
HAL Id: hal-00745571
https://hal.science/hal-00745571

Submitted on 30 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reynolds number effect on the dissipation function in
wall-bounded flows

Faouzi Laadhari

To cite this version:
Faouzi Laadhari. Reynolds number effect on the dissipation function in wall-bounded flows. Physics
of Fluids, 2007, 19 (3), pp.038101. �10.1063/1.2711480�. �hal-00745571�

https://hal.science/hal-00745571
https://hal.archives-ouvertes.fr


Reynolds number effect on the dissipation function in wall-bounded flows

F. Laadhari∗
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The evolution with Reynolds number of the dissipation function, normalized by wall variables,
is investigated using direct numerical simulation databases for incompressible turbulent Poiseuille
flow in a plane channel, at friction Reynolds numbers up to Reτ = 2000. DNS results show that
the mean part, directly dissipated by the mean flow, reaches a constant value while the turbulent
part, converted into turbulent kinetic energy before being dissipated, follows a logarithmic law. This
result shows that the logarithmic law of friction can be obtained without any assumption on the
mean velocity distribution. The proposed law is in good agreement with experimental results in
plane-channel and boundary layer flows.

Despite extensive study, there remain significant ques-
tions about Reynolds number effects on wall-bounded
flows. Earlier surveys of data,1,2 indicated that Reynolds
number effects are present in the near-wall region over a
wide range of Reynolds number. The major difficulty in
drawing firm conclusions is the accuracy of the measure-
ments, which invariably are affected by spatial resolution
and other near-wall measurement issues.

Direct numerical simulations (DNS) of turbulent flows
provide detailed turbulence data that are free from such
experimental ambiguities. During the past two decades,
the investigations of wall bounded turbulent flows by
DNS have provided considerable insights into both the
statistical and structural characteristics of wall bounded
turbulence. One of the most well-studied turbulent flows
is the flow in a plane channel, which was simulated by
Kim et al.

3 and by many others since.4–6 Moderately
high Reynolds number simulations have been recently
performed and the results made available.7,8

The aim of the present study is to investigate the
Reynolds number dependence of the energy dissipation
function in a turbulent plane channel flow using the re-
sults of both available DNS databases and our own sim-
ulations conducted here in order to obtain a wider and
more complete range of Reynolds number. The simu-
lation parameters of DNS cases considered are given in
Table I.

The present numerical simulations are based on a
pseudo-spectral code using the Chebychev-tau formula-
tion in the wall-normal direction (x2) and Fourier ex-
pansion in the streamwise (x1) and spanwise (x3) direc-
tions where periodic boundary conditions are applied.9

The number of Fourier/Chebychev modes was selected
so that the energy spectra are at sufficiently small val-
ues at large wave numbers, particularly near the wall.
The flow was driven by a constant streamwise pressure-
gradient ∂P/∂x1.

The mean energy dissipation rate per unit volume φ,
for incompressible flow, is given by:10

φ = 2µDijDij + 2µdijdij

TABLE I: Parameters of the turbulent plane channel DNS
datasets used. Reynolds numbers: Reb

= Ubh/ν, Reτ =
uτh/ν.

Reb
Reτ Symbols

Present study 1015 72

1300 90

1800 120

2480 160

2830 180 ◦
3830 235

11000 590

20100 1000

30600 1450

Moser et al. (Ref. 4) 2800 178

6880 392 △

10950 587

Hoyas and Jimenez (Ref. 8) 10060 547

18520 934 ▽

43600 2003

Iwamoto et al. (Ref. 6) 1610 109

2290 150

5020 298 ♦

6960 396

12140 643

Tanahashi et al. (Ref. 21) 7030 400 �

17390 792

using standard Cartesian tensor notation and summation
on repeated indices. µ is the dynamic viscosity, Dij and
dij are respectively the mean and fluctuating part of the
velocity deformation tensor. The first term on the right-
hand side represents the part directly dissipated by the
mean flow φM , and the second, φT , the turbulent part.
The two terms are usually decomposed as the sum of
homogeneous and inhomogeneous parts as follows:
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φM = µ
∂Ui
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∂Ui
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∂xj
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.

For fully turbulent flow in a plane channel, the variation
of mean values in the streamwise and spanwise directions
are zero. The mean velocity reduces to the streamwise
component U1 which, like the Reynolds stresses, depends
only on the wall-normal position x2. Since the gradient of
the Reynolds stresses is zero at the channel walls, located
at x2 = ±h, the dissipation function Φ, defined as the
integral over the channel cross-section of the mean energy
dissipation rate, is given by

Φ =

∫ +h

−h

[

µ

(

dU1

dx2

)2

+ µ
∂ui

∂xj

∂ui

∂xj

]

dx2

For the same reason, the turbulent kinetic energy equa-
tion (Ref. 11, Eq. 5) integrated across the channel, shows
that the turbulent contribution to the dissipation func-
tion is equal to the integral of the turbulent kinetic energy
production:

ΦT =

∫ +h

−h

µ
∂ui

∂xj

∂ui

∂xj

dx2 =

∫ +h

−h

−ρu1u2

dU1

dx2

dx2,

where ρ is the fluid density and u1u2 the Reynolds shear
stress, and finally

Φ =

∫ +h

−h

[

µ

(

dU1

dx2

)2

− ρu1u2

dU1

dx2

]

dx2.

Using the integrated streamwise mean momentum equa-
tion:

µ
dU1

dx2

− ρu1u2 = −τw
x2

h
,

where τw is the mean wall-shear stress, the dissipation
function can now be easily evaluated:

Φ =

∫ +h

−h

−τw
x2

h

dU1

dx2

dx2.

The integration by parts with the no-slip conditions at
the walls leads to

Φ =
τw
h

∫ +h

−h

U1dx2 = 2τwUb

where Ub is the bulk velocity. This is the classical relation
for the loss of power in a duct, which is equal to the
product of the mean pressure gradient −∂P/∂x1 = τw/h
by the flow rate 2hUb.
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FIG. 1: Evolution with the friction Reynolds number Reτ of
the mean shear Φ+

M
(open symbols) and turbulent Φ+

T
(filled

symbols) contributions to the nondimensionalized dissipation
function. ——–, [Eq. (0.1)]. Symbols in Table I.

Note that an identical relation can be obtained for the
turbulent flow in a circular pipe (see for example Ref.
12), while for the turbulent boundary layer on a flat plate,
the dissipation function is related to the streamwise vari-
ation of the mean and turbulent kinetic energy (see Eq.
3.15 in Ref. 13).
In a dimensionless form, the dissipation function is now

given by

Φ+ =

∫ +h+

−h+





(

dU1

+

dx+
2

)2

− u1u2
+ dU1

+

dx+
2



dx+
2 = 2U+

b ,

where the superscript (+) denotes normalization by the

friction velocity uτ =
√

τw/ρ and the kinematic viscosity
ν.
Figure 1 shows, in a semilogarithmic plot, the evolu-

tion with Reτ of Φ+
M and Φ+

T , the mean and turbulent
contributions, respectively. This figure highlights that
for Reτ > 500, when Φ+

T becomes greater than Φ+
M , Φ+

M

reaches a constant value and Φ+
T follows a well defined

logarithmic evolution. The DNS results give the two re-
lations

Φ+
M = 18.27

Φ+
T = 5.2 ln

Reτ

512
+ 18.27 (0.1)

These results are not too surprising according to the
profiles of the squared mean velocity gradient and the
mean production for Reτ > 500 shown in figure 2. In
the region y+ = h+ − |x+

2 | 6 30 the profiles exhibit uni-
versal behavior. Above this position, the square of the

mean velocity gradient decreases faster than y+
−1

, giving
a negligible contribution to the integral, while the mean
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FIG. 2: Profiles of the mean-square velocity gradient and the
mean production for Reτ > 500.
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FIG. 3: Reynolds number evolution of U+

b
, the bulk veloc-

ity normalized by friction velocity. Experimental data: (+),
Zanoun et al. (Ref. 14); (×), Bakken et al. (Ref. 15); (�)
DNS results of Spalart (Ref. 20); ——–, [Eq. (0.2)]. Other
symbols are in Table I.

production decay is close to y+
−1

in a region whose extent
increases with Reynolds number.
The skin friction coefficient Cf , based on the bulk ve-

locity is given by:

U+
b =

√

2

Cf

= 2.6 lnReτ + 2.05 (0.2)

and might be extrapolated to arbitrarily large Reynolds
numbers. This logarithmic law is compared in Fig. 3 to
the channel-flow experimental data of Zanoun et al.,14

and Bakken et al.
15. Agreement with the data is within

±1% for Reτ > 500.
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FIG. 4: Skin-friction coefficient. ——–, logarithmic friction
law from Eq. (0.2); − · − · − · − best fit of boundary layer

measurements of Österlund et al. (Ref. 19). Other symbols
are the same as in Fig. 3.

This finding shows that for Reτ > 500, the dissipation
function is free from low Reynolds number effects and
corroborates the classical logarithmic law of friction with-
out the assumption on the mean velocity profile used in
the classical Prandtl-von Kármán analysis,16,17 based on
the logarithmic law of the wall

U
+

1 =
1

κ
ln y+ +A

and the defect law

U
+

c − U
+

1 = −
1

κ
ln

y

h
+B,

where Uc is the mean centerline velocity. The logarith-
mic skin friction law is obtained by assuming very large
Reynolds number and combining the two equations (see
Ref. 18, page 573):

U+
b =

1

κ
lnReτ +A−

1

κ
.

Hence, the factor 2.6 in relation (0.2) corresponds to a
von Kármán constant κ = 0.385 which is close to the ex-
perimental value of 0.38 obtained by Österlund et al.

19 in
a zero pressure-gradient turbulent boundary layer. How-
ever, a small discrepancy with experiment is found for the
value of the additive constant A since relation (0.2) leads

to A = 4.65 while Österlund et al.
19 obtained A = 4.1.

Another noteworthy feature is the good agreement
of the skin-friction law obtained from Eq. (0.2) with
the boundary layer skin-friction coefficient based on
Ub = (1− δ1/δ)U∞, where U∞, δ and δ1 are respectively
the free-stream velocity, the boundary-layer thickness
and the displacement thickness. This is obvious from
Fig. 4 where the experimental data of Österlund et al.

19
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and the DNS results of Spalart20 are compared to the
present relation. This finding requires further analysis
since the skin-friction coefficient in this flow is given by
the streamwise mean-momentum variation.
To summarize, the logarithmic law of friction for plane

channel flow is the direct consequence of the logarithmic
evolution of the dissipation function and more precisely of
the turbulent part. The proposed law of friction is found
to be in good accordance with boundary layer results.
A more detailed study including numerical and accurate
measurements would be useful, particularly for Poiseuille

pipe flow.
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