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ABSTRACT 

Pervasive application architectures present stringent requirements 
that make their development especially hard. In particular, they 

need to be flexible in order to cope with dynamism in different 
forms (e.g. service and data providers and consumers). The 
current trend to build applications out of remote services makes 
the availability of constituent application components inherently 
dynamic. Developers can no longer assume that applications are 
static after development or at run time. Unfortunately, developing 
applications that are able to cope with dynamism is very complex. 
Existing development approaches do not provide explicit support 

for managing dynamism. In this paper we describe Rondo, a tool 
suite for designing pervasive applications. More specifically, we 
present our propositions in pervasive application specification, 
which borrows concepts from service-oriented component 
assembly, model-driven engineering (MDE) and continuous 
deployment, resulting in a more flexible approach than traditional 
application definitions. Then the capabilities of our application 
model are demonstrated with an example application scenario 

designed using our approach. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – 
Domain-specific architectures, D.2.13 [Software Engineering]: 
Reusable Software – Domain engineering, Reuse models. 

General Terms 
Management, Design, Experimentation, Languages. 

Keywords 

Pervasive Computing, Internet of Things, Service-oriented 
Computing, Autonomic Computing 

1. INTRODUCTION 
Pervasive computing aims to remove the barrier between users 
and computing systems by blending the computers into the users’ 

environment [14]. This vision is becoming possible in the near 
future thanks to recent evolution in mobile, wireless and sensor 
technologies. Computing and communication power of these 
devices continuously increase, allowing them to run execution 

platforms (e.g. mobile phones, embedded and tiny operating 
systems on sensor nodes) and communicate wirelessly with low 
cost and specialized protocols, e.g. IEEE 802.15.4, 6LoWPAN, 
RPL, CoAP. This recent evolution now allows devices to be (re-) 
used in various application domains such as environmental 
monitoring, surveillance, city infrastructures or home/office 

automation are being imaginable, providing thus user-centric 
applications integrating seamlessly with physical environments.  

The development of pervasive applications is a difficult challenge 
because the developer needs to manage contextual changes, 
device and application dynamism, and business logic. As a 
consequence, current pervasive applications are generally 
insufficient in terms of software engineering: they are difficult to 
design, code, test and maintain; most existing solutions are 

proprietary, limited in terms of provided services and executed in 
a closed world.  

In order to ease the design, development and management of 
applications, a widely used approach is to delegate certain 
common aspects (e.g. distribution, resource access, security) to an 
execution platform, also called “a middleware” [8]. Middleware 
forms an abstraction layer for applications to be built using these 
common services and let them focus mainly on applicative 
concerns. As a result, application designs and development 

models depend strictly on the capabilities of the middleware they 
are running on. Middleware designs in pervasive computing are 
today very much influenced by service-oriented computing 
principles. Service-Oriented Computing (SOC) is a programming 
paradigm, which aims to promote loose coupling between 
components using services [11]. As so, applications can be built 
upon loosely coupled service providers and consumers based on 
these contracts. Late binding and sustainability becomes possible 

opening the way of dynamically adaptable software architectures. 
This way, service-oriented middleware is able to provide run-time 
support for making changes in software architectures.  

However, adapting the software architecture, notably an 
application, requires more than just APIs for making the change 
but also decision-making systems. Autonomic Computing [9] 
offers such mechanisms to monitor and manage systems and more 
recently there are many works [13] in self-adaptive software 

systems that apply these principles to software architectures. 
Knowledge about the managed system is thus very important in 
order to make decisions about adapting software architectures. 
Models@run.time focuses on using MDE techniques to represent 
information about runtime phenomena [3, 16]. Pervasive 
applications should leverage this information alongside with 
dynamic capabilities of underlying middleware in order to adapt 
to their execution context and continue providing value added 

services.  
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Traditional application definitions fall short on responding to 
challenges brought by pervasive computing. This paper presents 
the ongoing work for creating a specification model for pervasive 
applications and corresponding execution environment. For this, 
we propose a tool suite, Rondo, which enables design, 

development and execution of dynamic pervasive applications 
using runtime models and autonomic computing principles. In the 
section 2, a background on pervasive applications and their 
requirements is given. Section 3 presents the Rondo framework 
and section 4 gives its application definition model. Section 5 
gives an example application to demonstrate the capabilities of 
our tool. Section 6 gives some implementation details. Section 7 
presents the related work and Section 8 concludes the paper. 

2. CHARACTERISTICS OF PERVASIVE 

APPLICATIONS 
Designing and developing pervasive applications is a difficult 
challenge because the developer needs to manage a wide range of 
issues such as device contingency, device heterogeneity, changing 
user context and security of sensitive information. Moreover, 
developers of high-level services need to work closely with other 
experts in different domains like embedded systems and mobile 
networks. As a result, developers end up developing one-time 
solutions for these issues rather than concentrating on business 

logic of their application. Middlewares using software engineering 
paradigms like Component-based Software Engineering (CBSE) 
and SOC proved to be very efficient addressing some of the issues 
encountered while developing pervasive applications. These two 
approaches provide complementary solutions: On one hand 
service orientation enables defining dynamic software 
architectures without depending on actual service 
implementations. On the other hand, component models facilitate 

the development of service implementations by modularity and 
reuse principles; and also enable life cycle management of 
resulting applications. Lately, service-oriented component models 
emerge, combining principles of these two approaches. Service-
oriented component models provide runtime composition of 
loosely coupled components with automatic handling of 
dynamism, non-functional aspects (such as distribution, 
persistence, security) and life cycle management.  

Even though, CBSE and SOC address several general problems, 

there are many open challenges to be handled for facilitating 
development of pervasive applications:  

2.1 Heterogeneity 
Services available for an application are heterogeneous and may 
be provided by some third-party software or remote device 

discovered over network. Aside from the vast diversity of 
communication protocols on different application domains cited 
above; applicative protocols tend to have different natures like 
RPC-based, event based or stream based. Thereby, applications 
need not only cover different communication protocols but also be 
able to cope with different natures of application level protocols. 
Furthermore, discovering and managing devices in a pervasive 
environment is a difficult task, as one should take care of device 

dynamicity and metadata information like service identification, 
physical location of the device or Quality of Service metrics.  

2.2 Reactivity to data 
Pervasive applications offer services with added value by 
leveraging the data coming from different sources, including 

sensor devices. So it is only natural to expect that in a pervasive 
application, a service depend not only on other service 
specifications but also to well-defined data types, where meta-
information of the data is more important than its origin. Also, 
this data-orientation imposes a programming scheme where the 

consumer reacts to an event containing data produced by the 
provider. Therefore, a pervasive middleware should enable 
defining dependencies over data types and assure that these 
dependencies are satisfied with the data produced by data provider 
services. 

2.3 Context-awareness 
Pervasive applications need to transform raw data sensed from 
devices into more meaningful state indicators called ‘context’. 
The content of context is very subjective to a particular 
application. Therefore, one can expect from an application to 
incorporate “context provider services” that are responsible of 
transforming raw information from different, possibly 
heterogeneous sources to context state. Examples of applicative 

context may include user’s current behavior, location, mood or 
general routine as well as environmental information like 
temperature and luminosity level, etc. Another kind of context 
information represents the state of the running computing system 
from different non-functional aspects. Performance metrics are 
good examples for execution context: Memory and CPU 
consumption, response time, bandwidth, etc.  

2.4 Dynamic Adaptability 
In a pervasive computing environment applications should adapt 
constantly to the changing context. As exemplified above, the 
execution context of a pervasive application involves software 
modules, as well as users and devices. Pervasive application 
should continue to satisfy user requirements in face of contingent 

devices, failing software modules and changing context. In order 
to do this, it should be aware of its context and flexible enough to 
be able to apply necessary configurations and change its behavior. 
In addition, all this adaptation should take place autonomously to 
reassure user acceptance and fulfill the pervasive computing 
vision.  

However, in pervasive environments, due to changing context, 
there are many aspects that are not known at design time. Thus, 
hardcoded and fully specified applications are not a good match 

for pervasive context. On the other hand, some level of 
specification is needed to guide runtime adaptations and 
autonomic actions. This work focuses on defining an application 
definition model that will enable context-aware pervasive 
applications. Our model allows developers to specify different 
configurations of the application regarding changes in the context 
and available services in an abstract way. Then our application 
manager is capable of assembling and executing this model on a 

service-oriented environment, which is capable of handling 
service dynamism and event based communication. Lastly, our 
application manager with autonomous capabilities allows 
performing runtime adaptations on the application. 

3. RONDO: A TOOL SUITE FOR 

PERVASIVE APPLICATION DESIGN 
Rondo is a tool suite for designing, deploying and executing 
pervasive applications. Rondo framework uses a model-driven 
approach and has three main goals: designing dynamic 
applications, specifying pervasive environment and enabling 



application adaptations for context-awareness. This approach aims 
managing the life cycle of pervasive applications, from 
development until runtime changes. Rondo provides a domain-
specific language based on the notion of components to define the 
architecture of pervasive applications. Then at runtime, the 

application manager takes this description and configures the 
service-oriented execution environment in order to deploy and 
start the application, all taking into account current state of the 
environment, represented by several runtime models (Figure 1). 
And while the application is running, this manager continues to 
monitor and manage the created application. The following 
section briefly introduces the building blocks of this approach. 
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Figure 1: Rondo Global Approach 

3.1 Execution Environment 
In Rondo tool suite, we define an extended service-oriented 

component model in order to take into account event-based 
interactions (Figure 2). Service interactions between components 
are subject to service contracts, whereas event-based interactions 
are based on consumed data type and publish-subscribe principles. 
Like usual component models, our model includes properties that 
can be used to describe a component (related to the general 
aspects of a component type) and also those that are used to 
configure an executed component (component instance). Overall, 

a service-oriented approach and event-based interactions are 
necessary to tackle dynamism and reactivity issues of 
programming business logic for pervasive applications.  
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Figure 2: Component Model 

 

Our dynamic execution framework provides an execution 
environment for service-oriented components. It is capable of 
dynamically installing, starting, stopping, uninstalling, and 
reconfiguring component instances, thus managing life cycle of 
executed services in the platform. It includes a local service 

registry and mechanisms for discovery and importation of distant 
services such as sensing devices. It also incorporates event 
delivery systems between components in order to respond to data 
reactivity requirement. 

This general-purpose component model is a good candidate to 
represent devices (sensors and actuators) present in pervasive 
environments. A component instance reassuring the 
communication with the actual device would expose device 

functionalities as services and send notifications about changes in 
its state as events. Abstracting devices as components facilitates 
the access to device resources from application components, 
facilitating the task of pervasive service developer.  

3.2 Runtime Models 
Runtime models serve as abstraction between our application 
manager and the underlying execution platform. They represent 
relevant information about the current state of the execution 
environment. Different aspects of the system can be represented in 
this way; like component architecture, which represents running 
components, available services and bindings or still component 
repository; which represents deployed component declarations, 
dependencies of deployment units containing these declarations.  

Runtime models provide a causal link between the application 
manager and the execution environment. They reify changes 
occurred in the environment and allow the application manager to 
make changes on the environment. They facilitate gathering 
information about the execution details that would otherwise be 
intrusive and platform dependent. This information would 
contribute to the construction of the knowledge about the system, 
used by autonomic decision making system.  

3.3 Application Manager 
The application manager is capable of taking an application model 
as entry, resolving, installing and maintaining it as the application 
evolves through changes in the context including different life 
cycle phenomena of constituting components and services. For 
this, application manager applies different strategies associated 

with each architectural block defined in the application model. 
These strategies are called policies. A policy implements 
installation, activation and adaptation logic for the associated 
block. Policies use runtime models to make changes on the 
execution environment and get notified of the changes. For 
example, a component policy implements how to resolve the 
dependencies of a component declaration and how to instantiate it. 
At runtime, these policies work by monitoring the instances to 

make sure they are using required services and running without 
errors.  

As an ongoing work, in the actual framework, default 
implementations for each of these policies are proposed. They can 
be extended for implementing specialized self-management 
policies, customized per application. However, in the following 
sections, this paper concentrates on the definition of the 
application model. 



4. APPLICATION DEFINITION MODEL 
Rondo application definition model allows developers defining 

applications by composing components, service discovery 
instructions and binding instructions. Unlike traditional service 
composition and architecture description languages (ADL), our 
application model allows including components into an 
application without specifying all the interactions between 
components and neither being tied to any specific component 
implementation. This enables selection, configuration and 
activation of different implementations at runtime. Optional 

binding instructions allow specifying explicitly which services to 
bind for some of the component dependencies. However, other 
dependencies would be resolved at runtime from registry of 
available services. Figure 3 presents the model of our application 
description. This chapter presents important entities constituting 
our model. 
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Figure 3: Rondo Application Model (simplified) 

4.1 Components 
In our model, each component represents an abstract block of the 
application, which satisfies a business function. Components 
include a filter property to enable selection at runtime of the 
implementation to execute. The filter allows drilling down among 
available component definitions to choose an implementation 
according to its identifier, version or other declarative properties. 
Also, resulted implementations should be checked towards the 

given instance configuration. This configuration is a set of 
properties serving to configure the instance of selected component 
with reference to its declaration, including:  

• Dependency filter, serving to filter available services at 

runtime to resolve a service dependency,  

• Service properties, which will be published with the 

provided service,  

• Event consumption, topic subscribed to consume events and 

filter applied to those events for delivery to the component 
instance,  

• Event publishing properties, meta information added to 

published events  

• And lastly property values to configure the instance. 

Component configurations are completed by bindings, which 
express explicit wires between component dependencies and 
services. At the moment of instantiation, bindings are taken into 
account and they override default filter configurations. 

4.2 Fragments 
In Rondo application model, component and binding are 
regrouped in a concept called fragment. A fragment is a set of 

components that will share the same life cycle during the 
execution of an application. Fragments represent different features 
included in applications. This concept is similar to the notion of 
variability in software architectures [15]. Fragments serve to 
attribute instantiation policies to a group of components. 

Expressing different features and managing their life cycle 
according to the context information enables modeling 
applications with dynamically changing behavior according to the 
context. To give an example, the following fragment is constituted 
of two components and a binding that wires service and 
dependency of these to components: 

<fragment name=”demo-fragment”> 

<policy type=”service-listener”> 

<activates on=”service” filter=” 

(interface=org.rondo.demo.httpservice)”/> 

</policy> 

<component name=”BarComp” impl=”MyImpl”> 

 <policy type=”simple”/> 

 <configuration> 

  <provides id=”provide-resource”/> 

</configuration> 

</component> 

<component name=”FooComp” implFilter=” 

(specification=FooSpecification)” > 

 <configuration> 

    <requires id=”require-res” 

filter=”(resource.name=*)”/> 

    <provides id=”http-servlet”/> 

 </configuration> 

</component> 

<binding dependency=”FooComp.require-res” 

service=”BarComp.provide-resource”> 

</fragment> 

Policy statement denotes that the fragment installs and activates 
constituting two components when there is a service available on 
the platform matching the given filter.  

4.3 Context 
There are numerous ways of modeling context information in 
pervasive environments [1]. Representing applicative context is 
highly dependent to the application logic and subjective for each 
application. Rondo framework employs a mechanism to centralize 
and distribute context information that represents the state of a 

relevant system property that will affect application architecture, 
such as memory consumption of the platform, free disk space or 
still more applicative properties like default user interaction 
language. To define these properties, an application definition 
employs a key-value list with default initiation values. Then, once 
at runtime, different components can write into this context, and 
others can get notified of changes or get the value of a context 
entry. Note that this mechanism is not for handling huge amounts 

of data, nor capable of complex event processing but is 
comparable to the environment variables of operating systems or 
properties in BPEL (Business Process Execution Language). 

4.4 Discovery of External Services 
Moreover, our application model includes instructions for 
discovering external services, notably for services provided by 

devices discovered at runtime. Instead of instantiating application 
components, the application manager configures the execution 
framework to activate discovery mechanisms. A discovery 
mechanism is in charge of discovering and representing external 
services as regular component instances. These instances serve as 
proxies that handle communication with the remote service 
provider. In most of the cases, each application customizes the 
way it interacts with external services in its environment. Having 



these application specific proxies allow natural access to these 
services, describing the interface between the pervasive 
application and its environment. 

5. APPLICATION EXAMPLE 
The utility of presented approach and application model is 
validated, demonstrating it in a smart home application. In this 
application scenario, user is in a house equipped with a home 
media server and several media renderers in different rooms that 
is capable of streaming content from the server. The aim of this 
application is to change the streaming place of currently played 

media so that the user can continue to watch and/or listen the 
media while he/she moves through the house. Figure 4 presents 
the architecture of this application scenario. 
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Figure 4: Scenario Follow-me 

The application works as follows; user activates the application by 
interacting with a media renderer, indicating that he/she wants that 
the currently playing media follow him/her. This activates the 
follow-controller component, which gathers presence detection 
notifications and manages renderer devices to stop and resume the 
media streaming. Obviously detecting the location of the user is a 

major issue. The application combines different approaches in 
order to detect if a room is occupied by a user: Infra-red presence 
sensors, pressure sensors to detect if user sits on a couch in a room 
or still Bluetooth availability of a device associated with a user. 
So information coming from these detection mechanisms is 
aggregated and delivered to the controller component.  

In addition to this, it is expected from the application to adapt to 
the following changes in the environment: 

• If a room is not equipped with a media renderer or a media 

renderer is not active (e.g. turned off), the application reacts 
as slightly increasing the volume of the media streaming in 
the previously occupied room. 

• The application keeps the volume of the diffused media in 

the same level across different media renderers, to assure the 
user comfort. However if the volume level exceeds a certain 
threshold, application overrides user-set volume level with 
system settings. 

This application is described in Rondo application definition 
language shown in Figure 5. The application defines two 
fragments. First fragment is composed of static application 
components such as follow-controller, presence-aggregator and 
sound-level. As an example, the follow-controller component 
interacts with other components and devices via service and event 
interactions. This enables the first adaptation scenario where the 

follow-controller logic can react to changes in availability of 
services as well as to presence events. 

The second fragment employs an activation policy, which is 
linked to the context definition high-decibel. This means that 
changes in this context state will activate or deactivate this 

fragment, which contains a component that provides a preference 
service. When available, this service is consumed by the 
controller to override user volume preferences. The context 
information high-decibel, is changed by the component Sound-

level when microphones detect a high ambient sound level.  

<rondo:rondo xmlns:rondo="fr.liglab.adele.rondo.application">

  <application name="follow-me">

<!-- Application context -->

    <context>

<property name="high-decibel" type="boolean" 

defaultValue="false"/>

    </context>

<!-- Fragment 1 -->

    <fragment name="core-fragment">

<policy type="core"/>

<component name="follow-controller"/>

<component name="presence-aggregator"/>

<component name="sound-level"/>

    </fragment>

<!-- Fragment 2 -->

    <fragment name="pref-fragment">

<policy type="context-listener">

  <activate on="context" 

value="(context/high-decibel=true)">

</policy>

<component name="system-preferences">

  <provides id="pref" />

</component>

    </fragment>

<!-- Import devices -->

    <import name="media-renderers" 

protocol="upnp-renderer"/>

    <import name="ir-presence-sensors" 

protocol="zwave-ir-presence"/>

    <import name="pressure-sensors" protocol="coap-pressure"/>

    <import name="bluetooth-presence-sensors" 

protocol="xml-rpc-bluetooth"/>

    <import name="microphones" protocol="ip-micro"/>

  </application>

</rondo:rondo>
 

Figure 5: Description of the Follow-me application 

Lastly, various import statements represent different devices and 
services to be discovered in the pervasive environment.  

6. IMPLEMENTATION 
We have implemented a prototype of the Rondo tool suite using 
iPOJO [6] as our execution platform, which is an extensible 
service-oriented component model running on top of OSGi [10], 
which simplifies the development of component implementations. 
For discovery and importation of external services into our 
execution platform, Rose [2], an ecosystem for exporting and 

importing distributed services is used.  

As the central element of the tool suite, the application manager 
profits from dynamic architecture capabilities of iPOJO. When a 
new application description file is deployed to the platform, the 
application manager parses the XML-based language (see Figure 
5) and creates the abstract specification model of the application. 
Then different portions of this model (e.g. fragment, component, 
import) are transferred to application manager policies referenced 

in the model. Default implementation of these policies focus on 
providing late deployment and implementation selection 
capabilities. They can be extended match application specific 
requirements to make adaptations on the application architecture 
at runtime. 



We use runtime models to represent component types, running 
instances, available services and OSGi bundles. Runtime 
deployment of applications is being possible thanks to dynamic 
deployment features of our platform. We are able to download 
and deploy deployment units from the component repository, 

where it is possible to query deployment units by component 
descriptions, exposed services and required services. 

7. RELATED WORK 
In this section, we discuss some of the relevant works addressing 
pervasive and autonomic application development. There are 

several different approaches to define applications as a 
composition of services.  

In [12], the MUSIC planning-based middleware combines SOA 

and component-based software development, and creates 
adaptation plans according to changes in service descriptions and 
agreements. In [5], authors mix component-based static 
deployment descriptors with ECA (Event-Condition-Action) rules 
to design, deploy and reconfigure applications using runtime 
models. These two approaches concentrate on implementing 
autonomic managers and does not fully leverage dynamism 
brought by services in their application definitions. Unlike our 

proposition, where explicitly unsatisfied dependencies are 
resolved at runtime from available services; strict ADL definitions 
impose specifying all bindings between components. 

Dia Suite [4] defines a development life cycle similar to ours to 
define the pervasive environment and applications. However, 
passing to execution, it generates the whole execution 
environment, leaving no room for variability, late deployment or 
dynamism. Finally, in [7] authors propose an opportunistic service 
composition language that not only uses available services in the 
platform but also includes running instances into applications. 
While this adds new frontiers to the application resolution, our 
approach aims to give more deterministic results.   

8. CONCLUSION AND FUTURE WORK 
In this paper, we have presented our vision on pervasive 
application development, where abstract specifications of 
applications are deployed and resolved in a service-oriented 
execution platform by the help of an autonomic application 
manager. Our application definition language allows specifying 
variability, component-service interactions and dynamism with 

varying level of determinism. Also service discovery instructions 
are included in our model, to enable defining external service 
discovery at runtime. Our vision leads to open pervasive 
execution platforms, where different stakeholders are able to 
deploy and execute their applications. 

As an ongoing work, there are several points that we would like to 
improve in our proposition. We think that the key to build such an 
execution platform, where each application is dynamically 

variable, is to at least provide some mechanisms to constrain the 
visibility of services provided by different applications. Moreover, 
deploying and executing abstract application specifications 
requires dependency resolution mechanisms before execution. We 
are investigating different resolution strategies that we can employ 
in deployment and diagnostic tools. 
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