
HAL Id: hal-00745556
https://hal.science/hal-00745556

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconciling Components and Services: The Apam
Component-Service Platform

Jacky Estublier, German Vega

To cite this version:
Jacky Estublier, German Vega. Reconciling Components and Services: The Apam Component-Service
Platform. IEEE SCC 2012 - International Conference on Service Computing, Jun 2012, Honolulu, HI,
United States. pp.683-684, �10.1109/SCC.2012.14�. �hal-00745556�

https://hal.science/hal-00745556
https://hal.archives-ouvertes.fr

Reconciling Components and Services

The Apam Component-Service Platform

Jacky Estublier, German Vega

Grenoble University. LIG.

F-38041 Grenoble, France

{Jacky.Estublier, German.Vega}@imag.fr

Abstract— For Component Based Software Engineering

(CBSE), an application is a strongly structured and rigid

assembly of components. Conversely, Service Oriented

Computing (SOC) is very flexible and is a good candidate

for supporting dynamic applications. Unfortunately

dynamic applications are software applications and as such

they need to be clearly structured and managed (as with

CBSE), and they need flexibility and dynamism as with

SOC. No platform today satisfies both needs.

This paper presents the Component-Service model that

combines well controlled structure and dynamism, and its

implementation into the Apam component-service platform.

Keywords-Service; CBSE, SOC, SOA, service platform,

component platform, adaptability .

I. INTRODUCTION

With the advent of context-aware computing
(context is changing), ubiquitous computing (devices
appear/disappear during run-time) and autonomic
applications, the concept of dynamic application
appeared. A dynamic application is defined as an
application which behavior and composition depends
on “external” run-time factors. A large consensus exists
[1] to believe that the best way to address the dynamic
application issues is to dynamically change the
application architecture [2] at run-time.

The traditional software engineering technology is
based on “components”. There are many definitions of
what a component is, but a rough consensus appeared
[3]: a component is a piece of code that makes explicit
its functionalities (interface) and its dependencies while
hiding its internal structure and content. CBSE supports
the software engineering best practices, like version
control, levels of abstractions, controlled composition,
architecture definition and so on. But the architecture
(composition) being defined during design and
development, CBSE has a big weakness: the
applications architecture is rigid. Hence the paradox:
component platforms have all the information needed
for managing dynamic applications, but they cannot.

SOC (Service Oriented Computing) has been
developed to address many of the component’s
weaknesses including its lack of flexibility [4]. SOC
philosophy is that an application is made of services
whose number, availability, location, properties are not

completely known during development. The main goal
is to support the dynamic apparition and disappearance
of services and the substitution of a service by another
one. These properties explain why OSGi [5] became the
de-facto standard for dynamic applications.
Unfortunately, for flexibility and simplicity, SOC

platforms have been designed as “only” a low-level

run-time interaction protocol with a very limited set of

concepts: instances (service) and interfaces. In

substance, the platform does not “know” the

applications or their architecture and makes

connections dynamically and blindly; a SOC

application is very loosely controlled. Hence the

paradox: service platforms have the technology for

managing dynamic applications, but not the concepts

to do it.
To control a SOC application, the developer should

manually manage the application dynamism, but the
code to write to do so is so complex that is too hard to
do in practice [6]. The challenge is to be able to
describe “easily” how much control as needed on the
dynamic parts of the application, because the current
dynamic platforms do not provide any mechanism for
that. It means that many actions traditionally performed
at development must be delegated at run-time; and
therefore, the platform must allow performing these
decisions at run-time.

Obviously there is a conflict between, on the one
hand, a clear, consistent but rigid architecture, and on
the other hand a flexible, dynamic but loosely
controlled execution.

In this paper we present how we have extended a
SOC platform (namely OSGi), in order to propose
concepts and mechanisms allowing dynamic
application developers to explicitly associate the kind
and level of control they wish.

II. THE COMPONENT-SERVICE MODEL

A “component” is essentially an implementation
that provides and requires resources (most often
interfaces only). The application architecture is defined
connecting client implementations to provider
implementations. Therefore the component approach is
implementation and architecture centric, and addresses
primarily development and composition.

In contrast, a service is essentially a run-time
artefact: an instance that publishes an interface and that
asks at run-time the services providers it needs. The
service approach is instance centric, architecture free
and addresses primarily the run-time phase.

Clearly, these visions are complementary; some
parts need to be strongly controlled and others
can/should be dynamic and opportunistic. To that end
we have extended the OSGi definition of what a service
is. Instead of being defined by its interface, a service is
defined as providing a specification, with specification
borrowed from components i.e. a set of provided and
required resources with constraints. To keep the
flexibility missing in components, a specification is
implemented by a group of “equivalent”
implementations, and dependencies are defined in term
of specifications (and optionally some constraints).
Therefore, at run-time, when a service asks for a
specification, the platform is free to make the choice of
the most relevant implementation and instance, with
respect to the current context, using the currently
available services even if not known during design and
development. The platform is also extended by a list of
repositories from which implementations can be
dynamically deployed if needed.

Figure 1: The Component-Service Model

To some extent, the platform acts as a run-time

configuration control system, selecting in well-defined
repositories the right implementation (in the good
revision and variant), and even as an extension of a
traditional CMS [7], because it also selects (or creates)

the right instances (with the good properties and
initialisation parameters), taking into account
dependencies, sharing and access control.

We have implemented the Component-Service
model sketched above in the APAM (APplication
Abstract Machine) platform. Its goal is to extend the
OSGi platform in order to define and control
applications. From OSGi we retain its dynamism and
performances; from component, we retain the strictly
defined and controlled architecture. In APAM the
application designer is free to develop and execute
applications whose dynamic behaviour is anywhere in
the range from component-like (rigid) to service-like
(loosely controlled).

III. CONCLUSION

We have tried to solve the conflicting requirements
of, on a one side, been dynamic and flexible, including
opportunism and non-determinism and on the other
side, to be closely controlled, deterministic and
repeatable. Fundamentally, our solution is to divide
Software Configuration Management in two parts, one
performed at development, building well controlled
component repositories, and a run-time part, performing
composition by selecting implementations and
instances into a number of repositories, including the
set of services actually running on the platform.

In Apam the concept of specification is central and
makes the link between instances (service point of
view) and implementations (components point of view);
but to be used at run-time it must become a first level
entity, designed, packaged, and deployed in the same
way as implementations. We believe that the platform
recognizes the specification as a first class citizen, and
repositories for dynamic deployment are important
contributions.

Modern applications will be structured in parts
being assembled once for all at development, other
parts assembled dynamically depending on the context
but using only pre-defined components; others
assembled using components discovered dynamically.
These future applications will require platforms and
models like those provided by Apam.

REFERENCES

[1] J. Magee and J. Kramer, “Dynamic structure in software

architectures”, Proceedings of the 4th symposium in
Foundations of Software Engineering. 1996

[2] P. Oreizy, N. Medvidovic, R. Taylor, “Architecture-
Based Runtime Software Evolution”, Proceedings of the
20th International Conference on Software Engineering
(ICSE'98).

[3] I. Crnkovic, S. Sentilles, A. Vulgarakis and M.R.V.
Chaudron, “A Classification Framework for Software
Component Models”, IEEE Transactions on Software
Engineering, Vol 37, No. 5, September 2011

[4] M. P. Papazoglou, P. Traverso, S. Dustdar, and F.
Leymann, “Service-Oriented Computing: State of the
Art and Research Challenges”, IEEE, November 2007,
pp. 38-45.

[5] OSGi Alliance, “OSGi Service Platform Core
Specification Release 4”, http://www.osgi.org, August
2005.

[6] C. Escoffier, R. S. Hall and P. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework”,
IEEE Int. Conference on Services Computing, USA,
July 2007

[7] J. Estublier, D. Leblang, A. Van Der Hoek, R. Conradi,
G. Clemm, W. Tichy and D. Wiborg-Weber. “Impact of
Software Engineering Research on the Practice of
Software Configuration Management”. Published in
IEEE TOSEM. October 2000.

http://www.osgi.org/

