] p134). For the second point, define

c
(n,δ)
t =

n−1∑
k=0

c k−δ
n

1I[ kn ,
k+1
n )(t) and gn(δ) = E[

∫ 1

0

(ct − cn,δt )2dt].

Fubini Theorem implies∫ 1

0

gn(δ)dδ = E[

∫ 1

0

∫ 1

0

(ct − c(n,δ)t )2dδdt] = E[

n−1∑
k=0

∫ (k+1)/n

k/n

∫ 1

0

(ct − c(n,δ)t )2dδdt].

For t ∈ [ kn ,
k+1
n ), we have c

(n,δ)
t = c k−δ

n
and by change of variable with h = t− k−δ

n∫ 1

0

(ct − c(n,δ)t )2dδ = n

∫ t−(k−1)/n

t−k/n
(ct − ct−h)2dh ≤ n

∫ 2/n

0

(ct − ct−h)2dh.

We obtain ∫ 1

0

gn(δ)dδ ≤ E[

n−1∑
k=0

∫ (k+1)/n

k/n

n

∫ 2/n

0

(ct − ct−h)2dhdt] ≤ 2 max
0≤h≤2/n

E[

∫ 1

0

(ct − ct−h)2dt].
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Finally
∫ 1

0
gn(δ)dδ converges to zero and we can choose δn such that

gn(δn) ≤
∫ 1

0

gn(δ)dδ,

and this concludes the proof. �

Lemma 5.12. Consider the canonical space C([0, 1],Rd) endowed with the standard d dimensional Wiener
measure P0. Let (Bt)t∈[0,1] denote the canonical process, FB its natural filtration and HG be the set of Md-

valued FB-progressively measurable processes ρ such that ρρT ∈ G. Define Q̃G(1) as the set of laws of variables∫ 1

0
ρsdBs with ρ ∈ HG. Then Q̃G(1) is dense in QΓ(1)

Proof. Using Caratheodory’s Theorem together with a measurable selection result, we can parameterize points
in Γ as follows

∀Q ∈ Γ, Q =
∑m
i=1λi(Q)Pi(Q), with m , d(d+1)

2 + 1

where the λi form a convex combination and Pi ∈ G, all these functions being measurable. Let Z be the canonical
process defined on the canonical space endowed with a law in QΓ. Then there exists on an extended filtered
probability space (Ω,A, (Ft)t∈[0,1],P) a d-dimensional Brownian motion W and an F-progressively measurable

process qs such that Zt =
∫ t

0
qsdWs (see e.g. [16] Theorem 3.4.2) such that with probability 1, qsq

T
s ∈ Γ. Let

qn be a sequence of simple processes (given by Lemma 5.11)

qns =
∑n
k=1b

n
k1I

[
(k−1)
n , kn )

(s),

approximating q in the Hilbert space L2(Ω × [0, 1], dP ⊗ dt), and such that bn1 is deterministic, bnk is F(k−1)/n-

measurable and bnk (bnk )T ∈ Γ. Since the above L2-convergence implies convergence in law at time 1, it is

sufficient to prove that the law of
∫ 1

0
qns dWs is in Q̃G(1). Let B be a d-dimensional Brownian motion defined on

the canonical space, we have to construct a process τ ∈ HG such that the stochastic integral
∫ 1

0
τsdBs has the

same law as
∫ 1

0
qns dWs. Note that the law of

∫ 1

0
qns dWs is determined by the law of the vector (bnk∆n

kW )k=1,..,n

where ∆n
kW = Wk/n−W(k−1)/n. The conditional law of nbnk∆n

kW given F(k−1)/n is a normal distribution with

covariance matrix cnk = bnk (bnk )T ∈ Γ. We will construct by induction the process τ and a sequence (ĉnk )k=1,..,n

such that ĉnk is FB(k−1)/n-measurable and ĉn1 = cn1 . Assume that the process τ on [0, (k− 1)/n) and the variables

(ĉni )i=1,..,k are given and such that (
∫ (k−1)/n

0
τsdBs, ĉnk ) has the same law as (

∫ (k−1)/n

0
qns dWs, c

n
k ). Define then

τ on [ (k−1)
n , kn ) as the piecewise constant process equal to

√
Pi(ĉnk ) on the interval

(35)
[

1
n ((k − 1) +

∑i−1
q=1λq(ĉ

n
k )) , 1

n ((k − 1) +
∑i
q=1λq(ĉ

n
k ))
)
,

for i = 1, ..,m. By construction, the conditional law of n
∫ (k)/n

(k−1)/n
τsdBs given

∫ (k−1)/n

0
τsdBs is a normal

distribution with covariance matrix ĉnk and using our assumption it implies that
∫ k/n

0
τsdBs has the same law

as
∫ k/n

0
qns dWs. Next we construct a variable ĉnk+1, FBk/n measurable, such that the pair (

∫ k/n
0

τsdBs, ĉnk+1) has

the same law as (
∫ k/n

0
qns dWs, c

n
k+1). To construct ĉnk+1 with the prescribed conditional law given

∫ k/n
0

τsdBs,

it is sufficient to have a diffuse random variable FBk/n-measurable and independent from
∫ k/n

0
τsdBs. We can

construct such a variable as a stochastic integral
∫ k/n

(k−1)/n
νsdB

1
s where B1 is the first coordinate of B. For

example, define νs as the piecewise constant process taking alternatively the values 1 and −1 on the partition of
[(k− 1)/n, k/n) obtained by dividing each element of the partition given in (35) into two intervals of equal size.
Usual properties of the stochastic integral against a Brownian motion show that this variable has the required
properties, and we conclude the proof by induction. �

The latter Lemma rely on very classical density results and is reproduced here for the sake of completeness.

Lemma 5.13. Let M ∈ Sd+, and 1 ≤ p < 2 < q < +∞. Then the dWp-closure of the set

{ν ∈ ∆2
0(RK) | cov(ν) = M , ‖ν‖q < +∞} is {ν ∈ ∆2

0(RK) | cov(ν) ≤M}.

Proof. Let ν ∈ ∆2
0(RK) such that cov(ν) ≤M . Let X be a random variable with distribution ν. Define

Yn = X1I{|X|≤n} − E[X1I{|X|≤n}].

Then we can check that ‖Yn‖Lq ≤ 2n, cov(Yn) ≤ M and ‖X − Yn‖Lp −→
n→∞

0. Let P = M − cov(X). In order

to conclude the proof, it is sufficient to construct a sequence of variables Zn ∈ Lq independent of Yn such that
cov(Zn) = P , and ‖Zn‖Lp −→

n→∞
0. We would then have

dWp
(ν, JYn + ZnK) ≤ ‖X − (Yn + Zn)‖Lp −→

n→∞
0,
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and thus the conclusion. Let us now define such a sequence. Let (U1, .., Ud) be independent uniform random
variables on [0, 1], independent of the variable X. For all k ∈ N∗, define

fk : [0, 1]→ R : x→
{

0 if x ≤ 1− 1/k
k2x− k2 + k if x > 1− 1/k

.

Define then Zn =
√
P ((fn(Ui)

1/2sgn(Ui − αn))i=1,..,d) with αn ∈ [0, 1] chosen such that E[Zn] = 0. This
sequence has clearly the required properties. �

5.2. Technical proofs.

Proof of Lemma 3.7. Let us define

Dn = sup
ν∈RCn(q,C)

d2
W2

(ν,N (0, Id)).

Let (Si)i=1,..,n be an i.i.d. sequence of law µ ∈ RC1(q, C), and let Sji denotes the j-th coordinates. Note at first

that it follows from the martingale property that cov(n−
1
2

∑n
k=1 Si) = Id. In the next inequality, cq denotes

the universal constant of Burkholder’s square function inequality for discrete-time martingales (cf [6]):

E[|
n∑
k=1

Sji√
n
|q] ≤

cqq
nq/2

E[

(
n−1∑
k=0

(Sjk+1 − S
j
k)2

)q/2
] ≤

nq/2−1cqq
nq/2

n−1∑
k=0

E[| Sjk+1 − S
j
k |
q] ≤ Cqcqq.

Therefore, moments of order q are uniformly bounded independently of n. Recall that convergence in law
together with uniformly bounded moments of order q > 2 imply dW2

-convergence. Since any maximizing
sequence νn for Dn fulfills the classical Lindeberg’s condition of the the Central Limit Theorem (Theorem
VII.5.2 in [15]) for row-wise independent triangular arrays (again, since laws in RC1(q, C) have bounded q-th
order moments), we deduce that

Dn = dW2(µn,N (0, Id)) −→
n→∞

0.

Moreover, RCn(q, C) is dW2
compact, and the last assertion follows directly from Proposition 7.33 in [3]. �

Proof of Lemma 3.8. Given q > 2 and C > 0 define Λ = {ν ∈ ∆2
0 : cov(ν) ≤ Id} and recall that

RC1
q,C = {ν ∈ ∆2

0 : cov(ν) = Id, ‖ν‖q ≤ C}.

For M ∈ Md, we have obviously M](Λ) = {ν ∈ ∆2
0 : cov(µ) ≤ MMT } (recall that M] denotes the image

probability by the linear map x→Mx). Moreover, using Lemma 2.4, we have

r(MMT ) = sup
µ∈M](Λ)

V (µ) = sup
ν∈Λ

V (M]ν).

Since Λ is Wp-compact, there exists a maximum ν∗ ∈ Λ (depending on M). We deduce that

r(MMT )− sup
ν∈RC1

q,C

V (M]ν) = V (M]ν∗)− sup
ν∈RC1

q,C

V (M]ν) ≤ γdWp
(M]ν∗,M]RC1

q,C) ≤ αγdWp
(ν∗, RC1

q,C),

where α is a constant such that |Mx| ≤ α|M ||x| for all M ∈Md, x ∈ Rd. We conclude using Lemma 5.13 which
implies that

sup
ν∈Λ

dWp
(ν,RC1

q,C) →
C→+∞

0.

The measurable selection exists from Proposition 7.33 in [3] using that

(M,ν) ∈Md ×RC1
q,C → V (M]ν)

is jointly continuous when RC1
q,C is endowed with the dW2

-topology, and in particular compact. �

Proof of Lemma 3.9. Recall that p ∈ [1, 2). With the notation ∆Xk+1 = Xk+1 −Xk, we have∣∣Ψn[V ]((Xk,Fk)k=1,..,n)−Ψn[V ]((Yk,Fk)k=1,..,n)
∣∣ =

∣∣∣E[
∑n−1
k=0V (J∆Xk+1 | FkK)− V (J∆Yk+1 | FkK)

∣∣∣
≤ γE

[∑n−1
k=0E [|∆Xk+1 −∆Yk+1|p | Fk]

1
p

]
≤ γE

[∑n−1
k=0E

[
|∆Xk+1 −∆Yk+1|2 | Fk

] 1
2
]
.

Due to Cauchy-Schwarz and Jensen’s inequalities, we have

E
[∑n−1

k=0E
[
|∆Xk+1 −∆Yk+1|2 | Fk

] 1
2
]
≤
√
nE[

√∑n−1
k=0E

[∣∣∆Xk+1 −∆Yk+1

∣∣2 | Fk]]
≤
√
n

√∑n−1
k=0E

[∣∣∆Xk+1 −∆Yk+1

∣∣2] =
√
n
√
E[|Xn − Yn|2].

�
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Probabilités XXXIII, pages 334–338, 1999.

[22] M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.
[23] D.W. Stroock and S.R.S. Varadhan. Multidimensional diffusion processes. Springer, 1979.

[24] C. Villani. Topics in optimal transportation. Amer Mathematical Society, 2003.

TSE (GREMAQ, Université Toulouse 1 Capitole)
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