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ABSTRACT
In this paper, we study the impact of the flow-size distribu-
tion on network performance in the case of a single bottle-
neck with finite buffer. To tackle the case where flows are
transmitted with the TCP protocol, we use real experiments
and ns-2 simulations. Our preliminary results show that the
distribution’s tail index impacts the performance in a more
complex way than what is reported in existing literature. In
particular, we exhibit situations where a heavier tail gives
better performance for certain metrics. We argue that a
main cause of our observed results is the transient behavior
at the beginning of each flow.
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1. INTRODUCTION

1.1 Motivations and related work
It is well established that the distribution of flow sizes in

the Internet is heavy-tailed [3]. Following up this important
discovery, in the last 15 years or so, significant research ef-
forts have been devoted to understanding the impact of this
property on network performance, mainly in the case of a
single bottleneck. Experimental and theoretical works us-
ing an open-loop approach have concluded that heavy tails
degrade performance for large buffers, whereas performance
is insensitive to the tail for small buffers [4, 6, 8]. How-
ever, most of today’s Internet traffic uses the TCP protocol,
which is based on a closed-loop mechanism. In this case, the
simulation-based study of [9] showed that, with their partic-
ular setting, heavier tails (i.e., smaller tail indices) degrade
the performance for all metrics (loss, delay, throughput).
Most of the rest of the literature concluded, based on vari-
ous models, that first-order performance metrics (e.g., mean
flow-rate) are insensitive to the flow-size distribution [1, 2].
However, these models use simplifying assumptions, notably
on bandwidth sharing, that do not account for the transient
behavior at the beginning of each TCP flow. Finally, nu-
merical methods based on more complex models have been
proposed to evaluate performance metrics given the input
conditions [5]; but they do not provide qualitative insight to
understand the impact of the flow-size distribution.

1.2 Contributions
In this paper, we study the impact of the flow-size distri-

bution’s tail index in the case of a single bottleneck of finite

buffer, with the TCP protocol. To grasp the full complex-
ity of the problem, we use experiments on a real (but fully
controlled) network testbed [7] rather than models based on
simplifying assumptions. We also use ns-2 simulations to
complement our study. We report preliminary results that
contrast with existing literature by showing that:

- the impact of the tail index on performance depends on
many parameters and not only on the buffer size; and

- there exists situations where a heavier tail gives better per-
formance for certain metrics.

To the best of our knowledge, this last effect has not been
reported in previous literature. We argue that an important
element to interpret these results is the transient behavior,
i.e., the flow’s behavior during slow-start, which is not taken
into account in the aforementioned models.

2. SETTING
We use a butterfly topology with the same number Nsrc

of sources and destinations. Experiments on a real network
and ns-2 simulations use the same setting with Nsrc = 45
and 500 sources respectively. Each source behaves as an
ON/OFF source: it alternates between flow transmission
using the TCP protocol (with Reno variant) and idle (OFF)
period. To avoid multiple congestion points, each source
always sends to the same destination and there is no bottle-
neck on the return path (for the ACKs transmission). The
minimal RTT (excluding queueing delay) is 10 ms for each
pair source-destination. The bottleneck queue uses a Drop
Tail policy with finite buffer of size B which is 96 or 896 pkts
in the experiments and 100 or 1, 000 pkts in the simulations.
These values correspond to maximal queueing delays of 1.15,
10.75, 1.2 and 12 ms, respectively. The capacity of both the
source links and the bottleneck link is 1 Gb/s. Each exper-
iment lasts 2 hours and each simulation 1 hour.

We use a Pareto distribution for the flow-size distribution,
of mean 1, 000 pkts and of tail index α varying across experi-
ments to assess its impact. In all the experiments/simulations,
we use an exponential OFF-time distribution of mean 0.2 s.
Note that due to the closed-loop mechanism of TCP, the
load may vary between the experiments [11].

An important parameter in our study is the TCP tuning
parameter which controls whether the ssthresh parameter
is cached from one TCP connection to the next connection
with the same source and destination. The ssthresh pa-
rameter determines the maximal congestion window of the
slow-start. When it is reached, the connection goes to the
congestion avoidance phase, whereas if a loss occurs before



it is reached, then the congestion window at this loss event
becomes the new ssthresh. If it is cached, then it can only
decrease from one flow to the next flow. In our experiments,
there is a non-negligible loss rate. Then, the ssthresh

rapidly stabilizes around 10 pkts for each source-destination
pair, which significantly limits the slow-start phase. We refer
to this situation where the ssthresh is cached as “without
slow-start”. It is the default situation in our linux imple-
mentation. We also perform experiments with the caching
manually disabled (i.e., “with slow-start”). Both situations
may represent different real-life cases. Ns-2 simulations are
performed with disabled caching.

For the experiments on a real network, the performance
results are derived from the analysis of synchronized packet-
level captures at the input and at the output of the limiting
buffer. For the ns-2 simulations, we use monitoring directly
in the code. Error bars displayed correspond to the stan-
dard deviation on the estimation of the mean, estimated via
bootstrap techniques on each experiment/simulation. Many
are so small that they are not visible on the plots. Note
however that for α close to one, the results across different
experiments may have variability not included in these error
bars, due to the natural difficulty to impose the mean of the
flow-size distribution.

3. RESULTS
Fig. 1 presents the results obtained from the experiments

on a real network with Nsrc = 45 sources. The top plots
show the sensitivity of buffer-level performance metrics (loss
rate, mean delay and throughput) to the tail index α. We
observe that the impact of α not only depends on the buffer
size (as shown in previous literature), but also on the pres-
ence/absence of the slow-start phase. Moreover, the impact
varies from metric to metric.

More precisely, in the case “without slow-start”, the per-
formance in terms of loss rate and mean delay degrades with
heavier tails, whereas the mean throughput increases with
heavier tails which corresponds to a performance improve-
ment. In the case “with slow-start”, most results are in-
verted, except for the throughput which appears almost in-
sensitive to the tail index for a small buffer (B = 96 pkts).
In particular, in terms of loss rate and mean delay, a heavier
tail turns out to give better performance. This non-intuitive
result has not been reported in previous literature.

To interpret the results, the bottom plots of Fig. 1 show
the mean rate achieved by a flow, as a function of its size (in
loglog scale). In both cases, it is a strongly non-flat function,
which stabilizes only for very large flow sizes. This is due
to the effect of the transient behavior of each flow, which
has an important impact on the mean rate even for large
flows (see also [10]). This transient behavior is longer and
smoother “without slow-start”; it is faster and sharper “with
slow-start” which explains the form of the bottom plots of
Fig. 1. In the case “with slow-start”, due to lower loss rate
and mean delay, large flows also have a higher mean rate for
smaller α’s. Then, the performance results are mainly driven
by an intricate combination of the shape of the mean flow-
rate curve and of the flow-size distribution; which imposes
the load. This load impacts the loss rate and delay, which in
turn impacts the mean flow-rate curve, in a closed-loop man-
ner. It appears from this interpretation that the transient
behavior of each flow is largely responsible for the impact of
the flow-size distribution observed on performance.
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Figure 1: Performance metrics results as a function
of α, from the experiments with Nsrc = 45 sources.
Whenever necessary, the curves corresponding to
the different B’s have been split and the scales
adapted to improve readability. Flow rates (bottom
plot) are presented for B = 896 pkts.

To corroborate this interpretation, Fig. 2 presents the re-
sults obtained with simulations using Nsrc = 500 sources, in
the case “with slow-start”. In the case where the buffer is
small (B = 100 pkts), the transient regime is very limited.
Therefore the mean flow rate appears almost flat (bottom-
left plot), and the buffer-level performance metrics are roughly
insensitive to the tail index of the flow-size distribution (ex-
cept for α = 1.1, due to the difficulty to impose the mean
flow size for such a small α). However, with a larger buffer
(B = 1, 000 pkts), the effect of the longer transient regimes
becomes important (bottom-right plot, compare also to the
right-side of Fig. 1 corresponding to the same case with less
sources), and performance becomes sensitive to α. Inter-
estingly though, the evolution is different from the case of
Fig. 1-(right) with Nsrc = 45. As mentioned previously,
we believe that it is the result of a complex combination
between the mean rate as a function of the flow size, and
the flow-size distribution. In particular, it appears that the



most “aggressive” flows in terms of average rate are not the
largest ones, but the ones of “medium size”. This suggests
that a key to fully understand the impact of the flow-size
distribution in complex situations involving TCP connec-
tions with transient regimes is to look at the impact of the
distribution as a whole, rather than the impact of its tail
index only. We leave such a complete study as future work.
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Figure 2: Performance metrics results as a func-
tion of α, from the simulations with Nsrc = 500
sources. The simulations are performed in the sit-
uation “with slow-start”. Whenever necessary, the
curves corresponding to the different B’s have been
split and the scales adapted to improve readability.

4. CONCLUSION
In this work, we presented experimental and simulation

results on the impact of the flow-size distribution’s tail in-
dex on the performance of a single bottleneck with TCP
connections. Our preliminary results show that the impact
of heavy tails on performance is more complex than what
described in previous literature: it can be negative, negli-
gible, or even positive depending on many parameters such
as buffer size, metric considered (loss rate, mean delay or
throughput) and TCP tuning parameters (ssthresh).

We argue that a main element to understand these results
lies in the transient behavior of each flow, which relates to
the slow-start mechanism. Therefore, our work identifies the
non-stationarity of a flow’s transmission as an important fea-
ture (which is absent from all tractable models proposed up
to now) to understand the performance of TCP connections.

Though our study shows a clear impact of the flow-size
distribution’s tail index on performance, a more complete
study is required to confirm our interpretations and to find
meaningful parameters to intuitively understand better the
impact of this distribution. We believe that a key toward
this goal is to consider the impact of the whole distribution
rather than its tail index only.
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J. W. Roberts. Statistical bandwidth sharing: a study
of congestion at flow level. In Proc. of ACM
SIGCOMM ’01, pages 111–122, 2001.

[3] M. Crovella and A. Bestavros. Self-similarity in World
Wide Web traffic: Evidence and possible causes.
IEEE/ACM Trans. Netw., 5(6):835–846, Dec. 1997.

[4] A. Erramilli, O. Narayan, and W. Willinger.
Experimental queueing analysis with long-range
dependent packet traffic. IEEE/ACM Trans. on
Netw., 4(2):209–223, 1996.

[5] M. Garetto and D. Towsley. An efficient technique to
analyze the impact of bursty TCP traffic in wide-area
networks. Perf. Eval., 65(2):181–202, 2008.

[6] M. Grossglauser and J.-C. Bolot. On the relevance of
long-range dependence in network traffic. IEEE/ACM
Trans. Netw., 7(5):629–640, 1999.
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