
HAL Id: hal-00745448
https://hal.science/hal-00745448v1

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Social Information Systems: The End of Shadow
Applications?

Marc Quast, Mark J. Handel

To cite this version:
Marc Quast, Mark J. Handel. Social Information Systems: The End of Shadow Applications?. ICEIS
2012 - International Conference on Enterprise Information Systems, Jun 2012, Wroclaw, Poland.
Paper 98. �hal-00745448�

https://hal.science/hal-00745448v1
https://hal.archives-ouvertes.fr

SOCIAL INFORMATION SYSTEMS
The End of Shadow Applications?

Marc Quast
1
, Mark J. Handel

2

1University of Grenoble, Campus C207, 220 Rue de la Chimie, 38400 Saint-Martin d’Hères, France
2The Boeing Company, MC 7L-70, PO Box 3707, Seattle, WA 98124, USA

marc.quast@imag.fr, mark.j.handel@boeing.com

Keywords: Information Systems, Business Applications, Enterprise Architecture, Social Software Engineering.

Abstract: In large corporations, line-of-business organizations frequently introduce unofficial “shadow” applications

to work around the limitations of the established information system. This paper presents a software

architecture designed to alleviate this phenomenon, and reuses examples from a recent industry experience

report to demonstrate how shadow application proliferation could be avoided without sacrificing flexibility

and reactivity. We present the initial results of our prototype, and discuss the possibility of a social

information system designed to both reduce the present chaos and enable the cooperative design and

evolution of business applications.

1 INTRODUCTION

Delivering the right information at the right time to

the right persons is one of the most important

requirements of today’s business world (Spahn and

Wulf, 2009). Nevertheless, corporate information

systems are a widespread source of frustration

(Newell, Wagner and David, 2007). Business units

do not accept the poor service provided by their IT

departments and build up independent IT resources

to suit their specific or urgent requirements

(Zarnekow, Brenner and Pilgram, 2006).

As a result, information systems of large

corporations are a web of numerous applications. At

the center we find a fairly small set of stable and

robust enterprise applications. These are surrounded

by a larger set of semi-official applications and a

very large number of unofficial applications. We

adopt the term of shadow application proposed by

Handel and Poltrock (2010) for the last two

categories, i.e. applications introduced by business

units to satisfy requirements not met by official

applications.

Though the benefit of “getting the job done” is

sufficient to justify, and indeed pay for, their

existence, shadow applications raise serious

problems: duplicated and inconsistent data is

commonplace, and having critical information and

functionality scattered, unreachable and managed

outside of standard IT processes is obviously not

what comes to mind when envisioning a well-

structured and robust information system.

Building upon our industry experience1, this

paper proposes a potential solution. After a short

definition of shadow applications, their main

characteristics and the causes of their emergence, we

propose an alternative architecture for business

applications which could prevent the systematic

recourse to shadow applications in their vicinity,

using two use cases from (Handel and Poltrock,

2010) to illustrate its effects. We present our

prototype implementation and our first results, and

discuss the possibility of a social information system

designed to both reduce the present chaos and enable

the cooperative design and evolution of business

applications.

1 The authors have a cumulated experience of over thirty

years in the development and operation of business

applications in industrial environments.

2 UNDERSTANDING

SHADOW APPLICATIONS

Shadow applications are characterized by their

purpose. If application A exists to work around the

limitations of application B, or if A’s features belong

in B according to its users, A can be considered a

shadow application. This partial definition illustrates

the subjective nature of the phenomenon.

Shadow applications are also characterized by

their ownership. If it is owned by the IT department,

it is an official application; otherwise it is a shadow

application. The important distinction is not so much

“IT or not IT” but “ownership by the actor

effectively using the application”. This allows the

owner to quickly adapt the tool without consulting

other parties or relying on the IT organization’s

priorities. It also provides him with full control over

the visibility of the data and access to features.

 Individual spreadsheets meet this definition.

These are often used for simple data storage and

manipulation, as a substitute for more robust

business applications. This is a very common and

possibly dominant use case since their introduction

(Nardi and Miller, 1990), and Handel and Poltrock

(2010) qualify such spreadsheets as shadow

applications.

“Official” and “shadow” are relative concepts,

and apply recursively at various levels of an

organization. In other terms, multiple layers of

shadow applications exist, the final one being

personal applications.

Shadow applications are typically loosely

integrated with some official and other shadow

applications. However, manual synchronization is

not uncommon (Hordijk and Wieringa, 2010).

We define a shadow application as an application

which:

 works around another application’s limitations

and

 is both functionally and technically owned by

the organization using it.

Shadow applications are usually considered a

“necessary evil” (Hordijk and Wieringa, 2010).

Organizations cannot work without them, but would

prefer to avoid the data duplication they imply as

well as the burden they represent in development

and maintenance costs.

The benefits of shadow applications must

outweigh the drawbacks; otherwise line-of-business

organizations would not develop, deploy, and

maintain them. We will refer to the main benefits of

shadow applications as perceived by their owners as

the “AVI capabilities.”

 The owner has full Autonomy to implement

new features.

 The owner decides about Visibility of the

application to the larger organization.

 The owner can Integrate (manually or

automatically) with other applications.

2.1 Examples of Shadow Applications

A recent experience report contributes observations

about shadow applications in a 10 year engineering

project (Handel and Poltrock, 2010). In this paper,

we will use fictional examples derived from the

information disclosed in this report.

 “Luxury can report delays on process

instances, but not the reasons for these delays

which are managed by a shadow application.”

 “Sometimes the tasks tracked by Luxury were

informally decomposed into subtasks; (…)

Luxury had no provisions for this kind of task

decomposition.”

We make the assumption that Luxury tracks

requests, a common use case in engineering

environments. Figure 1 below shows a fictional

central database of an official application and two of

its shadow applications, managing delay analyses

and subtasks respectively.

Figure 1. Example of fictional official database and

 associated shadow application data.

 While spreadsheets are arguably the most

common form, shadow application architectures are

limited only by the owner’s resources, including

full-blown business applications and, more

associated shadow applications

official application

REQUEST

id title state owner

planned

end

actual

end

123 assess technology T CLOSED Ruben 04.may 10.may

456 validate new supplier Z CLOSED Barney 27.aug 12.sep

789 align X with standard Y OPEN Johanna 10.oct

fashionably, third-party applications in the “stealth

cloud”, i.e. cloud services being consumed by

business users without the knowledge, permission or

support of the IT department (Gotts, 2010.).

2.2 Causes of Shadow Application
Emergence

Shadow applications emerge to work around the

shortcomings of official applications (Zarnekow,

Brenner and Pilgram, 2006). Thus we need to

understand the causes for these problems.

Large organizations are not consistent and

orderly systems. Referring both to groups and

individuals, Kling (1991) describes working

relationships as “multivalent with and mix elements

of cooperation, conflict, conviviality, competition,

collaboration, control, coercion, coordination and

combat (the c-words)”. Requirements from different

stakeholders are thus often divergent or conflicting,

which explains why the difficulty of requirements

engineering increases exponentially with the number

and diversity of participants. Ackerman (2000)

indicates that when there are hidden or conflicting

goals, people will resist articulating these. Under

such circumstances, it is a challenge to converge on

a consistent set of requirements and deliver a

working application at all. But widespread

dissatisfaction with the result is almost guaranteed

by construction.

As an aggravating factor, corporations are not

static. They must adapt to changes in their

environment like new markets, technologies or

regulations. Though the aforementioned c-words

impact is often obvious at the time of application

introduction, the continuous evolution of business

requirements turns this into a subtle though

continuous problem. Any change in any

stakeholder’s universe can invalidate the initial

compromises and demand new rounds of discussion,

yielding further dissatisfaction.

Besides inter-organization conflicts, some c-

words foster shadow application emergence by

themselves. A successful shadow application and the

knowledge it captures is usually highly visible

within an organization, and its ownership provides

recognition (competition) and power (control,

coercion).

There are other contributing factors. The

widespread practice of reducing IT costs lowers both

reactivity and quality of IT support, inciting business

units to help themselves (Hoyer and Stanoevska-

Slabena, 2008). Technical obsolescence, a

consequence of either respectable age or unfortunate

choice of foundation technologies, can make it

difficult to find the right skillset to implement

changes. This paper focuses on the following factors

leading to shadow application emergence.

 Business unit considers it impossible to

converge on a single set of requirements

fulfilling all stakeholders’ requirements.

 Business unit does not want to rely on slow or

expensive third parties.

 Business unit considers it in its best interest to

produce a new system they own.

2.3 Preventing Shadow Application
Proliferation

Our opinion is that with present software

architectures, no matter how carefully official

applications are crafted, over time they will spawn

shadow applications whenever resourceful

communities have urgent unsatisfied needs.

Our hypothesis is that if an application provides

the AVI capabilities, the need for shadow

applications is greatly reduced. Today’s software

architectures cannot provide these capabilities

because the components of a business application

(such as data elements, workflows, or forms) are

shared among organizations. This sharing is both the

main reason why business applications exist and the

main reason for the emergence of their shadow

counterparts. We therefore propose an application

architecture with a fundamentally new and different

sharing principle.

3 REQUIREMENTS FOR AN

ALTERNATIVE APPLICATION

ARCHITECTURE

In this section we attempt to express the AVI

capabilities as a set of requirements for an

application architecture, with the following

definitions.

 Actor designates an individual or a group of

individuals, for example the entire company,

an organization, department, project team, or

community.

 Elements are runtime application components,

like business entities (in our previous example

a “Request”), workflows, forms, reports, or

even configuration entries. With this

definition an Application is a collection of

related Elements.

3.1 Functional requirements

Our first two requirements cover the most central

operations in shadow application development.

R1: Actors can extend existing Elements.

R2: Actors can add new Elements.

Example 1 below reuses an observation from

(Handel and Poltrock, 2010) to illustrate how an

application satisfying R1 and R2 could defuse the

need for shadow applications.

Example 1 – Luxury2

The official application manages Request entities,
with among others attributes title, state and delay.

The “Quality” department needs to record the
reasons for delays when they occur. Using R2,
they introduce a new Element DelayAnalysis with
attributes like reasonForDelay and analyst and
associations with existing Element Request.
Behind the scene, this leverages R1 to extend the
Request Element with the reverse association
delayAnalyses. This blends the new Element and
extensions with the original Luxury entities thus
enabling intuitive bi-directional navigation.

Other operations are adding missing attributes to an

existing business element or adding more detailed

states in an existing workflow. Example 1 highlights

a new problem: the extensions are of interest only to

a subset of the application’s users, and may be

confidential. To avoid cross-Actor pollution and

conflicts, both R1 and R2 imply that Actors are

isolated from each other by default, which yields the

requirement R3.

R3: Actors have private spaces.

Elements are hosted in such private spaces and are

by default not visible outside of them. We call these

spaces Perspectives. In a typical enterprise setting,

today’s official applications would be Perspectives

providing ‘scaffolding’ Elements, i.e. skeletons of

business entities and associated high-level rules and

functionality. Organizations at various levels would

have their own Perspectives, hosting the extensions

and additional Elements reflecting their concerns

and level of detail. Individuals could likewise

replace their spreadsheets with private extensions

and Elements hosted in a private Perspective.

2 In the report, Luxury refers to both a business process

and the supporting official application(s). We only

refer to the latter here.

However, completely isolated Perspectives would

defeat the purpose of enterprise applications, which

yields R4.

R4: Actors can share the Elements they own.

Perspectives can make selected Elements visible,

either to everybody (“public”) or to a restricted set

of Perspectives. We call this operation export.

Obviously the previously mentioned official

Perspectives would export their Elements to all

users. And business-unit-level Perspectives would

export their Elements to the relevant Actors. Even

individuals can share their Elements with others.

It is interesting to note here that this empowers

the entire employee base to contribute to the overall

information system, which we think provides

significant benefits we will discuss later in this

paper. The downside is that this could lead to

cacophony through an overwhelming amount of

available Elements, dictating R5.

R5: Actors can select relevant Elements.

Thus, a symmetrical import operation is

necessary. An Actor must be able to select among all

Elements available to him only the ones he considers

relevant. Instead of building his environment from

scratch an Actor would inherit the Elements from

the groups he belongs to, but must be able to

unimport these if not relevant for him. Example 2

below, again from Handel and Poltrock (2010),

illustrates how R1-R5 could have avoided another

real-life shadow application.

Example 2 – Fallen

 “Official application Fallen had produced a
shadow application which added translations
into Japanese next to English data fields.”

Extending existing entities with additional
attributes is a typical use case of R1. Such
extensions would be owned by the Japanese
branch of the company, and hosted on their
servers in a Perspective (R3) we can call
http://fallen.acme.co.jp/Translations.

Employees of the Japanese branch would
inherit these extensions, and some groups or
Japanese employees could even choose to
unimport the initial English attributes (R5). The
extensions could be exported to other Japanese-
spoken employees in other regions (R4).

Our previous use of the term Application

encompassed a broad spectrum, from full-blown

enterprise systems to private spreadsheets. Likewise,

for Perspectives we envision a broad range from big

Perspectives hosting self-sufficient third-party

applications to tiny individual Perspectives with just

a few extensions replacing spreadsheets. Some

Perspectives may just factorize the optimal list of

import and unimport declarations for a given

organization or community.

3.2 Usability requirements

A significant percentage of today’s shadow
applications are created by people without software
engineering skills using office software like
spreadsheets (Nardi and Miller, 1990). This
observation makes usability a key requirement.

R6: No programming is required for R1-R5.

The last item may sound like reviving the dream

of software without programmers. However, the

data-centric nature of business applications makes it

much less difficult for end-users to participate than

more feature-centric software; significant

contributions of entities, attributes, simple formulas

and associations can be made through a forms-based

interface, especially in the presence of example

instances (Markl, Altinel, Simmen and Singh, 2008).

Contributions are not limited to what can be done

by end-users through forms. A language-based

representation of perspectives and elements is still

necessary for professional software developers.

Even for business units, contractors and interns have

always been a means to get access to development

skills beyond their internal competence to

implement complex shadow applications. In a

perspective-centric architecture, such expert

contributions would still be possible, with the

benefit of being better integrated with the rest of the

information system.

4 CONCEPTUALIZATION

Figure 2 below shows the high-level meta-model of

our proposal. It is centered on a classical enterprise

directory component with Users and Groups.

Perspectives are hosted by Repositories.

Perspectives can define Fragments, which can be

either self-sufficient (R2) or extensions of a

Fragment from another Perspective (R1).

Repositories can live on different servers.

Figure 2. Meta-model of Perspective-centric architecture.

At runtime, a User opens a Session, which

determines a set of Perspectives – owned by the

User or inherited from the Groups he is member of.

This in turn determines a set of Fragments, which

can be woven into Elements. The Session becomes

the Application, tailored to the connected user’s

profile. We call this a virtual private application,

private because it reflects the user’s unique

combination of elements, virtual because it does not

exist outside of the session.

In a perspective-centric architecture, applications

are thus dynamically composed at runtime. Today,

commercial-off-the-shelf (COTS) applications need

to suit the requirements of a variety of customers

and provide some degree of flexibility through

configuration and customization mechanisms

(Brehm, Heinzl, and Markus, 2001). We consider

our proposal a generalization of these mechanisms

found in application platforms like issue-tracking,

PLM and ERP systems.

5 PROTOTYPE

We have designed and implemented a first prototype
of a perspective-centric system. Considering the
complexity of the general case of extensible
Elements, our prototype mainly focuses on data, i.e.
business entities.

5.1 End-user Experience

Our main objective was to verify that the dynamic,

perspective-centric nature of the system could be

made transparent to end-users during normal use.

The screenshots below show two different users

connected to a Luxury-like application, both

displaying a request object. The first user belongs to

the quality group and thus sees DelayAnalysis

objects, the second user is from the planning group

and sees SubTask objects.

defines ►

*

repository

Repository

Actor

*

▲
owns

1

hosts ►

*

(un)imports ►

*
*

Perspective Fragment

**

User Group

members

*

*

groups

Directory

runtime

Session Element
*

1

extends ►

0..1

directory

active elements

*

*

▲
/inherits

<< server-side, persistent >>

<< server-side, persistent >>

<< client-side, transient >>

Figure 3. Two different users during normal use.

It is important to stress the additive nature of the
system, as opposed to subtractive, i.e. filtering. In a
filtering approach, somewhere an Element would
exist with all attributes, which get filtered out
depending on the users’ profile. In our approach,
Fragments exist in various places and get pulled
together by the Session.

The main visible difference with a regular
system is the presence of edit buttons, which allow
inspection and tailoring of the connected user’s
model as illustrated in the next screenshot, which
shows (1) the possibility to import another Entity
“Customer”, and (2) that Element “Request” is a
composition of Fragments from three different
perspectives.

Figure 4. A user inspecting his model.

An ideal interface should have the intuitiveness
of a spreadsheet, where filling an empty “header”
cell transparently creates an extension with the new
attribute, with default type and visibility. We believe
the presence of actual records makes such example-
centric modeling possible.

5.2 Architecture

It may appear natural to host extensions on the same
server as their root Elements. However, to fully meet
R1 and R2 any Actor must be able to provide his
own storage and computing resources for extensions.
Otherwise, although independent in functional
terms, he is dependent from a physical resource
point of view. This constraint dictates a distributed
architecture, where Perspectives can be hosted on
distinct servers and are pulled together at runtime by
a client session.

It is important to guarantee that official systems
cannot be disrupted or slowed down by extensions
hosted on unreliable servers. No organization would
accept an architecture with the potential for any
unfortunate experiment by an employee to degrade
access to central services. This constraint dictates
asynchronous communication between components,
allowing results from a high-reliability official
system to be displayed without waiting for the
extension results which may arrive later or never.

The prototype implementation is broken down in
the following components.

 A central directory component, which in a real

setting is the enterprise directory server where

users and groups would just need to be

annotated with references (URLs) to their

associated perspectives.

 Repository components, which host

Perspectives with entity definitions,

extensions and associated instances, persisted

in a database and exposed through web

services.

 On the client-side, the client session

component communicates with previous

components to build a data model at runtime,

and a dynamic user interface builds simple

forms by inspecting this model.

Figure 5 below illustrates the main interactions
between the components, at initialization-time and
during regular use.

1

2

Figure 5. Architecture of the prototype.

In step (1), the client authenticates the user and
gets as a reply the full graph of his groups and
perspectives. The client then (2) requests all
perspectives and the associated Fragment
declarations from the various repositories involved.
Receiving a Fragment triggers the (3) weaving
mechanism which composes Elements. Usage is
then similar to any distributed system, i.e. accessing
an object triggers several requests (4).

The communication between components is
standard REST over HTTP. The protocol has been
kept simple in order to enable integration of legacy
systems in a perspective-centric landscape through
the development of wrappers.

5.3 Limitation

The main conceptual limitation of our first prototype
is the focus on data only. Considering the centrality
of data in business applications, we think that the
results presented in the next section still represent a
significant contribution.

6 INITIAL RESULTS

From a technical point of view, the prototype has
demonstrated the feasibility of asynchronous
runtime composition of a data model, the
transparency for end-users during normal use, and
end-user update of the data model in their own
perspective.

As first proof-of-concept, we have instantiated
the prototype with a project tracking use case and a
configuration of 3 groups and 5 individuals with
different perspectives. The prototype has been able
to compose the individual models on the fly, proving
the validity of the concepts of Perspective and
Fragment.

We have presented this prototype to 8
information system professionals from 6 different
industrial and educational organizations. All of them
have over 20 years of experience and have witnessed

the emergence of numerous shadow applications.
Though they did raise some concerns, covered in the
discussion section of this paper, their reactions to the
proposal varied from fairly positive to enthusiastic. 4
out of 8 subjects have volunteered for evaluating the
prototype with real application data.

As a second proof-of-concept, we have
instantiated the prototype with the Luxury-like use-
case presented in previous sections of this paper.
The “Luxury” perspective and its associated
“quality” and “operations” perspectives have
allowed a unified representation of the three points
of view. We were able to walk through use cases of
both the Luxury and Fallen shadow applications, and
show that technically they would have been avoided
with a mature perspective-centric implementation.

The highly dynamic nature of the proposal
initially made all interviewed professionals
uncomfortable, illustrating the fairly conservative
attitude they adopt regarding the architecture of
business applications, particularly the data layer.
One manager has expressed a desire to restrict the
perspective-centric nature of an application to the
initial phases of its life, and to “freeze” the model
once it has been collaboratively built and validated.
This directly contradicted his earlier statements of
continuously evolving and conflicting requirements,
which he acknowledged. Experimentation with
industry datasets is now required to validate our
initial results.

7 DISCUSSION

Perspectives represent different, finer and more
connected information system grains than
applications. We think they allow an information
system to evolve organically in a unified and more
controlled way than today’s proliferation of shadow
applications, without sacrificing the business units’
ownership of their specific application elements. The
reactivity and autonomy their mission demands is
thus preserved.

7.1 Towards Social Information
Systems

A perspective-centric application architecture
represents a major shift of responsibilities from IT
departments towards the community of users, not
unlike the freedom spreadsheets have provided
(Nardi and Miller, 1990). An IT department’s main
responsibility would be to provide the platform on
which anyone (the IT department itself, but also
business organizations and individual employees)

3

directory

dynamic ui

repository 1

client session

repository n

1 2 2

4 4

could contribute elements in their area of expertise.
We think this could leverage the collective
intelligence (Surowiecki, 2004) and energy of
employees to collaboratively build and maintain the
corporate information system, in a form of internal
crowd-sourcing.

Considering today’s mostly feudal management
of information systems, this is a fairly disruptive
proposal. Indeed, during our interviews most
subjects have raised the concern that it could result
in chaos. This concern typically takes the official
applications as a reference, while in our opinion it
only represents the tip of the information system
iceberg. When including all shadow applications in
the picture, information systems today can already
not guarantee the overall consistency, and rely upon
humans to keep the whole together. However, as one
architect interviewed observed, the chaos is often
feared to be in core business attributes. But these are
often the best-understood and least controversial of
the data elements; uncertainty is greatest on the
highly domain-specific attributes. By properly
segregating these into the correct perspectives,
overall uncertainty may actually be reduced.

Collecting all shadow application data in a
unified infrastructure may seem to aggravate
inconsistency, but in reality it just reveals the present
state. We think a unified infrastructure would
provide additional leverage to the previously
mentioned human factor in at least two ways.

In the consumer-space, “social” mechanisms like
tagging, rating, voting, and targeted sharing have
proven effective in organizing huge repositories of
consumer-contributed data (Surowiecki, 2008). In a
business environment, users could organize
application elements through similar mechanisms.
We think dealing with authenticated professionals is
an even more beneficial setting than the consumer
space for social technologies to apply, and envision
social information systems where elements are
contributed from the bottom up, shared with other
Actors, ranked and improved through social
feedback mechanisms and eventually gradually
“promoted” to more central perspectives.

This could result in the democratic (or
meritocratic) evolution of a corporation’s
application landscape, a generalization of today’s
frequently requested transfer of shadow applications
from business units to IT departments (Handel and
Poltrock, 2010).

As opposed to today’s situation where shadow
applications are mostly disconnected from their
parent applications and extremely heterogeneous in
their implementation, a unified architecture would
make the continuous evolution and divergence
observable. Indicators could be envisioned (number
of extensions, number of unimports…) and

dashboards built to monitor application evolution.
Pattern-matching techniques could be used to
automatically detect convergence opportunities
(Ahmadi, Jazayeri, Lelli and Nesic, 2008;
Sabatzadeh, Finkelstein and Goedicke, 2010) and
notify the owners of the candidate elements,
fostering convergence discussions.

7.2 Impact on Collaboration

Although the goal of the proposed architecture is to
make evolution a continuous process, introduction of
significant chunks still require traditional projects.

From a functional point of view, the painful and
hazardous process of elaborating the union of
divergent requirements could be replaced by the
identification of the intersection, containing only the
elements all stakeholders agree on, and then spawn
smaller groups to discuss the next level of detail,
thus reducing the risk of conflict and communication
overhead. We think Perspectives would thus contain
the various layers of boundary objects (Star, 1990)
around which people collaborate.

From a technical point of view, private spaces
could help in integrating running development
projects with live production environments,
facilitating continuous integration and delivery
(Fowler, 2010a). Boundaries between mockup,
prototype, beta and production environments could
be smoothened and concurrent development made
easier, as well as quick experimentation encouraged.

7.3 Evaluation in the Real World

One of the challenges of this work is to find suitable
ways to evaluate the underlying concepts of social
information systems. A standard approach would be
to deploy this with a small group of users, and study
its usage. However, if it were deployed in this
fashion, it would become just one more shadow
application, and many of the benefits of a
perspective-centric system would be lost. On the
other hand, this approach is new and unfamiliar
enough to both potential users and IT organizations
that a major implementation would be difficult to
accomplish. As illustrated by the aforementioned
discomfort of the IT professionals, this requires a
significant shift in thinking by IT and line-of-
business managers about how crucial data is stored
and managed. A successful perspective-centric
system requires not only technological
sophistication, but also a degree of organizational
change that is not always present (the “c-words”).

7.4 Challenges and Further Work

A real deployment of such a social architecture
would almost certainly exhibit a high degree of
coupling of its elements, making the system
vulnerable to the evolution of central elements.
However, since all dependencies are explicit,
evolution policies could be defined. For example, if
a high-level perspective deletes an element, it could
be marked as orphan and be proposed to adoption to
owners of perspectives which import or extend it.

We think a significant number of common
business application features can be implemented in
a generic way in the form of functional aspects
(Filman, Elrad, Clarke and Akşit, 2008) to be
applied by an end-user while building his model. For
example, if a particular attribute demands
traceability this could be a single checkbox on the
model’s form, a simple boolean annotation on the
model itself, and could tell a repository to produce
history records with timestamp, user, and previous
value. We are working on more complex aspects like
lifecycle management and authorization.

The manipulation of model and instances
through the same interface presents both the
opportunity to leverage contributions from people
without modeling skills and the risk to confuse them.
Beyond the prototype’s naïve forms for model
manipulation, we consider usability for contributors
with a broad spectrum of software skills a challenge.
For contributors with software engineering skills, the
development of robust application code on top of a
dynamic foundation is not trivial, and needs
appropriate programming language bindings.

Other challenges are not new but rather inherited
from the present situation. As an example, a user
could define an extension concatenating two
attributes, and export this extension to colleagues
who do not have permission to see the initial data.
This is similar to what happens when people extract
confidential data in today’s shadow applications,
breaking the initial authorization mechanism. A
perspective-centric system would actually improve
on this situation; by having a complete view of all
the attributes, a system would be able to detect and
warn about possible permission violations.

At a higher level, perspective-centric
architectures present a number of interesting
challenges, like monitoring and convergence
mechanisms, and adapting the consumer-space
social recommendation mechanisms to application
elements in a business environment.

8 RELATED WORK

We consider the work presented in this paper a novel
combination of existing approaches. Shadow
applications are a widely known but widely accepted
problem. They are frequently mentioned when
studying information system agility (Desouza, 2007)
or dissatisfaction with business applications (Hoyer
and Stanoevska-Slabena, 2008), but not always
considered as a problem (Handel and Poltrock,
2010).

Situational applications are enterprise
applications built on-the-fly by business units to
solve a specific business problem (Markl, Altinel,
Simmen and Singh, 2008), and can be considered a
superset of shadow applications. Situational
applications have attracted recent interest from
enterprise mashup researchers (Hoyer and Fischer,
2008) who aim at allowing end users to integrate and
combine services, data and other content (Bitzer and
Schumann, 2009) to bridge the IT/business gap.
Mashups can be interpreted as an evolution of
service-oriented architectures (Watt, 2007), which
expose business functionality as standard and
composable services.

Mashups are part of the broader topic of end-
user development (Nestler, 2008; Sutcliffe, 2005),
which advocates the empowerment of end-users to
implement their own specific requirements, and has
intensively studied spreadsheets (Nardi and Miller,
1990; Spahn and Wulf, 2009) and more recently
collaborative and social aspects in enterprise settings
(Ahmadi, Jazayeri, Lelli and Repenning, 2009).

Model-Driven Engineering (Schmidt, 2006)
elevates the level of abstraction at which software is
developed, turning models into central and
productive artifacts, with a specific models@runtime
branch focusing on model interpretation. The
Software Language Engineering (Kleppe, 2008) and
Domain-Specific Languages (Fowler, 2010a)
domains, related to MDE by the heavy reliance on
meta-models, focus on domain expert involvement
in software development and configuration through
specific textual representations.

The Component-Based Software Engineering
(McIlroy, 1968) community is actively researching
robust dynamic systems, where components can
appear and disappear during execution. It provides
foundation concepts and technologies for making a
social application cope with dynamic elements and
services of variable reliability.

Linked Data (Bizer, Heath, and Berners-Lee,
2009) integrates distributed, loosely coupled and
independently managed repositories of persistent
entities, but targets an internet-wide database and
mostly-read access.

Social Software Engineering focuses on the
understanding of the human and social aspects of
software engineering. It covers both the social
aspects in the software engineering process and the
engineering of social software (Ahmadi, Jazayeri,
Lelli, and Nesic, 2008). In the Requirements
Engineering domain, Lohmann, Dietzold, Heim and
Heino (2009) propose to apply social mechanisms
like voting and commenting. Studies on ViewPoints
(Sabetzadeh, Finkelstein and Goedicke, 2010) have
focused on capturing divergent concerns but aim at
reconciling these at the specification and design
level.

The tailoring of enterprise systems, from simple
configuration to the modification of commercial
code, is a topic of sufficient complexity for (Brehm,
Heinzl, and Markus, 2001) to propose a typology.
Recent interest in cloud computing has yielded
research in multi-tenancy (Jansen, Houben, and
Brinkkemper, 2010), a way to configure the same
software installation for various isolated
organizations.

9 CONCLUSION

In this paper we have presented an alternative
architecture for business applications designed to
reduce shadow application proliferation. We have
described the main characteristics of shadow
applications, the causes of their emergence, and have
proposed an architecture principle to defuse this
phenomenon based on an isolation mechanism we
call perspectives. We have presented our prototype,
our first results on real-life use cases and the
encouraging feedback it has received.

We have discussed our broader vision of a social
information system leveraging the collective
intelligence of an organization’s employees, and the
possibility of democratic evolution through the use
of social mechanisms.

We have no silver bullet claim, rather a
potentially interesting paradigm worth exploring.
We have no revolution claim either, merely an
original combination of existing approaches and a
generalization of business application configuration
mechanisms. This is enabled by continuously
growing processing power versus fairly stable core
requirements of business applications, a better
understanding of distributed systems, and recent
social technologies.

ACKNOWLEDGEMENTS

This work has been funded by Nano-2012 grant
MoDeSI. The authors would like to thank the
participating interviewees for their time and helpful
comments.

REFERENCES

Ackerman, M.S., 2000. The Intellectual Challenge of

CSCW: The Gap Between Social Requirements and

Technical Feasibility, Human-Computer Interaction,

Volume 15

Ahmadi, N., Jazayeri, M., Lelli, F. and Nesic, S., 2008. A

Survey of Social Software Engineering, IEEE/ACM

ASE - Workshops

Ahmadi, N., Jazayeri, M., Lelli, F. and Repenning, A.,

2009. Towards the Web Of Applications :

Incorporating End User Programming into the Web 2.0

Communities, Proc SoSEA 2009, ACM

Bitzer, S. and Schumann, M., 2009. Mashups : An

Approach to Overcoming the Business/IT Gap in

Service-Oriented Architectures, Value Creation in e-

Business Management, ISBN 978-3-642-03131-1

Bizer, C., Heath, T. and Berners-Lee, T., 2009. Linked

Data - The Story So Far, International Journal on

Semantic Web and Information Systems

Brehm, L., Heinzl, A. and Markus, M.L., 2001. Tailoring

ERP Systems: A Spectrum of Choices and their

Implications, Proc HICSS, IEEE

Desouza, K.C., ed., 2007. Agile Information Systems :

Conceptualization, Construction and Management,

ISBN 978-0-7506-8235-0

Filman, R.E., Elrad, T., Clarke, S. and Akşit, M., 2008.

Aspect-Oriented Software Development, ISBN 0-321-

21976-7, Addison-Wesley, 2008

Fowler, M., 2010. Domain-Specific Languages, ISBN

978-0-321-71294-3, Addison-Wesley

Fowler, M. Continuous Delivery : Reliable Software

Releases through Build, Test, and Deployment

Automation, ISBN 978-0-321-60191-9, Addison

Wesley, 2010

Gotts, I., 2010. A New Cloud: The Stealth Cloud?,

http://www.cio.com/article/630164, October 2010

Handel, M. and Poltrock, S., 2010. Working Around

Official Applications : Experiences from a Large

Engineering Project, Proc CSCW, ACM Press

Hoyer, V. and Fischer, M., 2008. Market Overview of

Enterprise Mashup Tools, Proc ICSOC, Springer

Verlag

Hordijk, W. and Wieringa, R., 2010 Rationality of Cross-

System Data Duplication: A Case Study, Proc CAiSE,

Springer Verlag

Hoyer, V. and Stanoevska-Slabena, K., 2008. The

Changing Role of IT Departments in Enterprise

Mashup Environments, Proc SOC, Springer-Verlag

Jansen, S., Houben, G-J. and Brinkkemper, S. , 2010.

Customization Realization in Multi-tenant Web

Applications: Case Studies from the Library Sector,

Proc ICWE, Springer-Verlag

Kleppe, A., 2008. Software Language Engineering:

Creating Domain-Specific Languages Using

Metamodels, ISBN 9780321553454, Addison-Wesley

Kling, R., 1991. Cooperation, Coordination and Control in

Computer-Supported Work, Communications of the

ACM, Volume 34 Issue 12

Lohmann, S., Dietzold, S., Heim, P., Heino, N., 2009. A

Web Platform for Social Requirements Engineering,

Software Engineering Workshops 2009

Markl, V., Altinel, M., Simmen, D. and Singh, A., 2008.

Data Mashups for Situational Applications, Proc

MBSDI 2008, Springer-Verlag

McIlroy, D., 1968. Mass-Produced Software Components,

Software Engineering, Report on a conference

sponsored by the NATO Science Committee

Nardi, B.A. and Miller, J.R., 1990. An Ethnographic Study

of Distributed Problem Solving in Spreadsheet

Development, Proc CSCW 1990, ACM Press

Nestler, T., 2008. Towards a Mashup-driven End-User

Programming of SOA-based Applications, Proc iiWAS

2008, ACM Press

Newell, S., Wagner, E.L. and David, G., 2007. Clumsy

Information Systems: A Critical Review of Enterprise

Systems, Agile Information Systems, Elsevier

Sabetzadeh, M., Finkelstein, A. and Goedicke, M., 2010.

ViewPoints, Encyclopedia of Software Engineering, P.

Laplante, Ed.

Schmidt, D.C., 2006. Model-Driven Engineering, IEEE

Computer Vol 39

Spahn, M. and Wulf, V., 2009. End-User Development for

Individualized Information Management: Analysis of

Problem Domains and Solution Approaches, Proc

ICEIS 2009, Springer Verlag

Star, S.L., 1990. The Structure of Ill-Structured Solutions :

Boundary Objects and Heterogeneous Problem

Solving, Distributed artificial intelligence, Vol. 2,

Morgan Kaufmann

Surowiecki, J., 2004. The Wisdom of Crowds, ISBN 978-

0385503860

Sutcliffe, A., 2005. Evaluating the costs and benefits of

end-user development, ACM SIGSOFT Software

Engineering Notes, Vol 30

Watt, S., 2007. Mashups - The evolution of the SOA:

Situational applications and the Mashup ecosystem,

http://ibm.com/developerworks/webservices/library/,

Nov 2007

Zarnekow, R, Brenner, W. and Pilgram, U., 2006.

Integrated Information Management: Applying

Successful Industrial Concepts in IT, ISBN 978-

3540323068

