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      Abstract—Information hiding and hierarchical 

decomposition are the corner stone of Software Engineering 

best practices. These principles have been applied in methods, 

architectures, programming languages, and run-time 

platforms. It is therefore a big surprise to notice that the recent 

dynamic service platforms, like OSGi, do not make use of these 

principles. In OSGi, all services are visible; a client asking for 

an interface will be wired to any service, randomly selected 

and implementing that interface,which makes almost 

impossible protection and encapsulation. Nevertheless, OSGi is 

very successful for its almost unique capability to support 

dynamicity; and because the current practice is to run a single 

application per platform. Unfortunately, the future of 

gateways, like OSGi, is to manage the “discovery”, access and 

control of resources (logical as well as physical (sensors, 

devices)) shared by many applications. In the near future, 

OSGi will have to scale from a light weight mono-application 

gateway to a full-fledged dynamic platform. We have 

developed a layer on top of OSGi called APlication Abstract 

Machine (Apam) which provides OSGi dynamic capabilities, 

but also introduces a composite concept allowing multiple 

applications to cover the range isolation/collaboration from 

“black-box” (information hiding and hierarchical 

decomposition) to “scrambled eggs” as in service platforms, 

and through a variety of grey and white boxes with variable 

degrees of collaboration, sharing and control.   

The paper presents the state of practice, the challenges future 

dynamic platforms have to address, and how the Apam 

platform provides a solution to these issues. An assessment of 

the first Apam experimentations concludes the paper. 
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I.  INTRODUCTION 

If there is something is to retain from the last 40 years of 
software engineering it should be the principles of 
information hiding and hierarchical decomposition. Their 
systematic application avoided the disaster, announced since 
the 70’s, of being unable to manage large programs (i.e. 
larger than a few thousands lines of code!). 

Information hiding stipulates that a piece of code (that we 
will call a component) must publish (make visible) only the 
information strictly needed to use it (that we will call an 
interface). All the remaining: internal variables, code, 
methods and so on must be hidden from the component’s 
users. It allows the component to evolve (improvements, bug 
fixes, additional features if published in other interface(s)) 

without impact on its users, as long as the interface is 
unchanged. 

Hierarchical decomposition stipulates that a component 
can be made of other components; these inner components 
being hidden from external users using the encapsulation 
principle. Therefore a composite component cannot be 
discriminated from an atomic one. This principle allows 
scalability; at a given level, the apparent complexity of the 
system is only relative to the number and complexity of the 
components “visible” at that level.  

These principles are pervasive and can be found, in 
different flavors, in methods, architectures, programming 
languages, and run-time platforms. After all, this is no 
surprise since these principles are universal and are adopted 
in all fields. 

It is therefore a big surprise to notice that the recent 
dynamic service platforms, like OSGi [1], do not make use 
of these principles. It is true that a service applies the 
information hiding principle: a service has an interface and 
hides its content, but there is no hierarchical decomposition 
and no composite service.  

Indeed, service composition is primarily achieved by 
orchestration [2]. An orchestration aggregates the 
functionality of several services and is itself published as a 
service, so both principles seem to be satisfied. 
Unfortunately, an orchestration does not hide (encapsulate) 
the services used; it creates a new higher level service, but it 
does not reduce complexity since it adds one service in the 
system, and removes none.  

In traditional hierarchical decomposition, at each level of 
abstraction the number of visible components is relatively 
constant so that the perceived complexity at each level of 
abstraction is kept relatively constant. In contrast, with 
current service composition approaches when new higher 
level services are created, the number of registered services 
increases; there is not a new level of abstraction and the 
perceived complexity keeps increasing. 

Similarly, in hierarchical decomposition the composite 
object provides a context and scope for resolving the 
required dependencies of its constituents. In contrast, in 
service oriented platforms, like OSGi, when a client, at 
runtime, asks the service registry for an interface “A”, it will 
be bound to any randomly selected published service 
providing “A” and satisfying the request, without 
considering the context of the client, and irrespective of who 
published “A”, and for which purpose. If no service “A” 
exists, the platform simply returns “null” to the client. 



This brutal, simplistic and non-deterministic behavior is 
(apparently) in strong opposition with the experience and the 
best practices accumulated during the past decades.  

Despite this apparently unacceptable behavior, service 
platforms are very successful. This is because, in practice, a 
platform supports a single application made of components 
of similar granularity or that access globally available 
services in which the scope is controlled by partitioning 
administrative domains (WS, SCA). In particular, most 
OSGi based applications make the assumptions that the 
platform contains a single application [3], and that there are 
not too many services. In this case, and despite the lack of 
any encapsulation mechanism, the application is isolated 
from other applications (being alone!) and runs only its 
components (being the only ones explicitly deployed before 
execution). These applications mostly take advantage of the 
dynamic deployment and update facility, which explains why 
OSGi has been adopted by embedded systems and by big 
applications like application servers (EJB), data bases 
(Oracle), IDE (Eclipse), for which the “mono application 
hypothesis” holds.  

Unfortunately the simplicity and mono-application 
assumptions will not remain valid for long; first because 
complexity and scale increases; and second because a 
platform will have to support multiple applications. For 
example, at home, the set-top-box currently limited to TV 
decoding, will be in charge of “discovering” all the devices 
in the house, and to support all the applications that, 
potentially, will make use of these devices. It will not be 
possible to have a different platform for each one of these 
applications because they will have to share the same 
devices, and only a single authority can arbitrate the access 
and sharing (not talking about the cost and energy 
consumption of multiple platforms).  

Ubiquitous computing, to a large extent, is related to the 
management of sensors and actioners whose number, nature, 
location and availability is unknown statically, and is 
changing over time (e.g. mobile devices). Such an 
application domain requires a platform in which devices and 
components can appear and vanish; be substituted or updated 
during the application’s execution; such a platform is called 
a dynamic platform and OSGi is today the de-facto standard 
(low-level) dynamic platform. In the near future, OSGi will 
have to scale from a light-weight mono-application gateway 
to a full-fledged dynamic platform.  

This paper presents Apam (APlication Abstract 
Machine), which is a layer on top of a standard OSGi 
implementation that provides the functionalities required for 
a general and full-fledged dynamic platform. More 
specifically, this paper addresses the topic of managing 
multiple applications in a service platform, using composite 
services. The paper presents the Apam concept of composite 
service and shows how this concept allows a service 
platform to manage multiple applications.  

II. ENCAPSULATION MECHANISM  

If the concept of composite service is defined to satisfy 
the hierarchical encapsulation principle, it should have at 
least the following properties: 

 It “contains” other services (atomic or not), 

 It hides the services it contains, 
 

Before defining what a composite service should be, let 
us see first what a service is. In OSGi, a service definition is 
the tuple serviceDefinition==<interface, properties> and a 
service is defined as a tuple published in the “registry”: 
service==<serviceDefinition, address>, with interface being 
a Java interface, properties=={<name, value>} describes the 
non-functional properties of that service, and address is the 
address of a Java object, instance of a class implementing (in 
the Java sense) the interface. Therefore, by nature, a service 
platform enforces a very strong information hiding 
mechanism: a service only shows what is published in the 
registry. Most notably, the code implementing the service 
(that we will call an implementation) is not visible. Indeed, it 
is the fundamental principle of a dynamic service platform: a 
service client, at run-time asks for a service, not for an 
implementation. A service request is the tuple 
serviceRequest==<interface, logicalExpression>, which 
means that the client wants a service that publishes that 
interface, and which properties satisfy the logicalExpression. 
In OSGi the logical expression is a first order logical 
expression over properties in LDAP syntax.  

OSGi supports very few concepts, essentially bundles 
and services. A service is defined as <interface, properties, 
address>, and the concept of service implementation is 
simply undefined. With this definition, the concept of “a 
service contained in a service” barely makes sense.  

We have to be more precise, and we introduce the 
concepts of service implementation and service instance. Let 
us define the concept of service implementation 
(implementation for short): implementation==<class, 
{serviceDefinition}, {serviceRequest}>, with  
serviceDefinition the set of services provided by this 
implementation, class a class implementing (in the Java 
sense) all the interfaces of the provided services, and 
serviceRequest the set of services that may be needed during 
execution of that implementation; when the implementation 
asks for a service

1
, this service must have been registered and 

it must satisfy the request.   
A composite implementation is defined as: 

compositeImplementation==<mainImplem, 
{serviceDefinition},  {serviceRequest}> where class is 
replaced by mainImplem. The main implementation 
(mainImplem) must provide (at least) all the composite 
serviceDefinition. By definition, the main implementation is 
contained in the composite. The services required by an 
implementation contained in the composite but not declared 
in the composite serviceRequest, will be considered as 
contained in that composite. A composite implementation is 
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 More precisely, when the thread that is executing an instance of the 

implementation class is asking the platform to get a service. 



itself an implementation (its class being the class of its main 
implementation), and therefore it can contain other 
composite implementations. The first property of composites 
is satisfied (a composite service is a service containing other 
services). Note that this way of defining a composite is 
different from most composite definitions because it does not 
define, before execution the list of the implementations it 
will contain. Only the main implementation is statically 
defined, all other implementations will be selected 
dynamically; the composite definition gives the criteria to 
decide, at run time, what is inside, and what is outside the 
composite. This property is fundamental in a dynamic 
platform, since the services available at execution cannot be 
known statically. 

The second property (a composite hides its content) is not 
a “natural” property in a service platform because the 
“registry” is a flat structure containing all the services 
available at any point in time; all services, contained or not 
in a composite, are visible and usable by anyone. We cannot 
use the OSGi registry, we developed a registry which 
“understand” our composite concept.  

To the Apam registry, the composite constitutes a 
visibility scope. For example, suppose that an 
implementation IY, pertaining to a composite CY asks for a 
service Z. This request will be executed inside CY: it will be 
successful only if a Z implementation exists in CY or if it is 
possible to deploy one inside of CY. In the other cases, IZ is 
non existant or not visible, the service request fails. If Z 
pertains to the CY {serviceRequest}, the same algorithm is 
performed, not in CY but in the scope of the composite that 
contains CY. With this algorithm, an implementation belong 
and therefore is contained in all the composites that deployed 
it; the platform may hold different logical copies of the same 
implementation; but the composite still “owns” its 
implementations; it can delete, update or substitute them 
without any impact on the other copies and the other 
composites. A third party composite can be executed on our 
platform without being “messed up” with the other 
composites already running on that platform, even if they use 
the same implementations (with the same or different 
versions).  

A composite implementation is an implementation in all 
aspects, and as such it can be instantiated, leading to a 
composite instance. A composite instance is an instance 
containing other instances, and at least one instance of the 
main implementation.  

 
Figure 1: composites implementations and instances 

In figure 1, it is supposed that CY {serviceRequest} 
includes Z, therefore implementation IZ is external to the 
composite. CY delegates to IY its Y interface, and promotes 
its implementation that requires Z. 

III. VISIBILITY CONTROL, PROTECTION AND SHARING  

In traditional platforms, each application (composite) is 
autonomous and runs in its own isolated space. In a service 
platform it is the opposite: all applications run in the same 
space and freely share everything. Autonomy and isolation 
are part of the best practices and should be applied whenever 
possible; but in a service platform, sharing is often desirable, 
and in ubiquitous computing, sharing is often required (e.g., 
sharing sensors). Therefore, a multi-application dynamic 
platform should allow designers to select and control the 
relevant strategy between, and including, these two extremes.   

In Apam, with respect to the platform, a composite can 
be a lender and/or a borrower, or none. A composite is a 
lender if it allows other applications to use the elements it 
owns. A composite is a borrower if it prefers using an 
existing element (pertaining to another composite) instead of 
creating its own one. The Apam visibility control relies on 
the way resolution is performed.  

When a client instance performs a serviceRequest, Apam 
does its best to return a service provider (an instance) 
satisfying the request, i.e., providing the required resource 
and satisfying the constraints. To do so, Apam performs as 
follows.  

 A visible instance satisfies the request; it is returned. 
Otherwise, 

 A visible implementation satisfies the request; an 
instance of that implementation is created and 
returned. Otherwise, 

 An implementation satisfying the request is found in 
a visible repository; that implementation is deployed, 
an instance is created and returned. Otherwise, 

 The resolution fails. 
 

The issue is therefore to define what “visible” means.  
 

A. Instance Visibility 

A client instance pertaining to a composite instance cc 
can see an instance inst pertaining to a composite cp if  

 inst pertains to cc (cc = cp) or  

 cp lends inst to its friends, and cp is a friend, or 

 cp lends inst to the application, and cc and cp pertain 
to the same application,   

 cp lends inst to the whole platform. 
cp is a friend of cc if a friend relationship is established 

from cc to cp. An instance pertaining to a single composite 
instance, the instances in a platform are organized as a forest. 
An application is defined as a tree in that forest (i.e., a root 
composite instance). Therefore, cc and cp pertain to the same 
application means they pertain to the same instance tree. 

A composite can define which instances can be lent to 
other composite instances using the predefined attributes 
localInstance, friendInstance and applicationInstance. The 



value of these attributes is an expression to be applied to 
instance properties. An instance cannot be lent if it matches 
the localInstance expression; it can be lent to friend 
composite instances if it matches the friendInstance 
expression; it can be lent to any composite of the same 
application if it matches the applicationInstance expression; 
and finally it is lent to the whole platform if it matches none. 
If it matches more than one expression, the most restrictive 
one is assumed.  

Symmetrically, a composite designer must be able to 
decide whether or not to borrow the instances lent by other 
composites. For this purpose, he can specify the property 
borrowInstance=<expression>. If the requested resource 
matches the expression, the platform must try to borrow an 
instance if it exists. If the expression is not matched, an 
instance must be created. By default, the expression is “true”, 
i.e., by default everything is shared. 

 

B. Implementation Visibility 

If no satisfactory instance is available, the platform tries 
to find an implementation from which it is possible to create 
an instance satisfying the request.  In Apam, instances inherit 
the properties of their implementations, and implementations 
explicitly declare the properties specific to its instance. 
Therefore, from a serviceRequest Apam can compute the 
corresponding implementationRequest, i.e. a request with the 
same resource and with constraints that apply to 
implementations.  

Therefore, a client instance pertaining to a composite 
implementation CC can see an implementation I pertaining 
to a composite implementation CP if  

 I pertains to CC ( CC = CP) or  

 CP lends I to its friends, and CP is a friend, or 

 CP lends I to the whole platform. 
CP is a friend of CC if a relationship friend is established 

from CC to CP. A composite implementation can define 
which implementations can be lent to other composite 
implementations using the attributes localImplem and 
friendImplem. The value of these attributes is an expression. 
An implementation cannot be lent if it matches the 
localImplem expression; it can be lent to friend composite if 
it matches the friendImplem expression; it is lent to the 
whole platform by default. If it matches both expressions, it 
is supposed to be local. 

If no satisfactory implementation has been found, the last 
trial is to find, among the available repositories, an 
implementation matching the implementationRequest. To 
that end we have extended the OSGi bundle repository with 
the implementation properties; this information is 
automatically computed during build by a Maven plug-in. 
Therefore, each repository is managed as an Apam registry. 
If a satisfactory implementation is found, it is dynamically 
deployed (in CC), and instantiated (in cc). 

Symmetrically, an application designer must be able to 
decide whether or not to borrow the implementations lent by 
other composites. For this purpose, it can specify the 
property borrowImplem=<expression>. If the requested 

resource matches the expression, the platform must try to 
borrow an implementation. If not matched, or not existing, it 
must be deployed. By default, the expression is “true”.  

IV. MULTIPLE APPLICATION CONTROL 

The challenge of a multi-application dynamic platform is 
to continue satisfying Software Engineering’s best practices 
(which call for full isolation), while in a dynamic 
environment (which requires sharing); an apparent 
contradiction. Any non-trivial application is made of a 
number of clearly identified parts. Each application and 
composite designer must identify which parts must be private 
and hidden, which parts can be lent to others; and which 
parts can be borrowed. In Apam each “part” is modelled as a 
composite (implementation and instance), with its 
lender/borrower characteristics. 

To illustrate, let us suppose the following scenario. In a 
house we have different kinds of display screens (e.g., TV, 
tablet, PC, smart phone), different audio renderers (e.g., TV, 
hifi) and two running applications: a media centre (MC) and 
an energy controller (EC). 

The EC application contains its main implementation 
mainEC and requires a display service for configuring the 
application; EC distribution contains implementation 
ECDisplay which provides the display service on the tiny 
display embedded in the heater. 

Media Centre (MC) is an application made of a number 
of implementations including composites MCAudio and 
MCVideo. MC holds the business part of the application 
(play lists, libraries, players, and so on) and requires an audio 
and a video device. MCAudio provides the video interface; it 
dynamically “discovers” the video devices and redirects the 
video streams it receives to the “best” device.   

In this example, EC is a black box. EC wants a display; if 
possible the one available in the current context; if none are 
available, ECDisplay should be used. This strategy can be 
expressed in Apam as follows: 

 
compositeImplementation EC2 

repository = http://.... ; 

mainImplem=mainEC ; 

//EC is a black box; but display can be borrowed 

borrowImplem=(interface=display); 

borrowInstance=false;  

localImplem=true; localInstance=true; 

    

The repository attribute expresses where the 
implementations should be deployed from if needed. The 
only implementation that can be borrowed is the one 
implementing display (borrowImplem = (interface = 

display)). If a display exists in the platform it will be used 
(MCVideo), otherwise the display implementation found in 
the repository (ECDisplay) will be deployed and will be 
private to EC. All other implementations must either already 
be inside EC, or must be deployed from the repository.  
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 Currently, composite descriptions are in XML and expressions are in 

LDAP syntax; the syntax used here is for readability only. 

http://..../


No instance can be borrowed (borrowInstance=false); 
the instances required by EC must all be created inside EC. 
MC can be defined as follows: 

 
compositeImplementation MC 

repository = http://.... ; 

mainImplem=mainMC ; 

borrowInstance=false; borrowImplem=false;  

   localImplem=true ; 

//only audio and video are visible by all 

localInstance=(name!=audio && name!=video) ;       

 
With this description, all implementations used by MC 

must pertain to MC (borrowImplem=false) and are not lent 
(localImplem=true); all instances must pertain to MC 
(borrowInstance=false) but the instances providing the 
audio and video services (which are also composites) are 
visible and usable by all. 

 
compositeImplementation audio 

dynamicBind= audio; 

repository = http://.... ; 

mainImplem=mainAudioMng ; 

substitute=audio; 

borrowInstance=true; borrowImplem =true; 

 
No constraints are set by the audio composite on the 

visibility of its devices. It means that the different devices are 
visible by all. Audio is a white box that allows its users to 
directly address its components (here the audio devices).  

The dynamicBind primitive expresses that audio devices 
that appear / disappear dynamically must be automatically 
connected / removed to/from the audio composite; substitute 
means that an audio device that is used and that disappears 
must be substituted dynamically by another one and the 
audio flow redirected to the new device.  The details of the 
dynamic behavior are not the topic of this paper and will not 
be described any further. 

V. THE APAM PLATFORM 

Apam differs from usual service platforms on different 
aspects. First, it clearly distinguishes between service 
specification, service implementation, and service instances. 
They are all first class objects, they all can be described, 
packaged, stored in repositories, selected, deployed, 
instantiated, and so on.  

Second, Apam introduces the concept of composite, 
again clearly distinguishing composite implementations from 
composite instances. Composites are first class objects too; 
they can be described, packaged, stored in repositories, 
selected, deployed, instantiated and so on. In Apam, the 
word component is generic and applies to any one of the 
above concepts, be it, specifications, implementations or 
instances, either atomic or composite. 

Third, the platform is in charge of not only managing 
existing services, but also of instantiating and deploying 
components when needed.  

Fourth, Apam reifies all these concepts and their 
relationships into an Application State Model (ASM) 
causally  connected to the underlying OSGi platform(s). The 

ASM represents a high level fully reflexive view of the 
current state of the system under execution. 

The first need of composites is the support of the 
traditional principles of encapsulation and hierarchical 
decomposition which are well established in Software 
Engineering. To that end, a composite must be of the same 
nature of the objects it contains. Indeed, in Apam, the three 
basic entities (specification, implementation and instance) 
are each extended (in the Java sense) by their associated 
composite. Therefore, any operation that can be performed 
on an atomic concept can be performed on its composite. For 
example, a composite implementation can be deployed and 
instantiated exactly in the same way as atomic 
implementations. For its users, atomic and composite are 
identical, and in general do not need to be distinguished. 

From a technical point of view, components (atomic and 
composite) are described (as XML files) in the development 
environment. Building a component

3
 generates a bundle 

containing, as meta-information, the associated description. 
It means that when a component is deployed in OSGi, Apam 
is notified and reads the associated description. Therefore 
Apam contains a model of the current state of the system 
(ASM) but also an Application Component Model (ACM) 
containing the descriptions associated with the deployed 
components (whether currently used of not, instantiated or 
not). The ACM expresses both the consistency constraints 
the ASM must satisfy and the management strategies and 
rules governing the system’s evolution. These rules include 
the visibility and protection as exemplified in this paper, but 
also the dynamic rules (see the audio composite above), and 
other rules. The ACM is reflexive: it is possible at run-time 
to observe the component model and to change the 
component and composite description, making rules fully 
dynamic too. When the ACM is changed dynamically, the 
ASM’s consistency is checked (errors, if any, are notified but 
not fixed), and the new rules and strategies are immediately 
effective. This is an unusual property that can be used for the 
development of “meta rules” governing, for example, an 
autonomic system. This is an ongoing research activity, not 
presented here. 

An important property of composites is that they factor 
out properties and strategies common to the whole 
composite. In this paper, out of visibility and protection, we 
sketched the deployment strategy (modeled as the repository 
attribute) and the dynamic strategy (modeled as the 
dynamicBind and substitute attributes), but other strategies 
are currently defined (distribution, recovery, autonomy), and 
others can be added. The system is extensible; each class of 
strategy is modeled by an independent model, interpreted by 
a specific manager. A manager is an Apam plugin, and 
Apam has a protocol for managers to synchronize and 
cooperate if needed.  This is not described in this paper. 
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 We have developed a Maven plugin that performs these actions 

transparently. A bundle can contain many components; a “specification 

component contains the interface classes and the description; a “pure 

composite” bundle only constrains the meta-information, but can still be 

stored in repositories and deployed, as any other component. 

http://..../
http://..../


In Apam, an application is simply a high level composite; 
an application can be used as a component of another higher 
level application. The platform itself is modeled as the root 
composite having as components all the first level 
applications deployed and/or running in the platform. 
Therefore, each composite (application) can define its 
isolation/collaboration strategy, but also the platform (the 
root composite) can define the “by default” 
isolation/collaboration strategy to be satisfied in this 
platform.  

The Apam system is developed on top of iPOJO and 
extends the iPOJO system [4][5] (which itself extends OSGi 
[1]). Components are built under Eclipse using Maven; the 
Apam maven plugin injects code into the implementation 
(Java) classes. It is the injected code that calls Apam when a 
dependency needs to be resolved. Following the POJO (Plain 
Old Java Object) approach, the source code does not contain 
any information related to dynamicity, protection, structure 
and so on; implementations only contain the business code.  

The experimentations so far have shown that the Apam 
system is both very efficient and flexible. The overhead 
when calling a method in another component (run-time 
performance) is the same as iPOJO (1.8.0 on Felix 3.2.2), but 
about 100 times faster than SCA [6] (Tuscany 1.3.2). The 
memory overhead is about 10% more than iPOJO, but 50% 
less than Tuscany. A more detailed account of performance 
comparisons is available in [7].  

The current work is twofold: make Apam core robust 
enough to be used as an open research platform.  Apam is 
extensible; research in under way to develop other managers 
(other non-functional aspects) and to experiment in the 
domain of pervasive and autonomic computing.  

 Documentation for Apam is available at  
http://wikiadele.imag.fr/index.php/Apam; the product will be 
available soon in the Lig forge.   

VI. RELATED WORKS 

Our approach builds on the many works on component 
models [8][9] related with encapsulation and hierarchical 
decomposition. We are particularly interested in the new 
requirements brought by dynamic and ubiquitous 
applications. 

Work on dynamic component models has concentrated 
on the run-time reconfiguration of the application 
architecture [10][11], through the use of a reflective 
component runtime [12][13]. Our work on the Apam runtime 
platform pertains to this line of work, although this is not the 
focus of this paper.  

Less attention has however been paid to the new 
requirements in terms of isolation, protection and visibility 
for multi-application dynamic platforms. Most dynamic 
component models use a strict black box approach for run-
time composites like Sofa [14], or iPOJO composites [15] 
with the exception of Fractal [16] which allows for global 
shared instances.  

Other approaches, like SCA [6] have tried to mix the 
dynamic capabilities of service platforms with the 
hierarchical decomposition of component models. However 

they propose to use a static black-box assembly of 
components at the lower granularity level, and a global scope 
for registered services.  

Our work is also inspired by management of scope and 
visibility in programming languages [17], particularly its use 
to enforce isolation [18]. 

VII. CONCLUSION 

Apam has been designed and implemented as a high level 
dynamic service platform in which application designers can 
structure their applications expressing to which extent each 
part (composite) must be isolated, must contribute to the 
platform (lending its components), must borrow platform 
components, or any mixture thereof. These features rely on 
the composite concept (implementation and instance). The 
main duty of composites is to factor out the properties and 
the management strategies to be applied on the components 
it contains.  

Among the properties and strategies that can be 
associated with composites, the two major ones discussed in 
this paper are (1) structuring applications and (2) managing 
the level of isolation/collaboration between applications 
running simultaneously on the same platform. 

The first need calls for the support of the traditional 
encapsulation and hierarchical decomposition principles. An 
Apam composite being a special case of components, 
recursive decomposition is “natural”.  Indeed, in most cases, 
there is no need to make the difference between atomic and 
composite components and the Apam resolution mechanism 
returns indifferently one or the other. However, traditional 
hierarchical decomposition also imposes a “black-box” 
approach, i.e., components contained in a composite are 
neither visible nor shared by components pertaining to other 
composites. This strict hierarchical decomposition leads to a 
partitioning that prohibits collaboration and sharing which is 
contrary to the needs of a dynamic platform that manages 
devices and services potentially used and shared by all the 
applications running of that platform.. 

The second need, which is managing the level of 
isolation/collaboration between applications, requires 
flexible mechanisms. Unfortunately, the usual service 
platform strategy where everything is visible and shared 
cannot be satisfactory when more than one application is 
running. To that end, Apam composites can express two 
classes of properties. 

Lending components to the platform.  A composite can 
express to which extent “its” components can be used by 
other composites. Apam provides 3 levels of visibility for 
both implementations and instances: default (visible by all), 
friend (only visible by composites with a friend relationship), 
and local: not visible at all. Instances have a 4th level of 
visibility: application (the instance is visible in the same 
instance tree).  

Borrowing components from the platform. A composite 
can express to which extent it can borrow (use) visible 
components pertaining to other composites running on the 
platform. This is expressed by the borrow attribute. This 
property is also called opportunism since it consists in using 



those services already running and available during 
execution, instead of installing and instantiating those 
planned before execution. Opportunistic strategies may be 
required to improve efficiency, to support collaboration, to 
avoid conflicts or simply because the application cannot 
instantiate the needed service (e.g., devices). 

These attributes allow composites to be very fine grained 
in expressing their strategy, even without the full knowledge 
of its future components. With these features, a composite 
can use the full range of isolation/contribution. 

On one extreme, “black-box”, composites are defined 
with the attributes localImplementation, localInstance, set to 
true (i.e. no contribution) and borrowImpementation and 
borrowInstance set to false (i.e. no opportunism). 

On the other extreme, the “scrambled eggs”, Apam 
allows a complete mixture of implementations and instances 
as found in service platforms. It is the default in Apam; when 
running only legacy service applications, the platform 
contains only the root composite (the platform itself) and the 
attributes above with their default value. Therefore, iPOJO 
and OSGi legacy service-based applications run as usual; 
they only have to be rebuilt with our plugin. Any 
intermediate situation can be defined creating the “right 
composites” and setting these attributes with the “right 
expression”.  

A major issue with opportunistic applications is that they 
are dependent on the platform’s context, and (usually) crash 
or freeze when required services are missing. In Apam, even 
opportunistic composites can provide the repositories 
containing its default distribution. If the required service is 
found it is used (opportunism); if missing the platform will 
deploy, install and instantiate the one found in the provided 
repositories. It allows applications to be collaborative, 
dynamic and opportunistic, without compromising 
availability and increasing reliability and resilience.  

Conversely, well defined composites can increase their 
consistency and resilience, still executing in a dynamic 
platform with sharing and opportunism. Consistency can be 
increased because opportunism allows sharing the right 
service instead of deploying another one that can conflict 
with the one in place; resilience can be increased, relying on 
dynamic substitution toward alternative services unknown at 
development time.  

The Apam platform has been developed and 
experimented. Even if preliminary, the experimentations are 
satisfactory enough to be confident that the challenge 
identified in the introduction can be met: getting both the 
software engineering best practices and the dynamic and 
opportunistic facilities in a multi-application dynamic 
platform.  
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