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Abstract This paper presents an efficient modelling

of autonomous flexible airships. These flying objects

lighter than air (L.T.A.) are assumed to undergo large

rigid-body motion and small elastic deformation. The

formalism used is based on the Euler–Lagrange ap-

proach. The airship considered in this study is repre-

sented by a flexible ellipsoid of revolution. The cou-

pling between the added masses issued from the over-

all body motion and those issued from the elasticity

was determined by means of the velocity potential

flow theory. We develop a fully analytical methodol-

ogy with some assumptions. This feature distinguishes

the current work from earlier treatments of the cou-

pling, it allows one to minimise the number of degrees

of freedom of the dynamical model, and renders the

model suitable for use in the algorithms of stabilisa-

tion and trajectory generation. Numerical simulations

are presented at the end of this paper. They underline

the interest of the developed theoretical results.
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1 Introduction

Capabilities of airships have expanded rapidly in the

last decades, and the range of missions they were de-

signed to allow is growing. We can mention climate

research; surveillance. . . The human presence in those

cases is highly undesirable. To elaborate efficient al-

gorithms of stabilisation or navigation of these au-

tonomous airships, it is important to develop precise

dynamic models of these objects. In accordance with

the increase of the volumes and the shapes of the cur-

rent airships it is necessary to introduce the effect of

the structural flexibility in the dynamic and aerody-

namic model. We shall mention that several kinds of

airships, usually called blimps, are mainly constituted

of a balloon filled with gas. The only solid parts are

the gondola and the tail fins (for more details see [1]).

The integration of the structural flexibility in the dy-

namic analysis of the airships becomes useful then;

however, it is now at an embryonic state and is only

just emerging [2–4]. As opposed to other treatments

[5], where it is merely assumed that the flexibility ef-

fects are sample perturbations, we introduce here the

dynamic and aerodynamic effects of the flexibility in

the global dynamic model of the airship, and we fo-

cus on the coupling between the rigid-body contribu-

tion and the flexibility. We shall note that in other fly-

ing objects, such as light aircraft, the introduction of

the flexibility in the dynamic model becomes essential

[6–9], and [10].

1



The Newton–Euler description [11], used here, was

extensively studied in the case of rigid flying ob-

jects. This choice is mainly motivated by the easiness

to build control or stabilisation algorithms based on

this model. However, the use of the Newton–Euler

approach in the dynamic analysis of flexible com-

plex structures is rare [12]. A method was proposed

[13] to extend the classical rigid bodies’ model to

the deformable bodies, without destroying the gen-

eral formalism obtained. We adopt this method for

our study. Other descriptions of flexible flying ob-

jects were proposed in the literature using the Up-

dated Lagrangian Method [2, 14, 15], or the nat-

ural coordinates [10]. However, the Newton–Euler

description seems the most promising method re-

garding the minimisation of the degrees of free-

dom.

On the other hand, airships are also governed

by the aerodynamic forces that have to be mod-

elled. Air-structure interaction is mainly represented

by the added masses phenomena. We can mention

two groups of researchers in this field: those study-

ing the vibration of flexible bodies within a fluid

around a reference configuration as in [16, 17] and

those analysing the large motion of rigid bodies in

a fluid as in [18]. The coupling between these two

parts is seldom treated, and in that case numerical

methods such as Finite or boundary Element Method

are used [19–22]. A novel aspect of the approach

advocated here is that the equations governing the

interaction air-structure are resolved in an analyti-

cal setting. This approach departs clearly from many

earlier treatments of the coupling, and permits to

minimise the number of degrees of freedom of the

dynamical model. Control laws can then be easily

implemented in the dynamical model of the airship,

taking into account the dynamic and aerodynamic

coupling. This is important especially when the air-

ship is manoeuvring above a target or over an unload-

ing area.

2 Nomenclature

η1 = [x0, y0, z0]
T : vector position of the origin ex-

pressed in the fixed reference frame R0

η2 = [ϕ, θ,ψ]T : vector orientation of the pointer Rm

in regards to R0, given by the Euler angles

η = [η1,η2]
T : vector attitude compared to R0

η̇: velocity vector in regards to R0 expressed in R0

ν1 = [u,v,w]T : velocity vector expressed in Rm

ν2 = [p,q, r]T : vector of angular velocities expressed

in Rm

νT = [νT
1 ,νT

2 ]: ν̇ is the time derivative of ν

ν̄T = [νT
1 ,νT

2 , Ẏd ]: the generalised velocity vector of

the flexible airship

m: the mass of the airship

I3: the identity matrix 3 × 3

Ũ: skew-matrix of the vector U

ρf : the fluid (air) density

ρA: the equivalent density of the airship

F0: column matrix of the whole forces applied on the

airship as regards R0

M̂B : mass matrix of the body in Rm

g: acceleration of gravity

V : volume of the airship

Vd : velocity of a point in the flexible airship

∇ = [∂/∂x, ∂/∂y, ∂/∂z]T is a differential operator

∧: is the vector product

Φflex: the flexible velocity potential

Φs : spatial part of the flexible velocity potential

l,m, k are the direction cosines

a, b, c the polar and equatorial radii of an ellipsoid

3 Dynamic model

3.1 Dynamics

The analysis of the motion of the airship is made

with respect to two reference frames, namely an earth-

fixed frame R0 = (O,X0,Y0,Z0), and a body-fixed

one Rm = (G,Xm,Ym,Zm) called also pointer.

The origin of the body-fixed frame Rm is fixed at

the centre of gravity of the airship G; its axes are se-

lected as follows:

Xm: aligned with longitudinal axis, Ym: the trans-

verse axis, Zm: the normal axis directed downward

(see Fig. 1).

Commonly in aeronautics, a parameterisation in

yaw, pitch and roll (ψ, θ,ϕ) is used to describe the ori-

entation of the local frame Rm as regards the inertial

reference frame.

The whole transformation between R0 and Rm is

then given by
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J1 =

⎛

⎝

cosψ cos θ − sinψ cosφ + sinφ cosψ sin θ sinφ sinψ + sin θ cosψ cosφ

cos θ sinψ cosψ cosφ + sin θ sinψ sinφ − cosψ sinφ + cosφ sin θ sinψ

− sin θ cos θ sinφ cos θ cosφ

⎞

⎠

so that J T
1 J1 = J1J

T
1 = I3.

Using the rotation matrix J1, the expression of the

linear velocity in R0 is given by

η̇1 = J1 ν1 (1)

On the other hand, the angular velocity of the blimp

ν2 is the combination of the angular velocity around

the three axes of yaw, pitch and roll.

We can then easily express the relation between ν2

and η̇2 as

ν2 = J2η̇2 (2)

The transformation matrix J2 is given by

J2 =

⎛

⎝

1 0 − sin θ

0 cosϕ sinϕ cos θ

0 − sinϕ cosϕ cos θ

⎞

⎠

If we consider the flexibility of the airship, we can

represent the position of a given point P such as

r = OP ′ = OG + GP + PP ′ (3)

P ′ represents the new position of the point P in the

deformed configuration. We have

r = η1 + J1(U0 + Ud) = η1 + J1U (4)

U0 is the local position of the point P .

Fig. 1 Position vectors

The displacement due to the deformation Ud =

Ud(s, t) expressed in the local frame is a function of

space and time. It can be broken up into a sum of two

separate functions:

Ud(s, t) =

nd
∑

i

Y i
d(t)Si (5)

where:

Si : represents the ith shape function of the airship

Y i
d(t): the associated amplitude

This manner of writing can be condensed in the fol-

lowing way:

Ud = SȲd (6)

S is a matrix representing the selected shape func-

tions, and Ȳd is the column matrix composed by the

various Y i
d .

The body’s flexibility can be represented by ana-

lytical approximate shape functions or by a limited

number (nd) of lower frequencies deformation modes,

resulting from the Raleigh–Ritz decomposition. The

choice of the number of modes to be kept depends on

the structure and the solicitations applied (see for ex-

ample [23]).

We denote by η̄ =
( η1

η2

Ȳd

)

a generalised position vec-

tor of an arbitrary point in the flexible airship.

The kinetic energy of the deformable body can be

expressed as follows:

EcdB =
1

2

∫∫∫

V

ρAṙT ṙdV =
1

2
¯̇ηT M̂dB

¯̇η (7)

M̂dB is known as the symmetric time varying mass

matrix of the flexible body in regards of the reference

frame R0.

By using Lagrange’s equations [24], one can obtain

the following dynamic relation:

M̂dB
¨̄η = F0 − Kη̄ (8)
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F0 is the column matrix of the external forces and

torques expressed in the frame R0, including the con-

tribution of the actuators, the gyroscopic, aerody-

namic, gravity and buoyancy forces.

K is the stiffness matrix that can be presented as

follows:

K =

⎛

⎝

0 0 0

0 0 0

0 0 KDD

⎞

⎠ (9)

The details of constructing such a matrix can be found

in [25]; or [24].

For a better use of the data given by the embedded

sensors, it is preferable to use the local parameters.

The velocity of a given point P in the deformable

airship can then be expressed as follows:

Vd = ν1 + ν2 ∧ U + U̇d

= ν1 + ν2 ∧ U0 + ν2 ∧ SȲd + S ¯̇Yd (10)

When using adequate transformations, the kinetic en-

ergy of the flexible body can be expressed using the

generalised variables ν̄T = [νT
1 ,νT

2 , ¯̇Yd ] as:

EcdB =
1

2
ν̄T MdB ν̄ (11)

MdB is the mass matrix of the body in the lo-

cal frame Rm. Let us designate by IRR the iner-

tia matrix of rotation of the flexible body in the lo-

cal frame Rm such as: IRR =
∫∫∫

V
ρAŨT ŨdV , IRD

defined by IRD =
∫

V
ρAŨT S dV a term of inertial

coupling rotation-deformation, IDD such as IDD =
∫

V
ρAST S dV the constant matrix of deformation, and

finally IT T = mI3 the translation term.

If we neglect the coupling translation-deformation,

and if we use the generalised Euler variables, the dy-

namic model of the flexible airship becomes [13]

⎛

⎝

IT T 0 0

0 IRR IRD

0 IT
RD IDD

⎞

⎠

⎛

⎝

ν̇1

ν̇2

¯̈Y d

⎞

⎠= τ (12)

or:

MdB
¯̇ν = τ (13)

¯̇ν is the generalised vector of acceleration expressed

with Eulerian variables, and τ is the vector involving

all the forces and torques applied on the airship so that

τ = τAc + τGy + τGb + τGrb + τAe (14)

τAc is the column matrix of the forces and torques pro-

duced by the actuators (i.e. rotors and tail fins).

τGy is the column matrix of gyroscopic, Coriolis,

and stiffness generalised forces and torques given by

τGy =

⎛

⎜
⎝

−IT T (ν2 ∧ ν1)

−ν2 ∧ (IRRν2) − ν2 ∧ (IRD
¯̇Yd)

−KDDȲd

⎞

⎟
⎠ (15)

τGb represents the gravity and the buoyancy. The grav-

ity is applied on the centre of mass of the airship. The

buoyancy is the main characteristic of the L.T.A. fly-

ing objects. It is applied in the centre of volume of the

airship and has a vertical direction. We neglect here

the influence of the small deformations on the buoy-

ancy. We assume also that the distribution of masses

is balanced between the top side and the bottom side

of the airship, and thus the centre of volume coincides

with the centre of gravity G.

τGrb can then be computed in the local frame Rm

according to this manner:

τGb = (mg − ρV )J T
1 Z0 (16)

τAe is the column matrix of the aerodynamic forces

FA and torques MA depending on several parameters

such as the reference section of the airship, for exam-

ple the medium transverse section, the Reynolds num-

ber, the angles of attack and of side-slip, the speed of

the relative wind, and the aspect ratio. More details of

the computation of these aerodynamic efforts for an

ellipsoidal airship can be seen in [26].

3.2 Added masses

The lighter than air aerial vehicles undergo a partic-

ular aerodynamic phenomenon called added masses.

If a voluminous and light body is moving in an invis-

cid and incompressible fluid, it will force a passage

through this fluid, and will produce a displacement of

the particles of the surrounding layers of fluid.

The kinetic energy of the fluid produces an effect

equivalent to a significant growing of the mass and in-

ertia of the body. As the airship displays a very large

volume, its added masses and inertias become very

significant.

Let us now present some assumptions for this

study:

– The mass of the airship is constant. The use of elec-

trical power makes this hypothesis acceptable.
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– The added masses within the careen due to the mo-

tion of the helium are neglected.

– The air is supposed to be at rest. The only region

perturbed by the motion of the airship is its close

surroundings.

To take into account the interaction of the airship

with the surrounding fluid, a model of the flow is

needed. Here, we use the potential flow theory with

the following assumptions.

(a) The air can be considered as an ideal fluid with

irrotational flow, and uniform density ρf , i.e. an

incompressible fluid.

(b) A velocity potential φ exists and satisfies the

Laplace equation throughout the fluid domain

∇2φ = 0, and satisfies the non-linear free surface

condition, body boundary condition, and initial

conditions.

Finally, we suppose that the velocity of the air

is null far from the airship (φ∞ → 0).

(c) The velocity of the fluid obeys to the expression

Vf = ∇φ.

The basis of the analysis of the motion of a rigid body

in an unbounded incompressible fluid at rest at in-

finity was established more than one century ago by

[27]. In his study, Lamb proves that the kinetic en-

ergy of the fluid surrounding a moving rigid body

can be expressed as a quadratic function of the six

components of the translation and rotation velocity

ν = (u, v,w,p,q, r)T , and can also be expressed as

a function of the velocity potential of this fluid by the

following relation:

Eca =
1

2
νT Maν = −

1

2
ρf

∫∫

∂S

φ
∂φ

∂n
dS (17)

Ma is known as the added mass matrix of the body and

can be presented as:

Ma = [Zij ] (18)

For a symmetric and fully immersed body in a fluid,

the symmetry of this matrix appears as a reasonable

assumption [18]. The experimental data have shown

that the extra-diagonal terms are small compared to

the diagonal terms.

To compute the kinetic energy of the fluid and to

extract the terms of the added mass matrix Zij , we

should determine the velocity potential of the moving

fluid.

Fig. 2 A submerged ellipsoid

3.3 Computation of the velocity potential

The velocity potential of the fluid issued from the mo-

tion of a rigid immersed vehicle can be expressed as

follows:

φrr = uφ1 + vφ2 + wφ3 + pφ4 + qφ5 + rφ6 (19)

where the φi are functions of x, y, z. They are deter-

mined exclusively from the geometry of the solid [27].

In the case of an ellipsoid totally submerged in the

fluid the expression of φrig is

φrr = −ux − vy − wz −
c2 − a2

c2 + a2
qzx

−
a2 − b2

a2 + b2
rxy (20)

Here a, b and c are the semi-axes of the ellipsoid (see

Fig. 2). We consider here an extended ellipsoid of rev-

olution (b = c).

The ellipsoidal coordinates are suitable to describe

the motion and the behaviour of such an ellipsoid.

The expressions of the Cartesian coordinates x, y

and z in regard to the ellipsoidal coordinates (ξ,μ,Θ)

are [28]:

⎧

⎪
⎨

⎪
⎩

x = koμξ 1 ≤ ξ ≤ ∞

y = ko(1 − μ2)1/2(ξ2 − 1)1/2 cosΘ −1 ≤ μ ≤ 1

z = ko(1 − μ2)1/2(ξ2 − 1)1/2 sinΘ 0 ≤ Θ ≤ 2π

(21)
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The surface of the ellipsoid corresponds to ξ = ξo,

and the constant ko is defined by ko = a
ξo

.

The outward normal vector to the ellipsoid is

n =

(
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

)

(22a)

with

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∂x
∂ξ

= koμ

∂y
∂ξ

= ko(1 − μ2)1/2ξ(ξ2 − 1)−1/2 cosΘ

∂z
∂ξ

= ko(1 − μ2)1/2ξ(ξ2 − 1)−1/2 sinΘ

(22b)

Hence we can write the velocity potential of the

fluid due to a perturbation by the motion of a rigid

body as

φrr = −ukoμξ − vko

(

1 − μ2
)1/2(

ξ2 − 1
)1/2

cosΘ

− w
(

1 − μ2
)1/2(

ξ2 − 1
)1/2

sinΘ

−
c2 − a2

c2 + a2
qk2

oμξ
(

1 − μ2
)1/2(

ξ2 − 1
)1/2

sinΘ

−
a2 − b2

a2 + b2
rk2

oμξ
(

1 − μ2
)1/2(

ξ2 − 1
)1/2

cosΘ

(23)

The boundary conditions on the surface of interaction

∂S are

∂φrr

∂n
= l(u + qz − ry) + m(v + rx − pz)

+ k(w + py − qx) (24)

Beginning with the development of the kinetic energy

in quadratic form,

2Eca = Z11u
2 + Z22v

2 + Z33w
2 + Z44p

2 + Z55q
2

+ Z66r
2 + 2Z23vw + 2Z13wu + 2Z12uv

+ 2Z56qr + 2Z46rp + 2Z45pq

+ 2p(Z14u + Z24v + Z34w)

+ 2q(Z15u + Z25v + Z35w)

+ 2r(Z16u + Z26v + Z36w) (25)

we refer to the fact that here φ = φrr , we identify the

terms of (17) according to (18–20), and we can then

find the expression of the added mass matrix compo-

nents:

Zij = −ρf

∫∫

S

φi

∂φj

∂n
dS (26)

3.4 Aerodynamic effect of the flexibility

Let us now consider the case of a flexible airship. This

has an overall rigid-body motion and a flexible dis-

placement. In addition to the previous hypothesis con-

cerning the fluid, we assume that the careen is imper-

meable to the surrounding fluid.

The kinetic energy of the air surrounding the flexi-

ble body in motion can be expressed as follows:

Ecad =
1

2

∫∫∫

V

ρf ṙT ṙdV =
1

2
¯̇ηT M̂ad

¯̇η (27)

Considering the assumption of incompressibility of

the air, and when using the Lagrange equations for the

system combining the deformable airship and the sur-

rounding fluid, one can obtain the following equation:

(M̂dB + M̂ad) ¨̄η = F0 − Kη̄ (28)

The dynamic model of the whole system is similar to

that obtained in (8). The fluid effect appears as an in-

crease of the inertia of the flexible body.

If we use the Euler variables, the dynamic system

becomes

(MdB + Mad) ¯̇ν = τ + τa (29)

Mad is the added mass matrix for the flexible airship.

Compared to that presented in (18), this (6 + nd , 6 +

nd) matrix includes the added inertial effects issued

from the rigid-body motion, the deformation, and the

coupling. It will be presented in the following section.

τ a is the added masses vector, due to the use of

the non-Galilean frame. Since its calculation is quite

lengthy, we merely state the result, which is

τa =

⎡

⎣

−MT T
ad (ν2 ∧ ν1)

−ν2 ∧ (MRR
ad ν2) − ν2 ∧ (MRd

ad
¯̇Yd)

0

⎤

⎦ (30)

MT T
ad , MRR

ad , and MRd
ad are sub-matrices correspond-

ing, respectively, to the translation motion, rotation

motion and the coupling rotation-deformation.
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The kinetic energy of the surrounding fluid can also

be expressed in terms of Euler variables as an exten-

sion of (17) so that

Ecad =
1

2
ν̄T Mad ν̄ = −

1

2
ρf

∫∫

∂S

φ
∂φ

∂n
dS (31)

φ designates the velocity potential of the fluid dis-

placed by the motion of the flexible airship. We will

define its expression later.

4 Analytic computation of the potential

4.1 Kinetic energy of the air

By using the boundary conditions of the airship in con-

tact with the air:

Vd · n = Vf · n (32)

Hence by replacing each velocity by its expression, we

obtain:

(ν1 + ν2 ∧ U0
︸ ︷︷ ︸

Vr

+ ν2 ∧ SȲd
︸ ︷︷ ︸

Vrd

+S ¯̇Yd
︸︷︷︸

Vdd

) · n = ∇φ · n (33)

According to this presentation, we can split up the ve-

locity potential into three terms:

φ = φrr(ν1,ν2) + φrd(Ȳd ,ν2) + φdd( ˙̄Yd) (34)

φrr is the velocity potential corresponding to the rigid

motion and presented in (19), while φrd appears as a

velocity potential corresponding to the coupling be-

tween the rigid motion and the deformation.

It could be expressed as a function of a spatial com-

ponent φs and time varying component g1(t)

φrd = φs · g1(t) (35)

The spatial component φs is issued from the shape ma-

trix S in (33).

φdd is the velocity potential issued from the effect

of the flexibility. It could be expressed similarly to φrd

as

φdd = φsg2(t) (36)

To make the computation of g1(t) in (35) easier we

use a canonical decomposition that we can summarise

as follows:

The shape function matrix S can be broken up into

S =

w
∑

i=u

nd∑

j=1

SijBij = Su1

⎡

⎣

1 0

0 0

0 0

⎤

⎦

︸ ︷︷ ︸

Bu1

+Su2

⎡

⎣

0 1

0 0

0 0

⎤

⎦

︸ ︷︷ ︸

Bu2

· · ·

Hence the term ν2 ∧ SȲd in (33) is written as

ν2 ∧ SȲd =
∑

i

∑

j

Sij ν2 ∧ Bij Ȳd
︸ ︷︷ ︸

g1(t)

(37)

According to (31) the computation of the kinetic en-

ergy of the fluid shows new terms, which indicate the

effect of the flexibility of the hull on the air flow. We

present them in the global mass matrix of the added

masses.

The added mass matrix defined in (31) can be pre-

sented as

Mad =

⎡

⎢
⎢
⎢
⎣

Ma

... 0

· · ·
... · · ·

0
... 0

⎤

⎥
⎥
⎥
⎦

+ Mrd
ad +

⎡

⎢
⎢
⎢
⎣

0
... 0

· · ·
... · · ·

0
... Mdd

ad

⎤

⎥
⎥
⎥
⎦

(38)

with

Mdd
ad =

⎡

⎢
⎣

mdd
11 · · · mdd

1nd

...
. . .

...

mdd
nd1 · · · mdd

ndnd

⎤

⎥
⎦

is a (nd,nd) square matrix, and can be seen as the

effect of the flexibility of the careen on the air potential

flow, while the matrix Mrd
ad represents the effects of

the coupling between the rigid-body motion and the

flexibility. It is a time varying matrix.
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Mrd
ad =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 T14 T15 T16 W17 . . W1(nd+6)

0 0 0 T24 T25 T26 W27 . . W2(nd+6)

0 0 0 T34 T35 T36 W37 . . W3(nd+6)

T41 . . K44 K45 K46 H47 + W47 . . H4(nd+6) + W4(nd+6)

T51 . K55 K56 H57 + W57 H5(nd+6) + W5(nd+6)

. . . K66 H67 + W67 H6(nd+6) + W6(nd+6)

H74 + W74 . 0 0

. . . .
. . .

. .

. 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(39)

The terms Tij , Kij , Hij and Wij are coupling terms.

Using the development of the expression of the kinetic

energy:

Ecad = −
1

2
ρf

∫∫

∂S

φ
∂φ

∂n
dS

= −
1

2
ρf

∫∫

S

(

φrr(ν1,ν2) + φrd(Ȳd ,ν2)

+ φdd( ˙̄Yd)
)
(

∂φrr(ν1,ν2)

∂n

+
∂φrd(Ȳd ,ν2)

∂n
+

∂φdd( ˙̄Yd)

∂n

)

dS (40)

the terms Tij appear as the coupling between Φrr and

Φrd , Hij the coupling between Φdd and Φrd , Wij the

coupling between Φrr and Φdd , and Kij the coupling

between Φrd and Φrd .

For example:

K56 =

(

φ5
∂φs

∂ξ
+ φ6

∂φs

∂ξ
+ φs

∂φ6

∂ξ
φs

∂φ5

∂ξ
+ 2

∂φs

∂ξ
φs

)

×

(
nd∑

i=1

BwiYdi
−

nd∑

i=1

BuiYdi

)

×

(
nd∑

i=1

BuiYdi
−

nd∑

i=1

BviYdi

)

(41)

and:

Wij = −ρf

∫∫

S

φi

∂φsj

∂ξ
dS (42)

The components of the matrix Mdd
ad can be presented

as follows:

mdd
ij = −ρf

∫∫

S

φsi

∂φsj

∂ξ
dS (43)

4.2 Computation of φs

In the following part, we compute analytically the flex-

ible velocity potential flow. We show here the influ-

ence of the surrounding air on the boundary surface of

the ellipsoid, i.e. the hull (ξ = ξ0).

According to [28], the superposition of two or more

distributions of velocities on the ellipsoid is allowable.

This is so in the sense that for example, for the de-

formable contribution Vdd seen in (33), the boundary

condition could also be written as

Suj

∂x

∂ξ
+ Svj

∂y

∂ξ
+ Swj

∂z

∂ξ
= koFj (μ, θ) =

∂φsj

∂ξ
(44)

with

Fj (μ, θ) = μSuj +
(

1 − μ2
) 1

2 ξ0

(

ξ2
0 − 1

)− 1
2

× (Svj cosΘ + Swj sinΘ) (45)

In order to define the expression of φs we have to re-

solve the Laplace equation:

�φs = 0 (46)

Using the ellipsoidal coordinates (ξ,μ,Θ), the previ-

ous equation could be written as

∂

∂μ

{
(

1 − μ2
)∂φs

∂μ

}

+
∂

∂ξ

{
(

ξ2 − 1
)∂φs

∂ξ

}

+
ξ2 − μ2

(1 − μ2)(ξ2 − 1)

∂2φs

∂Θ2
= 0 (47)
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The shape functions Sj : (Suj , Svj , Swj )
T are defined

here analytically as

Sv1 = K1 sin 2Θ
(

1 − μ2
)

Sw2 = K2 cos 2Θ
(

1 − μ2
)

+ K3μ
2 cos 2Θ

(48)

All the other components are null. Ki are constants.

These functions correspond to the bending of

the airship in the plane GXmYm, and in the plane

GXmZm.

We used this analytical form of the bending of

an ellipsoid, given first by [29], because it represents

an acceptable approximation of the vibration of the

airship and allows us to conduct a fully analytical

study. However, a vibrating study by the Finite Ele-

ment Method including the effects of the solid parts,

such as the gondola and the tail fins should be able to

give us more realistic velocity distributions.

Using the Legendre function P m
n (μ), Qm

n (ξ), the

potential function of vibration for the motion of the air

surrounding the flexible airship is given by (the reader

can see [27] for more details):

φs =

∞
∑

n=0

n
∑

m=0

(

χm
n sinmθ + ̟m

n cosmθ
)

× P m
n (μ)Qm

n (ξ) (49)

χm
n and ̟m

n are coefficients to be determined in such

a way that the boundary conditions are fulfilled.

The coefficients are found by applying the integral

properties of the circular and the Legendre functions.

We study the solutions of (49) for different values

of m and for each function F related in (45).

The case m = 0 does not provide useful informa-

tion, and the only non-zero values that we get are for

m = 1, with the coefficient n = 1.

Thus for m = 1 the constants χm
n and ̟m

n could be

expressed as follows:

χ1
nj =

2n + 1

2πQ1
ξn

(ξ0)

(n − 1)!

(n + 1)!
ko

×

∫ 2π

0

∫ 1

−1

Fj (μ, θ)P 1
n sinΘ dμdΘ

̟ 1
nj =

2n + 1

2πQ1
ξn

(ξ0)

(n − 1)!

(n + 1)!
ko

×

∫ 2π

0

∫ 1

−1

Fj (μ, θ)P 1
n cosΘ dμdΘ

(50)

By using the shape function S1 we obtain for each n

ko

∫ 2π

0

∫ 1

−1

(

1 − μ2
) 3

2 ξ0

(

ξ2
0 − 1

)− 1
2

×
(

K1 sin 2θ cos2 θ
)

P 1
n dμdθ = 0 (51)

For the shape function S2 we obtain

ko

∫ 2π

0

∫ 1

−1

(

1 − μ2
) 1

2 ξ0

(

ξ2
0 − 1

)− 1
2

×
[

K2 cos 2Θ
(

1 − μ2
)

+ K3μ
2 cos 2Θ

]

× sinΘP 1
n dμdθ = 0 (52)

Hence all the coefficients ̟ 1
nj are zero as we can see

in (51) and (52).

Thus the potential fluid is reduced to

φsj = χ1
1j sinΘP 1

1 (μ)Q1
1(ξ) (53)

with

χ1
1j = C

∫ 2π

0

∫ 1

−1

Fj (μ, θ)P 1
1 (μ) sinΘ dμdΘ (54)

and

C =
3ko

4π ∂
∂ξ

Q1
1(ξ0)

︸ ︷︷ ︸

constant

(55)

Consequently for the first function, the constant is as

follows:

χ1
11 =

8πK1Cξ0(ξ
2
0 − 1)−

1
2

15
(56)

And for the second shape function, the constant is as

follows:

χ1
12 =

−2π(K3 + 4K2)Cξ0(ξ
2
0 − 1)−

1
2

15
(57)

Therefore we obtain the final expression of the flexible

potential φs as follows:

For S1: φs1
= χ1

11 sinΘP 1
1 (μ)Q1

1(ξ) (58a)

For S2: φs2
= χ1

12 sinΘP 1
1 (μ)Q1

1(ξ) (58b)

In the matrix Mrd
ad the constant coupling terms corre-

sponding to the two shape functions of deformation

9



chosen are equal to zero, except the terms W37, W38,

W73 and W83 given by (42).

This is due to the fact that when computing the

terms Wij , some generic functions arise. We distin-

guish three functions of μ as

f1(μ) = μ

f2(μ) =
(

1 − μ2
) 1

2

f3(μ) = μ
(

1 − μ2
) 1

2

and three functions of Θ as h1(Θ) = 1;h2(Θ) =

cosΘ;h3(Θ) = sinΘ .

For example the expression of W37 is as follows:

W37 = −ρf

∫∫

S

−f2(μ)h3(Θ)
(

ξ2 − 1
) 1

2

︸ ︷︷ ︸

φ3

× χ1
11P

1
1 (μ)

∂Q1
1

∂ξ
dS|ξ=ξ0

= ρf

∫ 2π

0

∫ 1

−1

f2(μ)P 1
1 (μ)dμh3(Θ) sinΘ dΘ

︸ ︷︷ ︸

I

× χ1
11

(

ξ2
0 − 1

) 1
2 dS

=
4πρf

3
χ1

11

(

ξ2
0 − 1

) 1
2 (59)

By using the same way, we compute the other coupling

terms. The integral I in (59) leads to the nullity of the

terms Wij other than W37, W38, W73 and W83.

5 Numerical simulations

In this section we present some numerical examples

demonstrating the utility of the proposed formulation.

As an illustration, we use the characteristics of the

blimp AS-200 belonging to the LSC-IBISC laboratory

and featuring the following characteristics.

The envelope:

Axis: a = 3.125 m; b = c = 0.76 m; e = 1
ξo

= 0.94;

ξ0 = 1.06; ko = 2.93

Fabric: kevlar

Young modulus E = 1.4×105 MPa; density d = 1.4;

Volume: 7.56 m3

Mass of the airship: 5.8 kg

Payload: 1.58 kg

The blimp is powered by four contrarotating pro-

pellers.

By using the two shape functions presented before

corresponding to the bending, we obtain some numeri-

cal results for the added masses as Mdd
ad for the flexible

motion:

Mdd
ad =

(

0.4473 −0.11

−0.11 0.6989

)

And the rigid part in Mad in (38) is

Ma =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.377

3.28

3.28

0

2.91

2.91

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The calculations were performed using the numerical

code Matlab. The problem discussed is solved within

Newmark equation-solving strategy.

The test represents a typical manoeuvre of a blimp

over an unloading area, and concerns a change of

heading.

This yaw rotation of 90◦ is controlled through a

simple proportional-derived law.

We will compare in this manoeuvre the behaviour

of the blimp assumed as rigid, and that of the blimp

with flexible characteristics.

In Fig. 3 we superimpose the yaw angle and the de-

sired one for both rigid (dashed) and flexible assump-

tions. Although the choice of the shape functions is not

optimal (particularly with regards to capturing bend-

ing behaviour), it nonetheless demonstrates the capa-

bility of the proposed model to display the effect of

the flexibility of the airship on the dynamic response

to the current solicitations.

This effect is also seen on the response of the actu-

ators. Figure 4 depicts the situation considered.

We see that the flexibility effects are best illustrated

in the response of the actuators.

In Fig. 5 we superimpose the angular velocity

around the z-axis for the rigid case and the flexible

device.

The impact of flexibility on the velocity is palpable.

In Fig. 6 we visualised the bow of the airship, and

we see its oscillation compared to the “rigid” behav-

iour. The deformations are about 0.28 m, which is sig-

nificant considering the size of the airship.
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Fig. 3 Superposition of yaw angle and desired one

Fig. 4 Superposition of torques

Fig. 5 Superposition of angular velocity of rigid and flexible

airships

Fig. 6 Displacement due to the deformation

Fig. 7 Superposition of hole displacements

In Fig. 7, the impact of this displacement of defor-

mation is highlighted.

6 Conclusion

In this paper a method has been presented for

the aeroelastic analysis of the flexible airships. The

strength of the different shape function for flexible

careen, and the lightness of the Newton–Euler de-

scription of motion are combined for this purpose.

A special focus is put on the computation of the

added masses terms and the coupling between those

issued from the whole rigid-body motion and those

issued from the deformation of the careen. We de-

velop for this purpose a fully analytical method with

11



some assumptions. This feature distinguishes the cur-

rent work from earlier treatments of the coupling,

and permits to minimise the number of the degrees

of freedom, with the aim of optimising the ratio pre-

cision/computational time. This result will enable an

easy implementation of control and stabilisation al-

gorithms for the flexible flying objects. Simulation re-

sults are given for the case of an ellipsoidal airship ma-

noeuvring over an unloading area. The results prove

that the integration of the flexibility in the dynamic

system of the airship is important and should not be

neglected.
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