
HAL Id: hal-00745561
https://hal.science/hal-00745561

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Multiple Applications in a Service Platform
Jacky Estublier, German Vega

To cite this version:
Jacky Estublier, German Vega. Managing Multiple Applications in a Service Platform. PESOS 2012
- International Workshop on Principles of Engineering Service-Oriented Systems, Jun 2012, Zurich,
Switzerland. pp.36-42, �10.1109/PESOS.2012.6225937�. �hal-00745561�

https://hal.science/hal-00745561
https://hal.archives-ouvertes.fr

Managing Mutiple Applications in a Service Platform

Jacky Estublier, German Vega

Grenoble University. LIG.

F-38041 Grenoble, France

{Jacky.Estublier, German.Vega}@imag.fr

 Abstract—Information hiding and hierarchical

decomposition are the corner stone of Software Engineering

best practices. These principles have been applied in methods,

architectures, programming languages, and run-time

platforms. It is therefore a big surprise to notice that the recent

dynamic service platforms, like OSGi, do not make use of these

principles. In OSGi, all services are visible; a client asking for

an interface will be wired to any service, randomly selected

and implementing that interface,which makes almost

impossible protection and encapsulation. Nevertheless, OSGi is

very successful for its almost unique capability to support

dynamicity; and because the current practice is to run a single

application per platform. Unfortunately, the future of

gateways, like OSGi, is to manage the “discovery”, access and

control of resources (logical as well as physical (sensors,

devices)) shared by many applications. In the near future,

OSGi will have to scale from a light weight mono-application

gateway to a full-fledged dynamic platform. We have

developed a layer on top of OSGi called APlication Abstract

Machine (Apam) which provides OSGi dynamic capabilities,

but also introduces a composite concept allowing multiple

applications to cover the range isolation/collaboration from

“black-box” (information hiding and hierarchical

decomposition) to “scrambled eggs” as in service platforms,

and through a variety of grey and white boxes with variable

degrees of collaboration, sharing and control.

The paper presents the state of practice, the challenges future

dynamic platforms have to address, and how the Apam

platform provides a solution to these issues. An assessment of

the first Apam experimentations concludes the paper.

Keywords—service; service platform; service platform;

dynamic application; encapsulation; sharing; protection;

composite

I. INTRODUCTION

If there is something is to retain from the last 40 years of
software engineering it should be the principles of
information hiding and hierarchical decomposition. Their
systematic application avoided the disaster, announced since
the 70’s, of being unable to manage large programs (i.e.
larger than a few thousands lines of code!).

Information hiding stipulates that a piece of code (that we
will call a component) must publish (make visible) only the
information strictly needed to use it (that we will call an
interface). All the remaining: internal variables, code,
methods and so on must be hidden from the component’s
users. It allows the component to evolve (improvements, bug
fixes, additional features if published in other interface(s))

without impact on its users, as long as the interface is
unchanged.

Hierarchical decomposition stipulates that a component
can be made of other components; these inner components
being hidden from external users using the encapsulation
principle. Therefore a composite component cannot be
discriminated from an atomic one. This principle allows
scalability; at a given level, the apparent complexity of the
system is only relative to the number and complexity of the
components “visible” at that level.

These principles are pervasive and can be found, in
different flavors, in methods, architectures, programming
languages, and run-time platforms. After all, this is no
surprise since these principles are universal and are adopted
in all fields.

It is therefore a big surprise to notice that the recent
dynamic service platforms, like OSGi [1], do not make use
of these principles. It is true that a service applies the
information hiding principle: a service has an interface and
hides its content, but there is no hierarchical decomposition
and no composite service.

Indeed, service composition is primarily achieved by
orchestration [2]. An orchestration aggregates the
functionality of several services and is itself published as a
service, so both principles seem to be satisfied.
Unfortunately, an orchestration does not hide (encapsulate)
the services used; it creates a new higher level service, but it
does not reduce complexity since it adds one service in the
system, and removes none.

In traditional hierarchical decomposition, at each level of
abstraction the number of visible components is relatively
constant so that the perceived complexity at each level of
abstraction is kept relatively constant. In contrast, with
current service composition approaches when new higher
level services are created, the number of registered services
increases; there is not a new level of abstraction and the
perceived complexity keeps increasing.

Similarly, in hierarchical decomposition the composite
object provides a context and scope for resolving the
required dependencies of its constituents. In contrast, in
service oriented platforms, like OSGi, when a client, at
runtime, asks the service registry for an interface “A”, it will
be bound to any randomly selected published service
providing “A” and satisfying the request, without
considering the context of the client, and irrespective of who
published “A”, and for which purpose. If no service “A”
exists, the platform simply returns “null” to the client.

This brutal, simplistic and non-deterministic behavior is
(apparently) in strong opposition with the experience and the
best practices accumulated during the past decades.

Despite this apparently unacceptable behavior, service
platforms are very successful. This is because, in practice, a
platform supports a single application made of components
of similar granularity or that access globally available
services in which the scope is controlled by partitioning
administrative domains (WS, SCA). In particular, most
OSGi based applications make the assumptions that the
platform contains a single application [3], and that there are
not too many services. In this case, and despite the lack of
any encapsulation mechanism, the application is isolated
from other applications (being alone!) and runs only its
components (being the only ones explicitly deployed before
execution). These applications mostly take advantage of the
dynamic deployment and update facility, which explains why
OSGi has been adopted by embedded systems and by big
applications like application servers (EJB), data bases
(Oracle), IDE (Eclipse), for which the “mono application
hypothesis” holds.

Unfortunately the simplicity and mono-application
assumptions will not remain valid for long; first because
complexity and scale increases; and second because a
platform will have to support multiple applications. For
example, at home, the set-top-box currently limited to TV
decoding, will be in charge of “discovering” all the devices
in the house, and to support all the applications that,
potentially, will make use of these devices. It will not be
possible to have a different platform for each one of these
applications because they will have to share the same
devices, and only a single authority can arbitrate the access
and sharing (not talking about the cost and energy
consumption of multiple platforms).

Ubiquitous computing, to a large extent, is related to the
management of sensors and actioners whose number, nature,
location and availability is unknown statically, and is
changing over time (e.g. mobile devices). Such an
application domain requires a platform in which devices and
components can appear and vanish; be substituted or updated
during the application’s execution; such a platform is called
a dynamic platform and OSGi is today the de-facto standard
(low-level) dynamic platform. In the near future, OSGi will
have to scale from a light-weight mono-application gateway
to a full-fledged dynamic platform.

This paper presents Apam (APlication Abstract
Machine), which is a layer on top of a standard OSGi
implementation that provides the functionalities required for
a general and full-fledged dynamic platform. More
specifically, this paper addresses the topic of managing
multiple applications in a service platform, using composite
services. The paper presents the Apam concept of composite
service and shows how this concept allows a service
platform to manage multiple applications.

II. ENCAPSULATION MECHANISM

If the concept of composite service is defined to satisfy
the hierarchical encapsulation principle, it should have at
least the following properties:

 It “contains” other services (atomic or not),

 It hides the services it contains,

Before defining what a composite service should be, let
us see first what a service is. In OSGi, a service definition is
the tuple serviceDefinition==<interface, properties> and a
service is defined as a tuple published in the “registry”:
service==<serviceDefinition, address>, with interface being
a Java interface, properties=={<name, value>} describes the
non-functional properties of that service, and address is the
address of a Java object, instance of a class implementing (in
the Java sense) the interface. Therefore, by nature, a service
platform enforces a very strong information hiding
mechanism: a service only shows what is published in the
registry. Most notably, the code implementing the service
(that we will call an implementation) is not visible. Indeed, it
is the fundamental principle of a dynamic service platform: a
service client, at run-time asks for a service, not for an
implementation. A service request is the tuple
serviceRequest==<interface, logicalExpression>, which
means that the client wants a service that publishes that
interface, and which properties satisfy the logicalExpression.
In OSGi the logical expression is a first order logical
expression over properties in LDAP syntax.

OSGi supports very few concepts, essentially bundles
and services. A service is defined as <interface, properties,
address>, and the concept of service implementation is
simply undefined. With this definition, the concept of “a
service contained in a service” barely makes sense.

We have to be more precise, and we introduce the
concepts of service implementation and service instance. Let
us define the concept of service implementation
(implementation for short): implementation==<class,
{serviceDefinition}, {serviceRequest}>, with
serviceDefinition the set of services provided by this
implementation, class a class implementing (in the Java
sense) all the interfaces of the provided services, and
serviceRequest the set of services that may be needed during
execution of that implementation; when the implementation
asks for a service

1
, this service must have been registered and

it must satisfy the request.
A composite implementation is defined as:

compositeImplementation==<mainImplem,
{serviceDefinition}, {serviceRequest}> where class is
replaced by mainImplem. The main implementation
(mainImplem) must provide (at least) all the composite
serviceDefinition. By definition, the main implementation is
contained in the composite. The services required by an
implementation contained in the composite but not declared
in the composite serviceRequest, will be considered as
contained in that composite. A composite implementation is

1
 More precisely, when the thread that is executing an instance of the

implementation class is asking the platform to get a service.

itself an implementation (its class being the class of its main
implementation), and therefore it can contain other
composite implementations. The first property of composites
is satisfied (a composite service is a service containing other
services). Note that this way of defining a composite is
different from most composite definitions because it does not
define, before execution the list of the implementations it
will contain. Only the main implementation is statically
defined, all other implementations will be selected
dynamically; the composite definition gives the criteria to
decide, at run time, what is inside, and what is outside the
composite. This property is fundamental in a dynamic
platform, since the services available at execution cannot be
known statically.

The second property (a composite hides its content) is not
a “natural” property in a service platform because the
“registry” is a flat structure containing all the services
available at any point in time; all services, contained or not
in a composite, are visible and usable by anyone. We cannot
use the OSGi registry, we developed a registry which
“understand” our composite concept.

To the Apam registry, the composite constitutes a
visibility scope. For example, suppose that an
implementation IY, pertaining to a composite CY asks for a
service Z. This request will be executed inside CY: it will be
successful only if a Z implementation exists in CY or if it is
possible to deploy one inside of CY. In the other cases, IZ is
non existant or not visible, the service request fails. If Z
pertains to the CY {serviceRequest}, the same algorithm is
performed, not in CY but in the scope of the composite that
contains CY. With this algorithm, an implementation belong
and therefore is contained in all the composites that deployed
it; the platform may hold different logical copies of the same
implementation; but the composite still “owns” its
implementations; it can delete, update or substitute them
without any impact on the other copies and the other
composites. A third party composite can be executed on our
platform without being “messed up” with the other
composites already running on that platform, even if they use
the same implementations (with the same or different
versions).

A composite implementation is an implementation in all
aspects, and as such it can be instantiated, leading to a
composite instance. A composite instance is an instance
containing other instances, and at least one instance of the
main implementation.

Figure 1: composites implementations and instances

In figure 1, it is supposed that CY {serviceRequest}
includes Z, therefore implementation IZ is external to the
composite. CY delegates to IY its Y interface, and promotes
its implementation that requires Z.

III. VISIBILITY CONTROL, PROTECTION AND SHARING

In traditional platforms, each application (composite) is
autonomous and runs in its own isolated space. In a service
platform it is the opposite: all applications run in the same
space and freely share everything. Autonomy and isolation
are part of the best practices and should be applied whenever
possible; but in a service platform, sharing is often desirable,
and in ubiquitous computing, sharing is often required (e.g.,
sharing sensors). Therefore, a multi-application dynamic
platform should allow designers to select and control the
relevant strategy between, and including, these two extremes.

In Apam, with respect to the platform, a composite can
be a lender and/or a borrower, or none. A composite is a
lender if it allows other applications to use the elements it
owns. A composite is a borrower if it prefers using an
existing element (pertaining to another composite) instead of
creating its own one. The Apam visibility control relies on
the way resolution is performed.

When a client instance performs a serviceRequest, Apam
does its best to return a service provider (an instance)
satisfying the request, i.e., providing the required resource
and satisfying the constraints. To do so, Apam performs as
follows.

 A visible instance satisfies the request; it is returned.
Otherwise,

 A visible implementation satisfies the request; an
instance of that implementation is created and
returned. Otherwise,

 An implementation satisfying the request is found in
a visible repository; that implementation is deployed,
an instance is created and returned. Otherwise,

 The resolution fails.

The issue is therefore to define what “visible” means.

A. Instance Visibility

A client instance pertaining to a composite instance cc
can see an instance inst pertaining to a composite cp if

 inst pertains to cc (cc = cp) or

 cp lends inst to its friends, and cp is a friend, or

 cp lends inst to the application, and cc and cp pertain
to the same application,

 cp lends inst to the whole platform.
cp is a friend of cc if a friend relationship is established

from cc to cp. An instance pertaining to a single composite
instance, the instances in a platform are organized as a forest.
An application is defined as a tree in that forest (i.e., a root
composite instance). Therefore, cc and cp pertain to the same
application means they pertain to the same instance tree.

A composite can define which instances can be lent to
other composite instances using the predefined attributes
localInstance, friendInstance and applicationInstance. The

value of these attributes is an expression to be applied to
instance properties. An instance cannot be lent if it matches
the localInstance expression; it can be lent to friend
composite instances if it matches the friendInstance
expression; it can be lent to any composite of the same
application if it matches the applicationInstance expression;
and finally it is lent to the whole platform if it matches none.
If it matches more than one expression, the most restrictive
one is assumed.

Symmetrically, a composite designer must be able to
decide whether or not to borrow the instances lent by other
composites. For this purpose, he can specify the property
borrowInstance=<expression>. If the requested resource
matches the expression, the platform must try to borrow an
instance if it exists. If the expression is not matched, an
instance must be created. By default, the expression is “true”,
i.e., by default everything is shared.

B. Implementation Visibility

If no satisfactory instance is available, the platform tries
to find an implementation from which it is possible to create
an instance satisfying the request. In Apam, instances inherit
the properties of their implementations, and implementations
explicitly declare the properties specific to its instance.
Therefore, from a serviceRequest Apam can compute the
corresponding implementationRequest, i.e. a request with the
same resource and with constraints that apply to
implementations.

Therefore, a client instance pertaining to a composite
implementation CC can see an implementation I pertaining
to a composite implementation CP if

 I pertains to CC (CC = CP) or

 CP lends I to its friends, and CP is a friend, or

 CP lends I to the whole platform.
CP is a friend of CC if a relationship friend is established

from CC to CP. A composite implementation can define
which implementations can be lent to other composite
implementations using the attributes localImplem and
friendImplem. The value of these attributes is an expression.
An implementation cannot be lent if it matches the
localImplem expression; it can be lent to friend composite if
it matches the friendImplem expression; it is lent to the
whole platform by default. If it matches both expressions, it
is supposed to be local.

If no satisfactory implementation has been found, the last
trial is to find, among the available repositories, an
implementation matching the implementationRequest. To
that end we have extended the OSGi bundle repository with
the implementation properties; this information is
automatically computed during build by a Maven plug-in.
Therefore, each repository is managed as an Apam registry.
If a satisfactory implementation is found, it is dynamically
deployed (in CC), and instantiated (in cc).

Symmetrically, an application designer must be able to
decide whether or not to borrow the implementations lent by
other composites. For this purpose, it can specify the
property borrowImplem=<expression>. If the requested

resource matches the expression, the platform must try to
borrow an implementation. If not matched, or not existing, it
must be deployed. By default, the expression is “true”.

IV. MULTIPLE APPLICATION CONTROL

The challenge of a multi-application dynamic platform is
to continue satisfying Software Engineering’s best practices
(which call for full isolation), while in a dynamic
environment (which requires sharing); an apparent
contradiction. Any non-trivial application is made of a
number of clearly identified parts. Each application and
composite designer must identify which parts must be private
and hidden, which parts can be lent to others; and which
parts can be borrowed. In Apam each “part” is modelled as a
composite (implementation and instance), with its
lender/borrower characteristics.

To illustrate, let us suppose the following scenario. In a
house we have different kinds of display screens (e.g., TV,
tablet, PC, smart phone), different audio renderers (e.g., TV,
hifi) and two running applications: a media centre (MC) and
an energy controller (EC).

The EC application contains its main implementation
mainEC and requires a display service for configuring the
application; EC distribution contains implementation
ECDisplay which provides the display service on the tiny
display embedded in the heater.

Media Centre (MC) is an application made of a number
of implementations including composites MCAudio and
MCVideo. MC holds the business part of the application
(play lists, libraries, players, and so on) and requires an audio
and a video device. MCAudio provides the video interface; it
dynamically “discovers” the video devices and redirects the
video streams it receives to the “best” device.

In this example, EC is a black box. EC wants a display; if
possible the one available in the current context; if none are
available, ECDisplay should be used. This strategy can be
expressed in Apam as follows:

compositeImplementation EC2

repository = http://.... ;

mainImplem=mainEC ;

//EC is a black box; but display can be borrowed

borrowImplem=(interface=display);

borrowInstance=false;

localImplem=true; localInstance=true;

The repository attribute expresses where the
implementations should be deployed from if needed. The
only implementation that can be borrowed is the one
implementing display (borrowImplem = (interface =

display)). If a display exists in the platform it will be used
(MCVideo), otherwise the display implementation found in
the repository (ECDisplay) will be deployed and will be
private to EC. All other implementations must either already
be inside EC, or must be deployed from the repository.

2
 Currently, composite descriptions are in XML and expressions are in

LDAP syntax; the syntax used here is for readability only.

http://..../

No instance can be borrowed (borrowInstance=false);
the instances required by EC must all be created inside EC.
MC can be defined as follows:

compositeImplementation MC

repository = http://.... ;

mainImplem=mainMC ;

borrowInstance=false; borrowImplem=false;

 localImplem=true ;

//only audio and video are visible by all

localInstance=(name!=audio && name!=video) ;

With this description, all implementations used by MC

must pertain to MC (borrowImplem=false) and are not lent
(localImplem=true); all instances must pertain to MC
(borrowInstance=false) but the instances providing the
audio and video services (which are also composites) are
visible and usable by all.

compositeImplementation audio

dynamicBind= audio;

repository = http://.... ;

mainImplem=mainAudioMng ;

substitute=audio;

borrowInstance=true; borrowImplem =true;

No constraints are set by the audio composite on the

visibility of its devices. It means that the different devices are
visible by all. Audio is a white box that allows its users to
directly address its components (here the audio devices).

The dynamicBind primitive expresses that audio devices
that appear / disappear dynamically must be automatically
connected / removed to/from the audio composite; substitute
means that an audio device that is used and that disappears
must be substituted dynamically by another one and the
audio flow redirected to the new device. The details of the
dynamic behavior are not the topic of this paper and will not
be described any further.

V. THE APAM PLATFORM

Apam differs from usual service platforms on different
aspects. First, it clearly distinguishes between service
specification, service implementation, and service instances.
They are all first class objects, they all can be described,
packaged, stored in repositories, selected, deployed,
instantiated, and so on.

Second, Apam introduces the concept of composite,
again clearly distinguishing composite implementations from
composite instances. Composites are first class objects too;
they can be described, packaged, stored in repositories,
selected, deployed, instantiated and so on. In Apam, the
word component is generic and applies to any one of the
above concepts, be it, specifications, implementations or
instances, either atomic or composite.

Third, the platform is in charge of not only managing
existing services, but also of instantiating and deploying
components when needed.

Fourth, Apam reifies all these concepts and their
relationships into an Application State Model (ASM)
causally connected to the underlying OSGi platform(s). The

ASM represents a high level fully reflexive view of the
current state of the system under execution.

The first need of composites is the support of the
traditional principles of encapsulation and hierarchical
decomposition which are well established in Software
Engineering. To that end, a composite must be of the same
nature of the objects it contains. Indeed, in Apam, the three
basic entities (specification, implementation and instance)
are each extended (in the Java sense) by their associated
composite. Therefore, any operation that can be performed
on an atomic concept can be performed on its composite. For
example, a composite implementation can be deployed and
instantiated exactly in the same way as atomic
implementations. For its users, atomic and composite are
identical, and in general do not need to be distinguished.

From a technical point of view, components (atomic and
composite) are described (as XML files) in the development
environment. Building a component

3
 generates a bundle

containing, as meta-information, the associated description.
It means that when a component is deployed in OSGi, Apam
is notified and reads the associated description. Therefore
Apam contains a model of the current state of the system
(ASM) but also an Application Component Model (ACM)
containing the descriptions associated with the deployed
components (whether currently used of not, instantiated or
not). The ACM expresses both the consistency constraints
the ASM must satisfy and the management strategies and
rules governing the system’s evolution. These rules include
the visibility and protection as exemplified in this paper, but
also the dynamic rules (see the audio composite above), and
other rules. The ACM is reflexive: it is possible at run-time
to observe the component model and to change the
component and composite description, making rules fully
dynamic too. When the ACM is changed dynamically, the
ASM’s consistency is checked (errors, if any, are notified but
not fixed), and the new rules and strategies are immediately
effective. This is an unusual property that can be used for the
development of “meta rules” governing, for example, an
autonomic system. This is an ongoing research activity, not
presented here.

An important property of composites is that they factor
out properties and strategies common to the whole
composite. In this paper, out of visibility and protection, we
sketched the deployment strategy (modeled as the repository
attribute) and the dynamic strategy (modeled as the
dynamicBind and substitute attributes), but other strategies
are currently defined (distribution, recovery, autonomy), and
others can be added. The system is extensible; each class of
strategy is modeled by an independent model, interpreted by
a specific manager. A manager is an Apam plugin, and
Apam has a protocol for managers to synchronize and
cooperate if needed. This is not described in this paper.

3
 We have developed a Maven plugin that performs these actions

transparently. A bundle can contain many components; a “specification

component contains the interface classes and the description; a “pure

composite” bundle only constrains the meta-information, but can still be

stored in repositories and deployed, as any other component.

http://..../
http://..../

In Apam, an application is simply a high level composite;
an application can be used as a component of another higher
level application. The platform itself is modeled as the root
composite having as components all the first level
applications deployed and/or running in the platform.
Therefore, each composite (application) can define its
isolation/collaboration strategy, but also the platform (the
root composite) can define the “by default”
isolation/collaboration strategy to be satisfied in this
platform.

The Apam system is developed on top of iPOJO and
extends the iPOJO system [4][5] (which itself extends OSGi
[1]). Components are built under Eclipse using Maven; the
Apam maven plugin injects code into the implementation
(Java) classes. It is the injected code that calls Apam when a
dependency needs to be resolved. Following the POJO (Plain
Old Java Object) approach, the source code does not contain
any information related to dynamicity, protection, structure
and so on; implementations only contain the business code.

The experimentations so far have shown that the Apam
system is both very efficient and flexible. The overhead
when calling a method in another component (run-time
performance) is the same as iPOJO (1.8.0 on Felix 3.2.2), but
about 100 times faster than SCA [6] (Tuscany 1.3.2). The
memory overhead is about 10% more than iPOJO, but 50%
less than Tuscany. A more detailed account of performance
comparisons is available in [7].

The current work is twofold: make Apam core robust
enough to be used as an open research platform. Apam is
extensible; research in under way to develop other managers
(other non-functional aspects) and to experiment in the
domain of pervasive and autonomic computing.

 Documentation for Apam is available at
http://wikiadele.imag.fr/index.php/Apam; the product will be
available soon in the Lig forge.

VI. RELATED WORKS

Our approach builds on the many works on component
models [8][9] related with encapsulation and hierarchical
decomposition. We are particularly interested in the new
requirements brought by dynamic and ubiquitous
applications.

Work on dynamic component models has concentrated
on the run-time reconfiguration of the application
architecture [10][11], through the use of a reflective
component runtime [12][13]. Our work on the Apam runtime
platform pertains to this line of work, although this is not the
focus of this paper.

Less attention has however been paid to the new
requirements in terms of isolation, protection and visibility
for multi-application dynamic platforms. Most dynamic
component models use a strict black box approach for run-
time composites like Sofa [14], or iPOJO composites [15]
with the exception of Fractal [16] which allows for global
shared instances.

Other approaches, like SCA [6] have tried to mix the
dynamic capabilities of service platforms with the
hierarchical decomposition of component models. However

they propose to use a static black-box assembly of
components at the lower granularity level, and a global scope
for registered services.

Our work is also inspired by management of scope and
visibility in programming languages [17], particularly its use
to enforce isolation [18].

VII. CONCLUSION

Apam has been designed and implemented as a high level
dynamic service platform in which application designers can
structure their applications expressing to which extent each
part (composite) must be isolated, must contribute to the
platform (lending its components), must borrow platform
components, or any mixture thereof. These features rely on
the composite concept (implementation and instance). The
main duty of composites is to factor out the properties and
the management strategies to be applied on the components
it contains.

Among the properties and strategies that can be
associated with composites, the two major ones discussed in
this paper are (1) structuring applications and (2) managing
the level of isolation/collaboration between applications
running simultaneously on the same platform.

The first need calls for the support of the traditional
encapsulation and hierarchical decomposition principles. An
Apam composite being a special case of components,
recursive decomposition is “natural”. Indeed, in most cases,
there is no need to make the difference between atomic and
composite components and the Apam resolution mechanism
returns indifferently one or the other. However, traditional
hierarchical decomposition also imposes a “black-box”
approach, i.e., components contained in a composite are
neither visible nor shared by components pertaining to other
composites. This strict hierarchical decomposition leads to a
partitioning that prohibits collaboration and sharing which is
contrary to the needs of a dynamic platform that manages
devices and services potentially used and shared by all the
applications running of that platform..

The second need, which is managing the level of
isolation/collaboration between applications, requires
flexible mechanisms. Unfortunately, the usual service
platform strategy where everything is visible and shared
cannot be satisfactory when more than one application is
running. To that end, Apam composites can express two
classes of properties.

Lending components to the platform. A composite can
express to which extent “its” components can be used by
other composites. Apam provides 3 levels of visibility for
both implementations and instances: default (visible by all),
friend (only visible by composites with a friend relationship),
and local: not visible at all. Instances have a 4th level of
visibility: application (the instance is visible in the same
instance tree).

Borrowing components from the platform. A composite
can express to which extent it can borrow (use) visible
components pertaining to other composites running on the
platform. This is expressed by the borrow attribute. This
property is also called opportunism since it consists in using

those services already running and available during
execution, instead of installing and instantiating those
planned before execution. Opportunistic strategies may be
required to improve efficiency, to support collaboration, to
avoid conflicts or simply because the application cannot
instantiate the needed service (e.g., devices).

These attributes allow composites to be very fine grained
in expressing their strategy, even without the full knowledge
of its future components. With these features, a composite
can use the full range of isolation/contribution.

On one extreme, “black-box”, composites are defined
with the attributes localImplementation, localInstance, set to
true (i.e. no contribution) and borrowImpementation and
borrowInstance set to false (i.e. no opportunism).

On the other extreme, the “scrambled eggs”, Apam
allows a complete mixture of implementations and instances
as found in service platforms. It is the default in Apam; when
running only legacy service applications, the platform
contains only the root composite (the platform itself) and the
attributes above with their default value. Therefore, iPOJO
and OSGi legacy service-based applications run as usual;
they only have to be rebuilt with our plugin. Any
intermediate situation can be defined creating the “right
composites” and setting these attributes with the “right
expression”.

A major issue with opportunistic applications is that they
are dependent on the platform’s context, and (usually) crash
or freeze when required services are missing. In Apam, even
opportunistic composites can provide the repositories
containing its default distribution. If the required service is
found it is used (opportunism); if missing the platform will
deploy, install and instantiate the one found in the provided
repositories. It allows applications to be collaborative,
dynamic and opportunistic, without compromising
availability and increasing reliability and resilience.

Conversely, well defined composites can increase their
consistency and resilience, still executing in a dynamic
platform with sharing and opportunism. Consistency can be
increased because opportunism allows sharing the right
service instead of deploying another one that can conflict
with the one in place; resilience can be increased, relying on
dynamic substitution toward alternative services unknown at
development time.

The Apam platform has been developed and
experimented. Even if preliminary, the experimentations are
satisfactory enough to be confident that the challenge
identified in the introduction can be met: getting both the
software engineering best practices and the dynamic and
opportunistic facilities in a multi-application dynamic
platform.

REFERENCES

[1] OSGi Alliance, “OSGi Service Platform Core
Specification Release 4”, http://www.osgi.org, August
2005.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F.
Leymann, “Service-Oriented Computing: State of the

Art and Research Challenges”, IEEE Computer,
November 2007, pp. 38-45.

[3] P. Kriens, “Nested frameworks”,
http://www.osgi.org/blog/2010/01/nested-
frameworks.html, 2010

[4] P. Lalanda and J. Bourcier, “Towards autonomic
residential gateways”, IEEE International Conference
on Pervasive Services, 2006, pp 329-332.

[5] Apache Felix iPojo, http://felix.apache.org/site/apache-
felix-ipojo.html

[6] OASIS, “Service Component Architecture Assembly
Model Specification version 1.1” http://docs.oasis-
open.org/opencsa/sca-assembly/sca-assembly-1.1-
spec.pdf

[7] J. Estublier, G. Vega. Reconciling Components and
Services. The Apam Component-Service platform .
Submitted to SCC 2012

[8] I. Crnkovic, S. Sentilles, A. Vulgarakis and M.R.V.
Chaudron, “A Classification Framework for Software
Component Models”, IEEE Transactions on Software
Engineering, Vol 37, No. 5, September 2011.

[9] K. Lau and Z. Wang, “Software Component Models”,
IEEE Transaction on Software Engineering, Vol. 33,
No. 10, October 2007.

[10] J. Magee and J. Kramer, “Dynamic structure in
software architectures”, Proceedings of the 4th
symposium in Foundations of Software Engineering.
1996

[11] P. Oreizy, N. Medvidovic, R. Taylor, “Architecture-
Based Runtime Software Evolution”, Proceedings of
the 20th International Conference on Software
Engineering (ICSE'98), 1998.

[12] J.C. Georgas, A. van der Hoek and R. Taylor,“Using
Architectural Models to Manage and Visualize Runtime
Adaptation”, IEEE Computer, Vol 42 No. 10, October
2009.

[13] T. Batista, A. Joolia and G. Coulson, “Managing
Dynamic Reconfiguration in Component-Based
Systems”, Proceedings of the 2nd European Workshop
on Software Architecture (EWSA 2005), 2005

[14] T. Bures, P. Hnetynka and F. Plasil,“SOFA 2.0:
Balancing Advanced Features in a Hierarchical
Component Model”, Proceedings of the 4th
International Conference on Software Enginering
Research, Managament and Applications, 2006.

[15] C. Escoffier, R. S. Hall and P. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework”,
IEEE Int. Conference on Services Computing, USA,
July 2007

[16] E. Bruneton, T. Coupaye and J-B. Stefani, “Recursive
and Dynamic Software Composition with Sharing”,
Proceedings of 7th International Workshop on
Component-Oriented Programming (WCOP 2002),
2002.

[17] P. H. Fröhlich and M. Franz, “On Certain Basic
Properties of Component-Oriented Programming
Languages”, in Proceedings of the 1st Workshop on
Language Mechanisms for Programming Software
Components, October 2001.

[18] Ph. Fong and S. Orr, “Isolating untrusted software
extensions by custom scoping rules”, Journal of
Computer Languages, Systems and Structures, Vol 36
No. 3 October 2010.

http://www.osgi.org/

