
HAL Id: hal-00745510
https://hal.science/hal-00745510

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Design, Development, Execution and
Management of Service-Based Applications

Diana Moreno, Jacky Estublier

To cite this version:
Diana Moreno, Jacky Estublier. Model-Driven Design, Development, Execution and Management of
Service-Based Applications. SCC 2012 - International Conference on Service Computing, Jun 2012,
Honolulu, HI, United States. pp.470-477, �10.1109/SCC.2012.64�. �hal-00745510�

https://hal.science/hal-00745510
https://hal.archives-ouvertes.fr

Model-driven Design, Development, Execution

and Management of Service-based Applications

Diana Moreno-Garcia, Jacky Estublier

Laboratoire d’Informatique de Grenoble

F-38041 Grenoble cedex 9, France

{Diana-Guadalupe.Moreno-Garcia, Jacky.Estublier}@imag.fr

Abstract—Service-based software applications, such as

pervasive and ubiquitous ones, are increasingly embedded in

our daily lives integrating smart communicating devices.

Usually, changes in the execution context of these applications

occur unpredictably over time, such as dynamic variations in

the availability of the used services and devices, or of the user

location and needs. This unpredictable variability in the

execution contexts makes impossible to know at design-time

the exact conditions under which these applications will be

used and the services that will be most suited at a given time.

Therefore, the architecture of such applications cannot be fully

defined at design-time. These applications must be defined in

abstract and flexible ways, allowing incremental composition

and dynamic adaptation to their execution context at runtime.

In this paper, we present a model-driven approach for

designing, developing, executing and managing service-based

applications. At design-time, an application is mainly defined

by its requirements and goals. The application definition can

be extended to add specific functional or non-functional

concerns, such as dynamic adaptation, deployment or

distribution. At development-time, the application can be

automatically and incrementally composed, ensuring its

consistency with respect to its definition. At runtime, the

application execution is supported and controlled by our

runtime environment.

Keywords-service-based composition; desing and

development engineering environments; execution platforms.

I. INTRODUCTION

Modern service-based software applications, such as
pervasive and ubiquitous ones where services represent the
functionalities provided by devices, present a number of
characteristics and requirements that make their design,
development, execution and management very difficult
[1][2]. Indeed, these applications depend on services whose
number, dynamic availability and behavior are not known
before execution. The assumption that applications are built
to run in well-defined contexts, with deterministic and
constant behaviors, is no longer valid for modern
applications. Thus, the architecture of these applications
cannot be fully fixed nor predictable at design-time anymore.

Considering the variability in the execution contexts,
modern applications must be defined in abstract and flexible
ways, allowing their concrete incremental composition all
along their lifecycle, and letting controlled opportunistic and
dynamic behaviors at runtime.

We define opportunism as the capability of a service-
based application to use services available at runtime. An
opportunistic behavior may be required, for example, to
improve efficiency, to support reuse and collaboration, to
avoid conflicts, or simply because the application cannot
instantiate the needed services (e.g. devices).

We define dynamism as the capability of a service-based
application to manage services that can appear and disappear
at runtime. A dynamic behavior may be required, for
example, to manage services whose number, location and
availability are variable, or whose deployment, instantiation
and removal are controlled by third parties (e.g.
administrators or other applications), or to consider new
application requirements and needs. Managing dynamic
services entails adapting applications dynamically, which
implies architectural reconfigurations by adding, updating or
removing components and connectors.

To address the complexity of designing, developing,
executing and managing modern service-based applications,
we propose: (1) design and development environments
that allow, on the one hand, defining an application at a high-
level of abstraction (via the set of properties it must have and
satisfy) leaving room for flexible and incremental
composition all along its lifecycle, and on the other hand,
defining separately specific functional or non-functional
concerns, such as dynamic adaptation, deployment or
distribution, in order to complement the application
definition; and (2) a runtime platform that supports the
execution of (partial or complete) applications, managing
their runtime compositions and ensuring the fulfillment of
their definitions and of their associated properties.

Our proposed approach uses models at design,
development and runtime [3]. We use development models
to define the abstract architectures and goals of applications.
We use runtime models to represent, in a high-level of
abstraction, the current architectures of the running
applications. The use of development models is extended to
runtime, allowing to control the applications execution, and
also to go on with design and development activities.

The remainder of this paper is organized as follows.
Section II introduces our model-driven design and
development environments, and details our metamodel for
building service-based applications. Section III presents our
model-driven runtime environment supporting and managing
the execution of such applications. Section IV discusses
related work, and finally section V concludes this paper
presenting our major contributions.

II. DESIGN AND DEVELOPMENT ENVIRONMENTS

We propose a set of model-driven engineering
environments, named CADSEs (Computer Aided Domain
Specific Engineering environments) [4], whose goal is to
help architects and developers performing software
engineering activities in a specific domain. Thus, we have
developed specialized CADSEs for the design and
development of service-based applications taking into
consideration the characteristics and requirements of modern
applications such as pervasive and ubiquitous ones.

To illustrate, we present a simplified home media center
application that allows users browsing, selecting and
reproducing audio and video files using different electronic
devices inside the home such as televisions, speakers,
screens, laptops and cellphones. This application is
composed of a media manager service which interacts, on
the one hand, with a number of media servers (such as home
media servers or audio-and-video-on-demand Internet
servers) containing audio and video files, and on the other
hand, with a media player service controlling the
reproduction of a selected media file.

New media server services can be dynamically available
in the house. When a new media server service is available,
it automatically joins the home media center application (i.e.
it is connected to the media manager service) allowing
accessing its contained media files.

A media player service interacts with audio and video
services in order to reproduce media files. Audio and video
services allow controlling the audio and video devices
dynamically available in the house. Several types of devices
can provide audio and video functionalities and several
instances of a type of device can be present in the house. The
home media center application must use not only the
available devices, but also the best suited ones (e.g., to the
user preferences or location) at a given point in time.

Finally, when a currently used service or device is
removed or fails, the application should be dynamically
adapted in order to continue providing its services using
alternative services and devices.

Due to the unpredictable availability of its components, it
is not possible to define concretely the architecture of this
application at design-time. We propose then to define a
service-based application in a high-level of abstraction,
partly by intention (via a set of invariant properties that the
application must satisfy, i.e. the application goal) and partly
by extension (via a set of selected interconnected
components, i.e. a concrete partial architecture) leaving room
for incremental composition and adaptation all along the
application life-cycle. Consequently, we propose a
component metamodel that aims bringing to service-based
architectures the benefits of component-based development,
allowing the description, creation, reusability, evolution,
composability and encapsulation of components providing
and requiring services and resources.

A. The component-service metamodel

Component-service is the central concept of our
metamodel shown in Fig. 1. A component-service provides
resources (i.e. functional interfaces, typed data or events),
requires resources, owns static and configurable properties,
and is associated with constraints and preferences. Next, we
detail the metamodel elements, presenting first the primitive
component-services followed by the concepts and
components allowing their composition.

1) Primitive components: A component-service can be
either a specification or an implementation. A specification
is an abstract definition of a component-service independent
of any given implementation technology. It defines a
contract that specifies the common and configurable
properties, the provided and required resources, and the
constraints and preferences that its implementations must
respect. Common and configurable properties are specified
as a tuple <name, type, value>. The values of the specified
common properties are identical and immutable for all the
implementations, while the values of the specified
configurable properties, being customized by each
implementation, are usually different allowing thus to
distinguish them (e.g. during selection).

Figure 1. Component-service metamodel

0..n

implements
ImplementationSpecification Instance

Resource Component-Service

1 0..n

Interface

provides

Data

targets

1

0..n

targets

1

0..n

0..n

CompositeDefinition Composite

0..n

hasImpl

0..n

mainImpl

0..n

1

conforms1 0..n
CompositeInstance

0..n

0..n0..n

SC-Model
0..n

instanceOf

1 0..n

Event

Common

value

Simple Complex

Intrinsic

Configurable

Dependency

id: String
min: int
max: int

Property

name: String
type: String

0..n

hasSpec

1..n

0..n

Constraint

Contextual

0..n 0..n

Connector

0..n

hasInst

0..n

0..n

BindingmainInst

0..n

1

mainSpec

0..n

1

Required resources can be defined via simple or complex
dependencies. A simple dependency is defined towards a
single resource. A complex dependency is defined towards a
single specification that specifies a set of provided resources.
A (simple or complex) dependency can indicate cardinality,
selection constraints and preferences. Cardinality is defined
by the tuple [min, max], where “min” can be either “0”
meaning an optional dependency or “1” meaning a
mandatory one, and “max” can be either “1” meaning a
single dependency or “n” meaning a multiple one.

Constraints and preferences (expressed via our constraint
language presented in section B) represent, respectively, the
properties that a provider must have and those that are
preferable. They are evaluated over the configurable
properties of the providers. Using constraints and preferences
allows reducing the number of providers that can be selected.

To illustrate the specification concept, consider a
MediaManager specification (see Fig. 2), which defines a
single provided resource via the interface MediaManagerIt.
This interface describes the provided functionality, which is
to show the list of current media files and to play a selected
media file. The specification defines two complex
dependencies: the first one, mandatory and multiple, is
towards a MediaServer specification, the second one,
mandatory and single, is towards a MediaPlayer
specification. The specification defines two configuration
properties, “provider:String” and “freeware:Boolean”, to be
configured by the MediaManager implementations.

A specification can be implemented by several
implementations. An implementation implements a single
specification with particular properties. An implementation
has the characteristics and properties defined by its
specification: the provided and required resources, the
common properties and the configurable properties with
particular values, the constraints and preferences. An
implementation can provide and require additional resources,
define common and configurable properties for its instances,
and add selection constraints and preferences.

To illustrate, consider two implementations of the
MediaManager specification: ADELE-MediaCenter and
ACME-MediaManager (see Fig. 2). Implementing the same
specification, both implementations provide the interface
MediaManagerIt, require the MediaServer and MediaPlayer
specifications, have the same common properties (with the
same values) and have the same configurable properties
(with own values). ADELE-MediaCenter provides an
additional resource, defined by the MediaRecorderIt
interface, which allows recording media files in scheduled
and automatic ways. In addition, ADELE-MediaCenter
requires a Log service (defined via a simple dependency
towards the Log interface), and defines the property
“language:String” for configuring its instances.

An implementation can have several instances. At
design-time, an instance is the declaration of a particular
configuration of an implementation. Such an instance has all
the characteristics and properties specified by its
implementation, i.e. the provided and required resources, the
common properties, the constraints, the preferences. An
instance personalizes the configurable properties specified by
its implementation. Configured properties allow, on the one
hand, distinguishing instances from each other (during
selection), and on the other hand, establishing the initial
values for the instance creation at runtime. In addition, an
instance can add selection constraints and preferences to the
dependencies specified by its implementation (see Fig. 2).

2) Composite concepts: Primitive components can be
assembled in order to compose an application or subsystem.
The composition process is orthogonal to the design and
development of primitive components. Our composition
approach relies on two concepts: composite definition and
composite implementation (hereinafter called simply
composite).

A composite definition describes an application or a
subsystem (i.e. composite) at a high-level of abstraction via
the properties it must have and satisfy: its architectural
characteristics (provided, required and contained resources),
and its constraints and preferences (see Fig. 1). Thus, a
composite definition specifies a structural composition in
terms of specifications, as well as a semantic (or intentional)
composition in terms of constraints and preferences. Similar
to a reference architecture in software product line (or
product family) approaches [5], a composite definition
describes structural and semantic properties, including
variation points, for a family of composites.

Using our composition and constraint language
(presented in section B), a definition for home media center
applications can be the following:

CompositeDefinition HomeMediaCenter {

Provides MediaManager;

Select MediaServer

(language=“FR” or language=“EN”);

Prefer MediaServer (language=“FR”);

Select MediaPlayer (quality=“HD”);

Select MediaRecorder

 (codec=“g711” and codec=“x264”);

Requires Optional Log (version=“1.2”);

}

Figure 2. Primitive component-services example

provider:String
freeware:Boolean

implements

PROVIDED RESOURCES DEPENDENCIESPROPERTIES

provider:String
language:String

medias:String[]
quality:String

Media
Server

Media
Player

provider=“ADELE”
freeware=true
language:String

ADELE-
MediaCenter

Log

provider=“ACME”
freeware=false

ACME-
MediaManager

Media
Manager

instanceOf

provider=“ADELE”
freeware=true
language=“EN”

provider=“ADELE”
freeware=true
language=“FR”

(language=“FR”)

ADELE
MC_FR

1..n

1

ADELE
MC_EN

MediaManagerIt

Media
Server

Media
Player

Media
ManagerIt

Media
RecorderIt

Media
Server

Media
Player

Media
ManagerIt

Media
Server

INTERFACE

SPECIFICATION

IMPLEMENTATIONS

INSTANCES

0..1

This model, named HomeMediaCenter, specifies the
architectural characteristics for home media center
applications: MediaManager is the provided specification
and Log is an optional composite dependency. Providing the
MediaManager specification implies that the MediaManager
dependencies (i.e. to MediaServer and MediaPlayer) are
composite dependencies too. In addition, the model specifies
constraints and preferences for selecting MediaServer,
MediaPlayer, MediaRecorder and Log providers.

Several different composites, can be derived (created) or
associated to a single composite definition, assuring then the
fulfillment of the specified properties and constraints.

A composite represents an application or subsystem via
an assembly of implementations. A composite is itself an
implementation (see Fig. 1), and as such, it provides a single
specification, inheriting then its provided and required
resources, its common and configurable properties, and its
constraints and preferences. Being an implementation, a
composite can provide and require additional resources,
define common and configurable properties for its instances,
and add constraints and preferences influencing the selection
of its contained and used implementations.

A composite contains a set of interconnected
implementations. Before runtime, these implementations and
their interconnections represent (partially or totally) the static
structure of the application or subsystem to be executed.
These implementations can be either primitive or composite,
allowing thus the hierarchical composition of composites.
Among the contained implementations, there is a main
implementation, which provides at least all the resources
provided by the implemented specification of the composite.

To illustrate the composite concept, consider that the
ADELE-MediaCenter implementation (presented in Fig. 2)
is a composite one, representing a home media center
application. Its external structure remains as described earlier
(see Fig. 3). Its internal structure is (currently) composed
only of the ADELE-MediaManager implementation, which
is its main implementation.

A composite is incomplete if any of its contained
implementations has unresolved dependencies (like the
ADELE-MediaManager in the ADELE-MediaCenter). An
incomplete composite can be gradually refined, before or
during runtime, by resolving such unresolved dependencies.
The principle of such a refinement process, also called
incremental composition, is explained later on section C.

Composite dependencies correspond to dependencies of
the implementations contained inside the composite. In other
words, composite dependencies are promoted dependencies
of implementations contained in the composite, which will
be resolved by implementations outside the composite.
Consider for example the dependency of the ADELE-
MediaCenter composite to the MediaServer specification
(see Fig. 3). The dependency of its contained implementation
ADELE-MediaManager to the MediaServer specification is
automatically promoted and resolved outside the composite.
This resolution results in a connection between the ADELE-
MediaManager and a MediaServer implementation (outside
the composite), and another one between the ADELE-
MediaCenter and the MediaServer implementation.

The ADELE-MediaCenter composite, associated to the

HomeMediaCenter definition presented before, satisfies all
the specified properties and constraints.

Being an implementation, a composite can have several
instances. At design-time, a composite instance corresponds
to a particular configuration of a composite, which may also
contain the configurations for its contained implementations.

Note that at design and development times we have two
levels of composition: abstract (in terms of architectural and
semantic properties and constraints) and concrete (in terms
of interconnected implementations and instance
declarations). Thus, an application can be specified, as
usually, by a list of implementations and connections
between them; but it can also be specified via an abstract
composite definition, leaving then room for flexible,
opportunistic and dynamic composition at runtime. In our
approach, a composite together with its composite definition
constitute a composite model.

B. Constraint expression language

We have defined a constraint language that, like the
Object Constraint Language (OCL), allows specifying
constraint expressions on model elements. Our language
allows navigating models (through its linked elements) and
evaluating constraints expressions over the elements
properties. Like in OCL, constraints expressions (hereinafter
called simply constraints) can be used to enforce model
consistency. Unlike OCL, constraints can be associated with
both instances and types. Thus, in our metamodel,
constraints can be associated with specifications and
implementations (as types), but also with implementations
and instances (as instances of the specification and
implementation types respectively).

In our language, constraints are strongly typed.
Therefore, a constraint can refer to the property “a” of an
element “x” only if either “x” (being a type) or the type of
“x” has declared the property “a”. In this way, the validity of
constraints can be statically verified, enforcing the
compatibility between elements.

Figure 3. Composite component-service example

Media
Server

Media
Player

Log

ADELE-MediaCenter

provider:String
freeware:Boolean

implements

Media
Server

Media
Player

Media
Manager

1..n

1

MediaManagerIt

Media
ManagerIt

Media
RecorderIt

COMPOSITE

Media
Recorder

ADELE-
MediaManager

provider= “ADELE”
freeware=true
language:String

Constraints can use LDAP-like expressions, navigation,
or complex constructions (see [6] for more details). For
example, the ADELE-MediaManager implementation
associates the following constraint with its dependency to the
MediaServer specification:

Select MediaServer (provider=“ADELE”);

This constraint indicates that ADELE-MediaManager

requires a provider of the MediaServer specification whose
“provider” property is “ADELE”. This constraint is valid
since the property “provider” is defined by the MediaServer
specification. Another constraint associated with the
ADELE-MediaManager implementation is:

Self.requires(name=“MediaRecorder”)..provides

(audio=“true” and video=“true”);

This constraint expresses, by navigation, that ADELE-

MediaManager (specified via the Self operator) requires a
provider of the MediaRecorder specification whose provided
properties “audio” and “video” are both true.

The constraints directly associated with a component, as
in the two previous examples, are called intrinsic
constraints. Being associated with a component, intrinsic
constraints must be satisfied by all composites using the
component. Intrinsic constraints can be used to validate the
compatibility between components, reducing thus the risk of
errors at runtime.

A composite can be associated with a set of contextual
constraints that must be satisfied by the implementations it
contains and uses. The ADELE-MediaCenter composite,
being associated with the HomeMediaCenter definition
presented before, has the following contextual constraints:

Select MediaServer

 (language=“FR” or language=“EN”);

Select MediaPlayer (quality=“HD”);

Select MediaRecorder

 (codec=“g711” and codec=“x264”);

Requires Optional Log (version=“1.2”);

The implementations that a composite will contain must

satisfy both the composite contextual constraints and the
intrinsic constraints of the client contained implementations.
For example, the ADELE-MediaCenter composite has the
contextual constraint (language=“FR” or language=“EN”)
associated to its MediaServer dependency. The ADELE-
MediaManager implementation, contained in that composite
as its main implementation, has the intrinsic constraint
(provider=“ADELE”) associated to its MediaServer
dependency. These constraints will be aggregated in order to
be evaluated when selecting a MediaServer implementation
for that composite.

Contextual and intrinsic constraints can conflict.
Constraint conflicts are checked, from design to runtime,
during the composition process. Actually, we propose an
automatic backtrack mechanism looking for alternative
solutions when composition fails due to unsatisfied or
conflicting constraints.

In a similar way, preferences can be associated with
components (intrinsic preferences) and with composites
(contextual preferences). Preferences are evaluated only if
more than one provider satisfies the constraints. The provider
fulfilling more preferences will be selected.

The ADELE-MediaCenter composite associates the
following contextual preference with the MediaServer
specification, indicating that the selection of a MediaServer
provider having “language=FR” is preferable:

Prefer MediaServer (language=“FR”);

Constraints and preferences (intrinsic and contextual) are

validated when defined, and evaluated when composing the
associated composite and composite instance(s), enforcing
then the selection of compatible and suited implementations
and instances, respectively. Our composite composition
system, presented next, performs these tasks.

C. Composite composition system

Our composite composition system is available all along
the lifecycle of a component, from its design to its execution,
allowing thus its incremental composition (including
refinement and adaptation) at any time. This approach
enables a flexible composition process in which some parts
of an application are selected at design and/or development
times, while others are left open for opportunistic and
dynamic selection at runtime. The composition process
implemented by our system relies on the equivalence group
and resolution concepts.

1) Equivalence group: An equivalence group (group for
short) is made of one representative object (also called group
head) and a number of group members. A group head
defines the common and the configurable properties for the
group members. In this manner, the group members have
the same common properties, and the same configurable
properties with own values. The configurable properties
defined by a group head, allow distinguishing the group
members, for example, during the group resolution process.

A group type is defined as the tuple <headType,
memberType>. In our component-service metamodel, two
group types exist: <specification, implementation> and
<implementation, instance>. Thus, considering the example
of Fig. 2, the MediaManager group has the MediaManager
specification as its head and the ADELE-MediaCenter and
ACME-MediaManager implementations as members.

2) Resolution process: The composition process is based
on the concept of group resolution. Resolving a group means
selecting or creating one or several group members
(according to the specified multiplicity) satisfying a given set
of constraints and preferences. A group is instantiable if it is
associated with a factory, allowing then the creation of group
members during the resolution process.

Resolving a specification group means either selecting an
implementation from a component repository or generating
an implementation satisfying the set of specified constraints.

Actually, a specification group is instantiable if it is
associated with a factory knowing how to generate
implementations fulfilling the given set of constraints (proxy
generation for example).

In a similar way, resolving an implementation means
either selecting or creating one or more instances satisfying
the given set of constraints. Before runtime, an instance is a
declaration corresponding to a particular implementation
configuration. Like implementations, instance declarations
are maintained in component development repositories. At
runtime, an instance is a running entity corresponding to the
execution of an implementation. Instantiation (i.e. the
creation of a runtime instance) is performed using the
corresponding implementation factory and the instantiation
properties specified by an instance declaration. Usually,
implementation groups (other than implementations of
physical devices) are instantiable.

Resolving a (simple or complex) resource dependency
consists in selecting a group head (i.e. a specification or
implementation) providing the required resource, and then in
resolving the group considering the constraints and
preferences related to this group.

 A group resolution is complete if: (1) the group head is
resolved until the selected group members are not
themselves group heads (e.g., the complete resolution of a
specification results in one or more instances), and (2) the
dependencies of the group head and of its selected members
are transitively and completely resolved. A complete
resolution may fail because it is not possible to resolve a
group, for example, because no member satisfies the
constraints or because intrinsic and contextual constraints
conflict. Therefore, a complete resolution can be performed
in backtrack mode, meaning that if a group resolution fails,
the previous selection will be undone, and other resolutions
will be performed. The backtrack resolution mode ensures
that if a resolution solution exists, it will be found, but it may
be very expensive for large component repositories.

The resolution (or composition) of a composite consists
in resolving the unresolved dependencies of its contained
implementations (starting from the main implementation). A
successful resolution returns implementations that are added
to the composite. In turn, resolving these implementations
returns instance declarations, to be added to a composite
instance declaration. Before runtime, a composite and an
associated instance declaration represent the static structure
of the application to be executed in terms of implementations
to be deployed and instances to be created at runtime.

A composite is considered as complete (or completely
resolved) if all its contained implementations have been
completely resolved. Nevertheless, resolving completely a
composite before runtime conflicts with the needs of using
available services at runtime. Thus, we adopt a partial
resolution mode leaving room for opportunistic resolution at
runtime. The architect of a composite specifies then the
implementations for which the resolution has to be
performed before execution. At runtime, resolution is
performed on-demand considering the services available on
the execution platform. In this manner, composition is
performed incremental and opportunistically.

As a result, our basis approach allows mixing two
resolution modes:

• static mode: components are resolved before runtime.
The implementations contained in the composite will be
deployed and instantiated using their corresponding instance
declarations, ensuring then a reliable composite execution.

• opportunistic mode: components are resolved on-
demand at runtime. The services available on the execution
platform can be potentially (re)used and integrated into the
composite execution.

Other resolution modes (such as dynamic or remote) can
be specified by independent models (referred as specific-
concern models) complementing thus a composite definition
with specific-concerns to be supported. For example, a
dynamic model can specify the behavior that a composite
must have when the availability of some components
changes at runtime. Thus, a composite needing to react to the
availability of components in the execution platform must be
associated with a dynamic model describing the expected
behavior (e.g. dynamic creation of bindings following the
availability of an expected service, dynamic substitution of
an unavailable service, and so on). A deployment model can
complement a composite definition by specifying a set of
addresses corresponding to component repositories to be
used for the resolution of that composite.

The specific-concern models associated with a composite
definition are controlled, at runtime, by concern-specific
managers which are in charge of resolving and/or controlling
the composite execution according to a specific-concern.
This paper does not detail the specific-concern models that
can be associated to composites nor the managers that
interpret them at runtime.

D. Composite control properties

A composite contains a (partial or complete) set of
implementations. In our approach, the result of the
incremental composition process is, by default, a white-box
composite. A white-box composite allows other components
and composites to get access to its content. Our approach
allows specifying if the content of a composite is not visible
from the outside. Thus, in order to hide the content of a
composite, we define a black-box property. A black-box
composite is seen like a primitive implementation, meaning
that the only way to interact with the composite is through its
provided services or resources. The internal structure of such
a composite (i.e. the implementations it contains) will not be
visible from an external point of view.

Moreover, in order to control its runtime resolution, a
composite can explicitly specify if its resolution space is
closed (i.e. its resolution will be performed using only the
specified component repositories). By default, the resolution
space is open (i.e. the resolution is performed both
opportunistically and using all the available repositories).
The closed and black-box properties can be associated with
composites or with composite definitions, like in the
following example:

CompositeDefinition Closed BlackBox HomeMediaCenter {

...

}

III. RUNTIME ENVIRONMENT

Our model-driven runtime environment supports and
controls the concurrent execution of various composites
defined and built with our design and development
environments. It implements the component-service
metamodel presented in section A.

Before runtime, component-services are represented by
artifacts that can be described, developed and packaged (as
bundles). In order to support the execution of composites,
our runtime environment supports the deployment,
instantiation and activation of components and (partial or
complete) composites. It promotes the opportunistic (re)use
of the available running services. Hence, by default, the
resolution of dependencies is performed on-demand,
resulting in services, selected from the available running
services or deployed and activated from the available
component repositories.

Executing a (partial or complete) composite on our
running environment consists thus in deploying the
composite and its main implementation, and creating their
corresponding instances. The composite is incrementally
composed (starting from its main instance), via the on-
demand resolution of the components dependencies.

Our runtime environment provides mechanisms for
controlling the concurrent execution of composites
according to their associated properties (i.e. intrinsic and
contextual constraints and preferences, visibility, sharing,
open or closed resolution). Hence, it represents the current
execution state of the supported composites via a state
model conformable to our component-service metamodel.
That runtime model is causally related to the underlying
platform, allowing on the one hand having a representation
of the current running components and composites (i.e. a
descriptive model) and, on the other hand, managing and
controlling their execution according to their associated
properties (i.e. a prescriptive model). Then, the actions
performed in that model (for example, adding a given
implementation) are translated into the corresponding actions
in the underlying platform (deploying and activating the
corresponding implementation).

Therefore, our runtime environment ensures that the
execution of a composite is conformable to its definition, and
consistent with the composition performed before runtime.
The information produced during its design and development
times (i.e. the composite model) is known and managed at
runtime. The resolution of its internal and external
dependencies is then performed according to its definition,
and using (by default) the same component repository used
at development-time. Moreover, having the information
produced during design and development times allows
performing some design and development engineering
activities at runtime.

Considering that additional models representing specific
functional and non-functional concerns can be defined to
complement a composite model, our runtime environment
can be extended in order to support and control such
concerns during the composite execution. Currently,
dynamic adaptation and deployment are supported.

The basic functionality of our runtime environment,
extended with specific-concern functionalities, allows
supporting and controlling the concurrent execution of
various composites ensuring, on the one hand, the
satisfaction of their definition (i.e. of their goals) and of their
general properties (i.e. visibility, sharing), and on the other
hand, the management of specific-concerns (such as dynamic
adaptation and deployment).

Our runtime environment, built on top of the OSGi
framework [7], uses the iPOJO [8] and Rose [9]
technologies, resulting thus in an extensible runtime
environment handling the execution and composition of
dynamic, distributed and heterogeneous component-services.

We have tested different scenarios and compared the
performance of our core runtime environment [10] to those
of iPOJO [8], FraSCAti [11] and Tuscany [12] platforms.
We have measured the instantiation and method call rates,
and the memory used in each case. The results have shown
that our runtime environment is quite efficient. For instance,
regarding the instantiation rate, our platform is 10% faster
than iPOJO, even though the memory usage is 10% higher.
Our current work aims at improving the robustness and
performance of our runtime environment, and validating it
by using different application scenarios requiring controlled
opportunistic and dynamic behaviors. We intend to provide a
runtime environment robust and efficient enough to be used
as an open research platform.

IV. RELATED WORK

The development, execution and management of service-
based applications have been addressed from different
perspectives. Some works propose model-based approaches
for their development. Others propose runtime platforms for
supporting their execution. Recent works attempt to extend
the use of models created during development to the runtime.

Using components to implement services has become
relatively popular. Some service-oriented component models
and execution platforms have been proposed, such as Service
Component Architecture (SCA) [13], Declarative Services
[7], Spring-DM [14] and iPOJO [8].

SCA proposes a service-oriented component and
composition model. It supports a wide variety of
technologies for implementing components. SCA allows
describing composites as an assembly of interconnected
components. Like in our approach, composites can be used
as component implementations, allowing hierarchical
construction of applications. Unlike our approach,
composition is defined at development-time and wiring is
fully performed when starting the application, prohibiting
component selection and substitution at runtime. Some
runtime platforms, such as FraSCAti [11] and Tuscany [12],
implement and extend the SCA specification allowing the
execution of SCA applications at runtime.

The OSGi specification [7] defines a service runtime
platform supporting a minimal component model. OSGi
automatically manages dynamic service deployment,
including Java package dependency resolution. Nonetheless,
service dependency management is left as a manual task for
developers. Therefore, the Declarative Services specification,

inspired by the Service Binder model [15], proposes a
service-oriented component model aiming at facilitating the
creation of components on top of OSGi. It allows developers
to describe components with its provided and required
services. Descriptions are used by the Service Component
Runtime (SCR) to automatically manage service
dependencies at runtime. Nevertheless, unlike our approach,
Declarative Services does not propose a composition model,
leaving developers to code service compositions.

iPOJO is both a service-oriented component model and a
runtime platform implemented on top of OSGi. Based on the
concept of Plain Old Java Objects (POJO), iPOJO allows a
straightforward development of components. POJOs are
encapsulated in containers that manage dynamic service
mechanisms (publishing, discovery, invocation) and other
non-functional concerns (such as lifecycle or configuration)
at runtime. iPOJO offers an extensibility mechanism based
on the concept of handlers which are plugged into containers
allowing managing other non-functional concerns. Indeed,
our runtime environment, implemented on top of iPOJO,
provides new functionalities, implemented via handlers, like
on-demand dependencies resolution, intrinsic and contextual
properties management, and so on.

Recent works in dynamic adaptive systems and
autonomic systems [16][17][18] advocate the use of runtime
models (or state models) causally connected to the running
systems. Runtime models provide abstract views of the
running systems allowing their management (monitoring,
analysis, adaptation). Thus, actions performed on a runtime
model are transformed into the corresponding actions on the
running system, and vice versa. In some works, the runtime
models focus on reactivity to dynamic context changes [8]
but they do not propose proactive (goal-oriented) actions.
Other works focus on proactivity [16][17] but they usually
do not focus on dynamic services. Our work claims that
reactive and proactive actions should be both supported in
order to allow dynamic adaptation and evolution of the
running systems in controlled ways. Hence, our approach
uses multiple runtime models simultaneously, including
development models. Using development models at runtime
allows us to support continuous design, blurring the line
between development-time and runtime [19].

V. CONCLUSIONS

In this paper we have presented a model-driven approach
to design, develop, execute and manage service-based
applications, such as dynamic and ubiquitous ones. Our
contribution lies in an abstract, flexible and automated
composition process that promotes opportunistic and
dynamic behaviors at runtime. We propose first a component
metamodel that brings to service-based architectures the
advantages of component-based development (such as
description, composability and encapsulation).

Second, we propose design and development
environments allowing developing components and
composites defined at a high-level of abstraction. Our
composition environment supports adding specific functional
or non-functional concerns (to be defined in independent
models) in order to complete the definition of an application.

Finally, we propose a runtime platform supporting and
managing the concurrent execution of multiple dynamic
applications, ensuring the satisfaction of their specified
goals. Our runtime platform can be extended by concern-
specific managers in order to support specific-concern
management during execution. Our approach uses models
from design to runtime. Extending the use of design and
development models to runtime, allows us to control and
ensure a consistent execution of the running applications,
and also to perform some design and development activities
if needed. This work is currently extended for the design and
execution of autonomic applications.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 3, no. 3, 1991.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,”
IEEE Personal Communications, vol. 8, no. 4, pp. 10-17, 2001.

[3] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Future of Software Engineering
(FOSE), 2007, pp. 37-54.

[4] J. Estublier, G. Vega, P. Lalanda, and T. Leveque, “Domain Specific
Engineering Environments,” in Asia-Pacific Software Engineering
Conference (APSEC), 2008.

[5] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, vol. 0201703327, no. 4. Addison-Wesley, 2001.

[6] J. Estublier, I. A. Dieng, E. Simon, and G. Vega, “Flexible
Composites and Automatic Component Selection for Service-Based
Applications,” in International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2009.

[7] The OSGi Alliance, “OSGi Service Platform Core Specification,”
2011. [Online]. Available: http://www.osgi.org/.

[8] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an Extensible
Service-Oriented Component Framework,” in International
Conference on Service Computing (SCC), 2007, pp. 474-481.

[9] J. Bardin, P. Lalanda, and C. Escoffier, “Towards an Automatic
Integration of Heterogeneous Services and Devices,” in IEEE Asia-
Pacific Services Computing Conference (APSCC), 2010, pp. 171-178.

[10] J. Estublier and G. Vega, “Managing Mutiple Applications in a
Service Platform,” in Principles of Engineering Service Oriented
Systems (PESOS), 2012.

[11] OW2 Consortium, “FraSCAti.” [Online]. Available:
http://wiki.ow2.org/frascati.

[12] Apache, “Tuscany.” [Online]. Available: http://tuscany.apache.org/.

[13] M. Beisiegel, A. Miller, J. Marino, and L. Waterman, “SCA Service
Component Architecture,” International Business, 2007.

[14] A. M. Coyler, H. Hildebrand, C. Leau, and A. Piper, “Spring
Dynamic Modules Reference Guide,” 2009.

[15] H. Cervantes and R. S. Hall, “Automating service dependency
management in a service-oriented component model,” in ICSE CBSE
Workshop, 2003.

[16] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E.
Gjorven, “Using Architecture Models for Runtime Adaptability,”
IEEE Softw., vol. 23, no. 2, pp. 62-70, 2006.

[17] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic
Computing through Reuse of Variability Models at Runtime: The
Case of Smart Homes,” Computer, vol. 42, no. 10, pp. 37-43, 2009.

[18] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,”
Computer, vol. 42, no. 10, pp. 22-27, 2009.

[19] L. Baresi and C. Ghezzi, “The disappearing boundary between
development-time and run-time,” in Proceedings of the FSE/SDP
workshop on Future of Software Engineering Research (FoSER),
2010, pp. 17-21.

