
HAL Id: hal-00745393
https://hal.science/hal-00745393

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Pervasive Applications Driven by Abstract
Specifications

Ozan Gunalp, Levent Gurgen, Vincent Lestideau, Philippe Lalanda

To cite this version:
Ozan Gunalp, Levent Gurgen, Vincent Lestideau, Philippe Lalanda. Autonomic Pervasive Appli-
cations Driven by Abstract Specifications. Self-IoT 2012 - international workshop on Self-aware
Internet of Things, Sep 2012, San Jose, CA, United States. pp.19-24, �10.1145/2378023.2378028�.
�hal-00745393�

https://hal.science/hal-00745393
https://hal.archives-ouvertes.fr

Autonomic Pervasive Applications Driven by Abstract
Specifications

Ozan Günalp
CEA-LETI

Minatec Campus

Grenoble France

ozan.gunalp@cea.fr

Levent Gürgen
CEA-LETI

Minatec Campus

Grenoble France

levent.gurgen@cea.fr

Vincent Lestideau
Grenoble University

220, rue de la Chimie

38041 Grenoble France

vincent.lestideau@imag.fr

Philippe Lalanda
Grenoble University

220, rue de la Chimie

38041 Grenoble France

philippe.lalanda@imag.fr

ABSTRACT

Pervasive application architectures present stringent requirements
that make their development especially hard. In particular, they

need to be flexible in order to cope with dynamism in different
forms (e.g. service and data providers and consumers). The
current trend to build applications out of remote services makes
the availability of constituent application components inherently
dynamic. Developers can no longer assume that applications are
static after development or at run time. Unfortunately, developing
applications that are able to cope with dynamism is very complex.
Existing development approaches do not provide explicit support

for managing dynamism. In this paper we describe Rondo, a tool
suite for designing pervasive applications. More specifically, we
present our propositions in pervasive application specification,
which borrows concepts from service-oriented component
assembly, model-driven engineering (MDE) and continuous
deployment, resulting in a more flexible approach than traditional
application definitions. Then the capabilities of our application
model are demonstrated with an example application scenario

designed using our approach.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures, D.2.13 [Software Engineering]:
Reusable Software – Domain engineering, Reuse models.

General Terms
Management, Design, Experimentation, Languages.

Keywords

Pervasive Computing, Internet of Things, Service-oriented
Computing, Autonomic Computing

1. INTRODUCTION
Pervasive computing aims to remove the barrier between users
and computing systems by blending the computers into the users’

environment [14]. This vision is becoming possible in the near
future thanks to recent evolution in mobile, wireless and sensor
technologies. Computing and communication power of these
devices continuously increase, allowing them to run execution

platforms (e.g. mobile phones, embedded and tiny operating
systems on sensor nodes) and communicate wirelessly with low
cost and specialized protocols, e.g. IEEE 802.15.4, 6LoWPAN,
RPL, CoAP. This recent evolution now allows devices to be (re-)
used in various application domains such as environmental
monitoring, surveillance, city infrastructures or home/office

automation are being imaginable, providing thus user-centric
applications integrating seamlessly with physical environments.

The development of pervasive applications is a difficult challenge
because the developer needs to manage contextual changes,
device and application dynamism, and business logic. As a
consequence, current pervasive applications are generally
insufficient in terms of software engineering: they are difficult to
design, code, test and maintain; most existing solutions are

proprietary, limited in terms of provided services and executed in
a closed world.

In order to ease the design, development and management of
applications, a widely used approach is to delegate certain
common aspects (e.g. distribution, resource access, security) to an
execution platform, also called “a middleware” [8]. Middleware
forms an abstraction layer for applications to be built using these
common services and let them focus mainly on applicative
concerns. As a result, application designs and development

models depend strictly on the capabilities of the middleware they
are running on. Middleware designs in pervasive computing are
today very much influenced by service-oriented computing
principles. Service-Oriented Computing (SOC) is a programming
paradigm, which aims to promote loose coupling between
components using services [11]. As so, applications can be built
upon loosely coupled service providers and consumers based on
these contracts. Late binding and sustainability becomes possible

opening the way of dynamically adaptable software architectures.
This way, service-oriented middleware is able to provide run-time
support for making changes in software architectures.

However, adapting the software architecture, notably an
application, requires more than just APIs for making the change
but also decision-making systems. Autonomic Computing [9]
offers such mechanisms to monitor and manage systems and more
recently there are many works [13] in self-adaptive software

systems that apply these principles to software architectures.
Knowledge about the managed system is thus very important in
order to make decisions about adapting software architectures.
Models@run.time focuses on using MDE techniques to represent
information about runtime phenomena [3, 16]. Pervasive
applications should leverage this information alongside with
dynamic capabilities of underlying middleware in order to adapt
to their execution context and continue providing value added

services.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Self-IoT’12, September 17, 2012, San Jose, CA, USA
Copyright © 2012 ACM 978-1-4503-1753-5... $15.00.

Traditional application definitions fall short on responding to
challenges brought by pervasive computing. This paper presents
the ongoing work for creating a specification model for pervasive
applications and corresponding execution environment. For this,
we propose a tool suite, Rondo, which enables design,

development and execution of dynamic pervasive applications
using runtime models and autonomic computing principles. In the
section 2, a background on pervasive applications and their
requirements is given. Section 3 presents the Rondo framework
and section 4 gives its application definition model. Section 5
gives an example application to demonstrate the capabilities of
our tool. Section 6 gives some implementation details. Section 7
presents the related work and Section 8 concludes the paper.

2. CHARACTERISTICS OF PERVASIVE

APPLICATIONS
Designing and developing pervasive applications is a difficult
challenge because the developer needs to manage a wide range of
issues such as device contingency, device heterogeneity, changing
user context and security of sensitive information. Moreover,
developers of high-level services need to work closely with other
experts in different domains like embedded systems and mobile
networks. As a result, developers end up developing one-time
solutions for these issues rather than concentrating on business

logic of their application. Middlewares using software engineering
paradigms like Component-based Software Engineering (CBSE)
and SOC proved to be very efficient addressing some of the issues
encountered while developing pervasive applications. These two
approaches provide complementary solutions: On one hand
service orientation enables defining dynamic software
architectures without depending on actual service
implementations. On the other hand, component models facilitate

the development of service implementations by modularity and
reuse principles; and also enable life cycle management of
resulting applications. Lately, service-oriented component models
emerge, combining principles of these two approaches. Service-
oriented component models provide runtime composition of
loosely coupled components with automatic handling of
dynamism, non-functional aspects (such as distribution,
persistence, security) and life cycle management.

Even though, CBSE and SOC address several general problems,

there are many open challenges to be handled for facilitating
development of pervasive applications:

2.1 Heterogeneity
Services available for an application are heterogeneous and may
be provided by some third-party software or remote device

discovered over network. Aside from the vast diversity of
communication protocols on different application domains cited
above; applicative protocols tend to have different natures like
RPC-based, event based or stream based. Thereby, applications
need not only cover different communication protocols but also be
able to cope with different natures of application level protocols.
Furthermore, discovering and managing devices in a pervasive
environment is a difficult task, as one should take care of device

dynamicity and metadata information like service identification,
physical location of the device or Quality of Service metrics.

2.2 Reactivity to data
Pervasive applications offer services with added value by
leveraging the data coming from different sources, including

sensor devices. So it is only natural to expect that in a pervasive
application, a service depend not only on other service
specifications but also to well-defined data types, where meta-
information of the data is more important than its origin. Also,
this data-orientation imposes a programming scheme where the

consumer reacts to an event containing data produced by the
provider. Therefore, a pervasive middleware should enable
defining dependencies over data types and assure that these
dependencies are satisfied with the data produced by data provider
services.

2.3 Context-awareness
Pervasive applications need to transform raw data sensed from
devices into more meaningful state indicators called ‘context’.
The content of context is very subjective to a particular
application. Therefore, one can expect from an application to
incorporate “context provider services” that are responsible of
transforming raw information from different, possibly
heterogeneous sources to context state. Examples of applicative

context may include user’s current behavior, location, mood or
general routine as well as environmental information like
temperature and luminosity level, etc. Another kind of context
information represents the state of the running computing system
from different non-functional aspects. Performance metrics are
good examples for execution context: Memory and CPU
consumption, response time, bandwidth, etc.

2.4 Dynamic Adaptability
In a pervasive computing environment applications should adapt
constantly to the changing context. As exemplified above, the
execution context of a pervasive application involves software
modules, as well as users and devices. Pervasive application
should continue to satisfy user requirements in face of contingent

devices, failing software modules and changing context. In order
to do this, it should be aware of its context and flexible enough to
be able to apply necessary configurations and change its behavior.
In addition, all this adaptation should take place autonomously to
reassure user acceptance and fulfill the pervasive computing
vision.

However, in pervasive environments, due to changing context,
there are many aspects that are not known at design time. Thus,
hardcoded and fully specified applications are not a good match

for pervasive context. On the other hand, some level of
specification is needed to guide runtime adaptations and
autonomic actions. This work focuses on defining an application
definition model that will enable context-aware pervasive
applications. Our model allows developers to specify different
configurations of the application regarding changes in the context
and available services in an abstract way. Then our application
manager is capable of assembling and executing this model on a

service-oriented environment, which is capable of handling
service dynamism and event based communication. Lastly, our
application manager with autonomous capabilities allows
performing runtime adaptations on the application.

3. RONDO: A TOOL SUITE FOR

PERVASIVE APPLICATION DESIGN
Rondo is a tool suite for designing, deploying and executing
pervasive applications. Rondo framework uses a model-driven
approach and has three main goals: designing dynamic
applications, specifying pervasive environment and enabling

application adaptations for context-awareness. This approach aims
managing the life cycle of pervasive applications, from
development until runtime changes. Rondo provides a domain-
specific language based on the notion of components to define the
architecture of pervasive applications. Then at runtime, the

application manager takes this description and configures the
service-oriented execution environment in order to deploy and
start the application, all taking into account current state of the
environment, represented by several runtime models (Figure 1).
And while the application is running, this manager continues to
monitor and manage the created application. The following
section briefly introduces the building blocks of this approach.

!"!#$%&'()!(*&+'(,!(%

+-./012)

,34256

788509:/03.)

,:.:;2<

!"#$% &'()*"

#3183.2./

+28360/3<=

>2?253812./)

!.?0<3.212./
!"+#,*"!

)''-./("01!/2(/

("'0/% 3&"!#",

4("5"0/'"!6

4)!78#*"7*6

.)2)+",

788509:/03.)

,3425

!"#$"%&""'%()*+,

Figure 1: Rondo Global Approach

3.1 Execution Environment
In Rondo tool suite, we define an extended service-oriented

component model in order to take into account event-based
interactions (Figure 2). Service interactions between components
are subject to service contracts, whereas event-based interactions
are based on consumed data type and publish-subscribe principles.
Like usual component models, our model includes properties that
can be used to describe a component (related to the general
aspects of a component type) and also those that are used to
configure an executed component (component instance). Overall,

a service-oriented approach and event-based interactions are
necessary to tackle dynamism and reactivity issues of
programming business logic for pervasive applications.

!"#$%&"'%()"#*+&"

!"#$%&"',"-"(,"(&./$"()'-012%34"#

/$"()'&5(306"#

7#5-"#).

803%("33'

95,"

/:)"(3%5(3

Figure 2: Component Model

Our dynamic execution framework provides an execution
environment for service-oriented components. It is capable of
dynamically installing, starting, stopping, uninstalling, and
reconfiguring component instances, thus managing life cycle of
executed services in the platform. It includes a local service

registry and mechanisms for discovery and importation of distant
services such as sensing devices. It also incorporates event
delivery systems between components in order to respond to data
reactivity requirement.

This general-purpose component model is a good candidate to
represent devices (sensors and actuators) present in pervasive
environments. A component instance reassuring the
communication with the actual device would expose device

functionalities as services and send notifications about changes in
its state as events. Abstracting devices as components facilitates
the access to device resources from application components,
facilitating the task of pervasive service developer.

3.2 Runtime Models
Runtime models serve as abstraction between our application
manager and the underlying execution platform. They represent
relevant information about the current state of the execution
environment. Different aspects of the system can be represented in
this way; like component architecture, which represents running
components, available services and bindings or still component
repository; which represents deployed component declarations,
dependencies of deployment units containing these declarations.

Runtime models provide a causal link between the application
manager and the execution environment. They reify changes
occurred in the environment and allow the application manager to
make changes on the environment. They facilitate gathering
information about the execution details that would otherwise be
intrusive and platform dependent. This information would
contribute to the construction of the knowledge about the system,
used by autonomic decision making system.

3.3 Application Manager
The application manager is capable of taking an application model
as entry, resolving, installing and maintaining it as the application
evolves through changes in the context including different life
cycle phenomena of constituting components and services. For
this, application manager applies different strategies associated

with each architectural block defined in the application model.
These strategies are called policies. A policy implements
installation, activation and adaptation logic for the associated
block. Policies use runtime models to make changes on the
execution environment and get notified of the changes. For
example, a component policy implements how to resolve the
dependencies of a component declaration and how to instantiate it.
At runtime, these policies work by monitoring the instances to

make sure they are using required services and running without
errors.

As an ongoing work, in the actual framework, default
implementations for each of these policies are proposed. They can
be extended for implementing specialized self-management
policies, customized per application. However, in the following
sections, this paper concentrates on the definition of the
application model.

4. APPLICATION DEFINITION MODEL
Rondo application definition model allows developers defining

applications by composing components, service discovery
instructions and binding instructions. Unlike traditional service
composition and architecture description languages (ADL), our
application model allows including components into an
application without specifying all the interactions between
components and neither being tied to any specific component
implementation. This enables selection, configuration and
activation of different implementations at runtime. Optional

binding instructions allow specifying explicitly which services to
bind for some of the component dependencies. However, other
dependencies would be resolved at runtime from registry of
available services. Figure 3 presents the model of our application
description. This chapter presents important entities constituting
our model.

!""#$%&'$()

!
"

*+&,-.)'

#$%&'&(&)

#*+,(&-.%/0+)'.%

#(&12+34%5'+&1

/0'.+).+2$%.3$4%(2.+5
!"

!
"

!

"

#+6$).6.1'5'+&10+)'.%

#(&12+34%5'+&1

6(-"().)'

#*.$.*.1(/

#,.%-+(.

7$)8$),

#'/$.

#(&12+34%5'+&1

6(-"().)'9(#$%5

#'/$.

#(&12+34%5'+&1

*+&,-.)'9(#$%5

#'/$.

#(&12+34%5'+&1

3$4%(2.+59(#$%5

#65153.*78/ !

!

!

#65153.*78/

!

!

#65153.*78/

!

#156.

#'/$.

#*.254)'95)4.

6()'.0'9+(".+'5

! "

Figure 3: Rondo Application Model (simplified)

4.1 Components
In our model, each component represents an abstract block of the
application, which satisfies a business function. Components
include a filter property to enable selection at runtime of the
implementation to execute. The filter allows drilling down among
available component definitions to choose an implementation
according to its identifier, version or other declarative properties.
Also, resulted implementations should be checked towards the

given instance configuration. This configuration is a set of
properties serving to configure the instance of selected component
with reference to its declaration, including:

• Dependency filter, serving to filter available services at

runtime to resolve a service dependency,

• Service properties, which will be published with the

provided service,

• Event consumption, topic subscribed to consume events and

filter applied to those events for delivery to the component
instance,

• Event publishing properties, meta information added to

published events

• And lastly property values to configure the instance.

Component configurations are completed by bindings, which
express explicit wires between component dependencies and
services. At the moment of instantiation, bindings are taken into
account and they override default filter configurations.

4.2 Fragments
In Rondo application model, component and binding are
regrouped in a concept called fragment. A fragment is a set of

components that will share the same life cycle during the
execution of an application. Fragments represent different features
included in applications. This concept is similar to the notion of
variability in software architectures [15]. Fragments serve to
attribute instantiation policies to a group of components.

Expressing different features and managing their life cycle
according to the context information enables modeling
applications with dynamically changing behavior according to the
context. To give an example, the following fragment is constituted
of two components and a binding that wires service and
dependency of these to components:

<fragment name=”demo-fragment”>

<policy type=”service-listener”>

<activates on=”service” filter=”

(interface=org.rondo.demo.httpservice)”/>

</policy>

<component name=”BarComp” impl=”MyImpl”>

 <policy type=”simple”/>

 <configuration>

 <provides id=”provide-resource”/>

</configuration>

</component>

<component name=”FooComp” implFilter=”

(specification=FooSpecification)” >

 <configuration>

 <requires id=”require-res”

filter=”(resource.name=*)”/>

 <provides id=”http-servlet”/>

 </configuration>

</component>

<binding dependency=”FooComp.require-res”

service=”BarComp.provide-resource”>

</fragment>

Policy statement denotes that the fragment installs and activates
constituting two components when there is a service available on
the platform matching the given filter.

4.3 Context
There are numerous ways of modeling context information in
pervasive environments [1]. Representing applicative context is
highly dependent to the application logic and subjective for each
application. Rondo framework employs a mechanism to centralize
and distribute context information that represents the state of a

relevant system property that will affect application architecture,
such as memory consumption of the platform, free disk space or
still more applicative properties like default user interaction
language. To define these properties, an application definition
employs a key-value list with default initiation values. Then, once
at runtime, different components can write into this context, and
others can get notified of changes or get the value of a context
entry. Note that this mechanism is not for handling huge amounts

of data, nor capable of complex event processing but is
comparable to the environment variables of operating systems or
properties in BPEL (Business Process Execution Language).

4.4 Discovery of External Services
Moreover, our application model includes instructions for
discovering external services, notably for services provided by

devices discovered at runtime. Instead of instantiating application
components, the application manager configures the execution
framework to activate discovery mechanisms. A discovery
mechanism is in charge of discovering and representing external
services as regular component instances. These instances serve as
proxies that handle communication with the remote service
provider. In most of the cases, each application customizes the
way it interacts with external services in its environment. Having

these application specific proxies allow natural access to these
services, describing the interface between the pervasive
application and its environment.

5. APPLICATION EXAMPLE
The utility of presented approach and application model is
validated, demonstrating it in a smart home application. In this
application scenario, user is in a house equipped with a home
media server and several media renderers in different rooms that
is capable of streaming content from the server. The aim of this
application is to change the streaming place of currently played

media so that the user can continue to watch and/or listen the
media while he/she moves through the house. Figure 4 presents
the architecture of this application scenario.

!"##"$%

&"'()"#

*)+,+'&+%

-..)+./

01,(+2%

*)+3,

0"4'5%

#+6+#

!"#$%&$

'()*"+,"#%-

)"*%./*01'%#$2 +*%/./*01'%#$

'%3(0.*%#3%*%*-456%$""$, (*.+*%-%#)%

7""'.8 7""'.9

:::

;"55"<.'%2=++5()0$("#

Figure 4: Scenario Follow-me

The application works as follows; user activates the application by
interacting with a media renderer, indicating that he/she wants that
the currently playing media follow him/her. This activates the
follow-controller component, which gathers presence detection
notifications and manages renderer devices to stop and resume the
media streaming. Obviously detecting the location of the user is a

major issue. The application combines different approaches in
order to detect if a room is occupied by a user: Infra-red presence
sensors, pressure sensors to detect if user sits on a couch in a room
or still Bluetooth availability of a device associated with a user.
So information coming from these detection mechanisms is
aggregated and delivered to the controller component.

In addition to this, it is expected from the application to adapt to
the following changes in the environment:

• If a room is not equipped with a media renderer or a media

renderer is not active (e.g. turned off), the application reacts
as slightly increasing the volume of the media streaming in
the previously occupied room.

• The application keeps the volume of the diffused media in

the same level across different media renderers, to assure the
user comfort. However if the volume level exceeds a certain
threshold, application overrides user-set volume level with
system settings.

This application is described in Rondo application definition
language shown in Figure 5. The application defines two
fragments. First fragment is composed of static application
components such as follow-controller, presence-aggregator and
sound-level. As an example, the follow-controller component
interacts with other components and devices via service and event
interactions. This enables the first adaptation scenario where the

follow-controller logic can react to changes in availability of
services as well as to presence events.

The second fragment employs an activation policy, which is
linked to the context definition high-decibel. This means that
changes in this context state will activate or deactivate this

fragment, which contains a component that provides a preference
service. When available, this service is consumed by the
controller to override user volume preferences. The context
information high-decibel, is changed by the component Sound-

level when microphones detect a high ambient sound level.

<rondo:rondo xmlns:rondo="fr.liglab.adele.rondo.application">

 <application name="follow-me">

<!-- Application context -->

 <context>

<property name="high-decibel" type="boolean"

defaultValue="false"/>

 </context>

<!-- Fragment 1 -->

 <fragment name="core-fragment">

<policy type="core"/>

<component name="follow-controller"/>

<component name="presence-aggregator"/>

<component name="sound-level"/>

 </fragment>

<!-- Fragment 2 -->

 <fragment name="pref-fragment">

<policy type="context-listener">

 <activate on="context"

value="(context/high-decibel=true)">

</policy>

<component name="system-preferences">

 <provides id="pref" />

</component>

 </fragment>

<!-- Import devices -->

 <import name="media-renderers"

protocol="upnp-renderer"/>

 <import name="ir-presence-sensors"

protocol="zwave-ir-presence"/>

 <import name="pressure-sensors" protocol="coap-pressure"/>

 <import name="bluetooth-presence-sensors"

protocol="xml-rpc-bluetooth"/>

 <import name="microphones" protocol="ip-micro"/>

 </application>

</rondo:rondo>

Figure 5: Description of the Follow-me application

Lastly, various import statements represent different devices and
services to be discovered in the pervasive environment.

6. IMPLEMENTATION
We have implemented a prototype of the Rondo tool suite using
iPOJO [6] as our execution platform, which is an extensible
service-oriented component model running on top of OSGi [10],
which simplifies the development of component implementations.
For discovery and importation of external services into our
execution platform, Rose [2], an ecosystem for exporting and

importing distributed services is used.

As the central element of the tool suite, the application manager
profits from dynamic architecture capabilities of iPOJO. When a
new application description file is deployed to the platform, the
application manager parses the XML-based language (see Figure
5) and creates the abstract specification model of the application.
Then different portions of this model (e.g. fragment, component,
import) are transferred to application manager policies referenced

in the model. Default implementation of these policies focus on
providing late deployment and implementation selection
capabilities. They can be extended match application specific
requirements to make adaptations on the application architecture
at runtime.

We use runtime models to represent component types, running
instances, available services and OSGi bundles. Runtime
deployment of applications is being possible thanks to dynamic
deployment features of our platform. We are able to download
and deploy deployment units from the component repository,

where it is possible to query deployment units by component
descriptions, exposed services and required services.

7. RELATED WORK
In this section, we discuss some of the relevant works addressing
pervasive and autonomic application development. There are

several different approaches to define applications as a
composition of services.

In [12], the MUSIC planning-based middleware combines SOA

and component-based software development, and creates
adaptation plans according to changes in service descriptions and
agreements. In [5], authors mix component-based static
deployment descriptors with ECA (Event-Condition-Action) rules
to design, deploy and reconfigure applications using runtime
models. These two approaches concentrate on implementing
autonomic managers and does not fully leverage dynamism
brought by services in their application definitions. Unlike our

proposition, where explicitly unsatisfied dependencies are
resolved at runtime from available services; strict ADL definitions
impose specifying all bindings between components.

Dia Suite [4] defines a development life cycle similar to ours to
define the pervasive environment and applications. However,
passing to execution, it generates the whole execution
environment, leaving no room for variability, late deployment or
dynamism. Finally, in [7] authors propose an opportunistic service
composition language that not only uses available services in the
platform but also includes running instances into applications.
While this adds new frontiers to the application resolution, our
approach aims to give more deterministic results.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented our vision on pervasive
application development, where abstract specifications of
applications are deployed and resolved in a service-oriented
execution platform by the help of an autonomic application
manager. Our application definition language allows specifying
variability, component-service interactions and dynamism with

varying level of determinism. Also service discovery instructions
are included in our model, to enable defining external service
discovery at runtime. Our vision leads to open pervasive
execution platforms, where different stakeholders are able to
deploy and execute their applications.

As an ongoing work, there are several points that we would like to
improve in our proposition. We think that the key to build such an
execution platform, where each application is dynamically

variable, is to at least provide some mechanisms to constrain the
visibility of services provided by different applications. Moreover,
deploying and executing abstract application specifications
requires dependency resolution mechanisms before execution. We
are investigating different resolution strategies that we can employ
in deployment and diagnostic tools.

9. ACKNOWLEDGEMENTS
This research work was supported by the European FP7 project
BUTLER, under contract no. 287901.

10. REFERENCES
[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. Int. J. Ad Hoc Ubiquitous
Computing, 2(4):263– 277, June 2007.

[2] J. Bardin, C. Escoffier, and P. Lalanda. Towards an
Automatic Integration of Heterogeneous Services and
Devices. In Proceedings of the Services Computing
Conference (APSCC), pages 171–178. IEEE Computer
Society, December 2010.

[3] N. Bencomo. On the use of models during software

execution. In Proceedings of the 2009 ICSE Workshop on
Modeling in Software Engineering, MISE ’09, pages 62–67,
Washington, DC, USA, 2009. IEEE Computer Society.

[4] D. Cassou, J. Bruneau, and C. Consel. A tool suite to
prototype pervasive computing applications. In PerCom
Workshops, pages 820–822, 2010.

[5] J. Dubus and P. Merle. Applying OMG D&C specification
and ECA rules for Autonomous Distributed Component-

Based Systems. In Proceedings of the 2006 International
Conference on Models in software engineering,
MoDELS’06, pages 242–251, 2006. Springer-Verlag.

[6] C. Escoffier, R. S. Hall, and P. Lalanda. iPojo: an Extensible
Service-Oriented Component Framework. In IEEE SCC,
pages 474–481, 2007.

[7] J. Estublier, I. A. Dieng, E. Simon, and D. Moreno-Garcia.
Opportunistic computing experience with the SAM platform.

In Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems, PESOS
’10, pages 1–7, New York, NY, USA, 2010. ACM.

[8] V. Issarny, M. Caporuscio, and N. Georgantas. A perspective
on the future of middleware-based software engineering. In
2007 Future of Software Engineering, FOSE ’07, pages 244–
258, Washington, DC, USA, 2007. IEEE Computer Society.

[9] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer Society, 36(1):41–50, Jan. 2003.

[10] OSGi Alliance. OSGi service platform release 4. [Online].
Available: http://www.osgi.org/Main/HomePage.

[11] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and
B. J. Kramer. Service-oriented computing: A research
roadmap. In Service Oriented Computing (SOC), number
05462 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2006.

[12] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen,

J. Lorenzo, A. Mamelli, and U. Scholz. MUSIC: Middleware
Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments, Software Engineering for Self-
adaptive Systems. pages 164–182. Springer-Verlag, Berlin,
Heidelberg, 2009.

[13] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans. Auton.
Adapt. Syst., 4(2):14:1–14:42, May 2009.

[14] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8:10–17, 2001.

[15] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques: Research articles. Software
Practice and Experience, 35(8):705– 754, July 2005.

[16] T. Vogel, A. Seibel, and H. Giese. Toward megamodels at
runtime. In Proceedings of the 5th International Workshop
on Models@run.time at the 13th IEEE/ACM International

Conference on Model Driven Engineering Languages and
Systems (MoDELS 2010), Oslo, Norway, volume 641 of
CEUR Workshop Proceedings, pages 13–24.

