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Abstract

Several wireless communication systems are developed for communication needs between
train and ground or between trains in the railway or mass transit domains. In order to deploy
these systems in specific environments, such as tunnels, straight or curved, rectangular or arch-
shaped section, specific propagation models have to be developed. In this paper, we propose a
method to model the radiowave propagation in straight arch-shaped tunnels by using asymptotic
methods, such as ray tracing and ray launching, combined with the tessellation of the arched
section. A method of interpolation of the facets normals is implemented in order to minimize
the error made when using the tessellation. These results are compared to those found in the
literature in order to validate our approach.

1 Introduction

Wireless communication systems are more and more used in guided transports domain (mass
transit, train ...) for train to ground or train to train communication applications. These
systems are developed to satisfy operational needs, for security and comfort (control-command
or information). They are usually deployed in complex radioelectrical environments such as
tunnels. High field levels are often required to guarantee a safety systems behavior and needed
aplications QoS. The deployment in tunnels is nowadays treated by intensive measurement
campaigns, long and expensive, and so have to be specifically analyze. The development of
simulation tools for the radioelectrical planification in these contexts is so relevant. However,
classical methods like ray tracing did not function any more for curved and/or arch-shaped
tunnels [1, 2, 3, 4, 5].

This paper presents obtained results for different propagation models in straight tunnels
of arch-shaped section considering a tessellation of the vault to approximate the curvature. In
section 2, we give obtained results with ray tracing technic using image method. The limitations
of this method in the considered configurations are explained. Section 3 details the results
provided by a classical ray launching technic, using the facets’ geometrical normals. To eliminate
the errors introducing by this method, we propose to interpolate the facets’ normals according
to an image synthesis technic [6]. Thus, a significant results improvement is noticed. Finally,
conclusions and perpectives of this work are given.

2 Tessellation associated to ray tracing

Models based on ray tracing are frequency asymptotic methods which consist in a direct and ex-
haustive search of geometrical paths followed by the waves, between a transceiver and a receiver.
This technic is based on the image method which lies on the computation of all transceiver’s
images according to the environment facets and a given number of succesive reflections. The
images are computed by axial symmetry according to each facet, the normal of the facet is so



very important in the paths search step. In the case of a curved surface, which can be approx-
imated by an infinity of tiny facets, a single facet generates an infinity of images (because of
an infinity of normals). As in [3, 4, 5, 7], we propose to approximate the curved surface by a
reasonnable number of plane surfaces, to limit the computation time which is directly connected
to the number of scatterers.

All the results are given in terms of received power (P,) normalized by the radiated power
(P;) according to the distance between tranceiver and receiver along the longitudinal tunnel axis.
Simulations have been conducted at the 1 GHz frequency in a straight tunnel of arch-shaped
section, in the configuration of figure 1.
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Figure 1: Configuration of simulation

The transceiver is located at the center of the vault, at a height of 4.5 m, whereas the receiver
is from 2 m of the tunnel’s left side wall, at a height of 1.5 m, and moves along the tunnel. The
obtained results according to the number of facets are given on the figure 2 (a).
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Figure 2: Results of (a) our ray tracing according to the number of facets, (b) Wang & Yang [2]

As we have shown in [7] by comparison with measurement, it appears that for a reasonnable
number of facets, the received power does not converge. This is explained by the fact that each
supplementary facet introduces new paths and so modifies the received power. A convergence
of the look of the curve presented in figure 2 (a) will be attempt for a great number of very
tiny facets. Indeed, the new paths introduced by each new facet will be quasi identical to the
previous ones and so will engender a simple offset on the received signal level. These new paths
are so doubloons of a real path, provoquing so a misestimation of the received power. However,
because of the direct and exponential link between the facets number and the computation time
of ray tracing, it is impossible to verify this remark by simulation. In all the cases, the ray tracing



algorithm shows here its limitations. The results obtained by Wang & Yang [2] illustrated on
figure 2 (b) confirm this observation. In the next section, we present a ray launching method
allowing to solve this problem.

3 Tessellation associated to ray launching

The ray launching technic [8] consists in launching in the environment a great number of rays
from the tranceiver. These ones propagate by successive reflections. It is then necessary to
determine the rays reaching the ponctual receiver. To do this, one considers a sphere around
the receiver, and each ray intersecting this sphere is so considered as contributing to the received
power. Thus, several rays geometrically closed may be retained while they correspond to only
one path in the Geometrical Optic meaning, falsifying thus the received power estimation, as
for the ray tracing (cf. section 2). In this case, one talks about multiple rays. To guarantee the
power convergence consists so in identifying these multiple rays and to retain only one of them
in the received power computation. The difficulty and the accuracy of this method are based
on the regulation of the sphere size and Identification of Multiple Rays criteria (IMR) [8].

The retained IMR algorithm consists in successively evaluating the above criteria :

1. the number of reflection : if the reflection number of two rays is the same, then we evaluate
the second criterion,

2. the length of the ray : the lengths (or propagation delays) of the two rays are compared.
If the difference is lower than a predefined threshold, we evaluate the last criterion,

3. the direction of departure : the emission angles of the two rays are compared. If the angle
formed by these ones is lower than a predefined threshold, then the two rays are considered
as multiple, and only the first one is retained.

If the first criterion is unambiguous, the two next ones need threshold values which have to
be adequatly fixed to garantee the power convergence. This last point is the main difficulty in
the implementation of our ray launching algorithm.

3.1 Facets normals use

In this section, the results are obtained from our implemented ray launching method (with recep-
tion sphere and IMR) associated to the consideration of the facets’ normals for the computation
of the rays direction after reflection.
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Figure 3: Ray-lauching results according to the number of facets

150

" Distance {m)

Figure 3 presents the results at 1 GHz according to the used facets number. Thanks to
the IMR algorithm, a results convergence is observed for a high number of facets (about 120).



Furthermore, this result is very close to the one proposed by Wang & Yang [2], which validates
this approach.

3.2 Facets’ normals interpolation

The tessellation of the tunnel arch-shaped section drives to an error on the normals at the
reflection points. Indeed, whatever the reflection point is, its associated normal is systematically
the one of the corresponding facet, as illustrated on figure 4 (a).

Figure 4: (a) Tesselation and error made on the normals, (b) normals interpolation method

This example shows that the use of the facet’s normal drives the ray to go away from the
receiver and so to its elimination, while in reality, the vault’s normal at the reflection point drives
the ray to intersect the reception sphere, prooving its existence according to the geometrical
optic meaning. The reverse of this example driving to retain paths having no real existence is
also true.

Consequently, we present here a method allowing to minimize these errors by estimating the
curved surface’s (the vault) normal at the reflection point. This estimation consists in a linear
interpolation of the facets’ normals based on the Phong algorithm [6], well known in image
synthesis.

The principle is, for each facet, to compute the normal of each of the four facet’s edges. The
edge’s normal is stated as the mean of the adjacent facets’ normals if the angle between the
facets is sufficiently weak. The N normal interpolated at the reflection point P of a facet F is
based on the barycentric coordinates of P in the triangle 575553, as it is illustrated on figure 4
(b).

The figure 5 presents the obtained results according to the normals interpolation method for
the configuration of figure 1.

One more time, a convergence of results to the Wang & Yang [2] ones is clearly observed
with the facets number increase.

Nevertheless, the normal interpolation at reflection points allows to obtain this convergence
very faster. Indeed, 16 facets are sufficient in this case while 120 are needed without interpola-
tion.

4 Conclusion

This article presents obtained results using different methods allowing to model the radio wave
propagation in straight tunnels of arch-shaped section.
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Figure 5: Ray lauching results with normals interpolation according to the number of facets
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