
HAL Id: hal-00745355
https://hal.science/hal-00745355v1

Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending the WebID Protocol with Access Delegation
Sebastian Tramp, Henry Story, Andrei Sambra, Philipp Frischmuth, Michael

Martin, Sören Auer

To cite this version:
Sebastian Tramp, Henry Story, Andrei Sambra, Philipp Frischmuth, Michael Martin, et al.. Extending
the WebID Protocol with Access Delegation. Proceedings of the Third International Workshop on
Consuming Linked Data (COLD2012), 2012, Boston, United States. �hal-00745355�

https://hal.science/hal-00745355v1
https://hal.archives-ouvertes.fr

Extending the WebID Protocol with Access

Delegation

Sebastian Tramp1, Henry Story2, Andrei Sambra3, Philipp Frischmuth1,
Michael Martin1, and Sören Auer1

1 Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,
{lastname}@informatik.uni-leipzig.de

http://aksw.org/FirstnameLastname (WebID)

2 Apache Foundation
henry.story@bblfish.net

http://bblfish.net/people/henry/card#me (WebID)

3 CNRS Samovar UMR 5157, Institut Mines-Telecom / Telecom SudParis
andrei.sambra@it-sudparis.eu

https://my-profile.eu/people/deiu/card#me (WebID)

Abstract. The WebID protocol enables the global identi�cation and
authentication of agents in a distributed manner by combining asym-
metric cryptography and Linked Data. In order to decide whether access
should be granted or denied to a particular WebID, the authenticating
web server may need to retrieve other pro�les and linked resources to
work out e.g. if the requesting agent is member of an authorized group.
If these resources are required to be publicly available for the server to
access it, then this would be a major privacy limitation on a linked Social
Network. In this paper we explore di�erent ways in which an agent can
act as a user and we propose an extension to the WebID protocol which
allows for delegation of access authorization from a WebID to a third
party, e.g. allowing a server to be able to act on behalf of its users. This
extends the range of application scenarios where WebID authentication
can be e�ciently deployed while increasing privacy.

1 Introduction

The World Wide Web is a peer to peer communication system designed from the
outset to work in a global space, between agents distributed around the world
and acting in parallel, with no center of control, in a space where new agents can
at any point join and there is no complete overview of the whole system. These
agents need know nothing of each other up to the point of their interaction. This
is the force that leads the web to its declarative functional architecture, with
its emphasis on naming and a logic of unalterability of the meaning of names
(URIs).

Agents on the web communicate with each other through a limited number
of actions: by making requests for resources (GET), by creating resources (POST

http://aksw.org/FirstnameLastname
http://bblfish.net/people/henry/card#me
https://my-profile.eu/people/deiu/card#me

or PUT), or even by deleting resources. Creation or deletion of resources usually
require authentication of the agent making the request, and so in many cases do
requests for information.

The WebID protocol enables the global identi�cation of agents using asym-
metric cryptography in a way that �ts cleanly with this architecture: namely
in such a way that agents can verify each others identity without having had
any previous interactions and in such a way as to allow trust to build up in a
decentralized manner.

AWebID is a URI that refers to an agent - person, robot, group or other thing
that can have intentions. The WebID should be a URI which when dereferenced
returns a representation whose description uniquely identi�es the agent as the
controller of a public key [9,11]

The WebID protocol is used currently mostly for client authentication4. It is
worth noting that the host serving the WebID pro�les controls the identity of
every agent whose URI is within that server's namespace. This service is known
as the origin server [2]. It is the origin of all resources served by it.

We can easily think of the origin server as not only able to respond to requests,
but also as an agent able to make requests. IndeedWebID authentication requires
the server to make WebID pro�le requests to other servers in order to verify the
identity of agents making a request to it. The WebID speci�cation describes
this task as being accomplished by a separate agent, the WebID veri�er - which
could indeed be done by another service on the web (WebID proxy authentication
servers). But it can also be so closely tied to the web service that it would be
natural to think of it as part of that same service. The WebID pro�le furthermore
could be served by the same agent as the one making the request, in which case
we have a minimal case of a peer to peer communication. Note that fetching a
WebID pro�le for WebID authentication should be done anonymously, for fear
of authentication deadlocks5.

Things get more interesting in the authorization space. Consider a very nat-
ural application of WebID: allowing friends of one's friends access to some re-
sources. This authorization rule will require the web server to fetch each of its
users' friends pro�les, in order to build up the list of authorised users. But there
is a privacy issue involved here: not everyone wants to make all of their social
network publicly visible, and some may not want to make any of it publicly
visible. Those people may then protect their FOAF pro�le with access control
rules such as only allowing friends of their friends access to it. How can a server
that needs access to these FOAF pro�les in order to apply its own access control
rules get access to the information? Would the server itself need to be listed as

4 Server authentication using IETF DANE follows much the same logic, except that
the lookup for the identity is not done using the HTTP protocol but DNSSEC [6].

5 For example one can imagine an agent S with pro�le Ps requesting a resource on
server R which requires authentication. S would send R its certi�cate, thereby re-
quiring R to dereference S's pro�le Ps in order to verify the WebID. If Ps itself
requires authentication of R and if R sends a certi�cate containing a WebID with
its pro�le Pr, and if Pr itself requires authentication then it looks like we have a
deadlock.

a friend of a friend by each of the users friends? Should the server take on the
identity of the user it is fetching resources for? How would it be able to do so?
What other solutions are there? These are the questions we will try to answer
in this paper.

The rest of the paper is organized in the following way: Section 2 describes
preliminary requirements which we had in mind for our solution, Section 3 goes
into detail with the WebID speci�cation and adds support for authorization
delegation, in Section 4 we describe our reference implementations based on two
web applications which is followed by Section 5 where we compare our proposal
with two other protocols, namely CORS and OAuth. Finally, we conclude our
work in Section 6 and give directions for future work.

2 Preliminary Requirements

In order to make discussion of the problems easier, we distinguish the following
roles in the access delegation process:

1. The secretary acts in the name of another agent, the principal.

2. The principal is the agent who has a secretary that acts on its behalf.

The solution we propose will be based on the following general principles:

Distinguish secretary from principal - Identity should as far as possible be trans-
parent. A secretary should have it's own WebID. The motivation for this is: (1)
It allows resource guards to permit or deny requests based on this information.
(2) Secretary that have many principals do not need to switch their certi�cate
between requests. (3) It makes it possible to describe the relation between a
principal and its secretary using Linked Data.

Easy to use - The one and only place to describe which secretary are allowed
to operate for a principal should be the principal's WebID pro�le. To grant
delegated access to a secretary agent, no other actions than adding 1 triple to
the WebID pro�le should be needed. Retracting this grant should involve simply
removing it from the WebID pro�le.

Minimal protocol footprint - By using HTTP and working declaratively by plac-
ing statements in documents, we make adoption of the delegation easier and
avoid complex protocol developments. We believe that this is a crucial feature
of Linked Data in general.

E�ciency - Finally, the proposed solution should scale with growing number of
users and connections. In our context this means that an Social Web application
should be able to act in the name of thousands of users.

3 Extending WebID for Access Delegation

This section is organized in subsections which build up step by step to the
proposed protocol, adding and validating the need at each step for the next one,
the �nal proposed protocol satisfying the previous principles.

3.1 Solution 1: Acting as the user

The simplest solution for any user agent A wishing to act as the user U , is for
it to create a public/private key pair, and with the public key thus generated
create a certi�cate Cu with U 's WebID in the Subject Alternative Name position
and add the public key to the user U 's pro�le Pu (see Listing 1). Having done
this the agent A can then connect using the certi�cate Cu and its associated
private key, to any service it wishes to, when it wants to work for/as the user U .
This has the advantage of requiring no change to the WebID protocol. It does
give the agent A all powers of the user U and so this type of privilege should be
limited to agents which are either extensions of U or ones U can or must fully
trust anyway.

1 <http ://montague . net/romeo#m> a foaf:Person;
2 foaf:name "Romeo";
3 cert:key [a cert:RSAPublicKey;
4 rdfs:label "August 2 2012 at 10am CET , in Firefox laptop browser";
5 cert:modulus "cb24 ... ed85"^^xsd:hexBinary; cert:exponent 65537;
6],
7 [a cert:RSAPublicKey;
8 rdfs:label "August 2, 2012 at 14:30 CET by Montague Family FB Laurence";
9 cert:modulus "2e34 ... aa24"^^xsd:hexBinary; cert:exponent 65537;

10],
11 [a cert:RSAPublicKey;
12 rdfs:label "August 10, 2012 at 14:30 Rome time with Nokia Cell Phone";
13 cert:modulus "77e5... c342"^^xsd:hexBinary; cert:exponent 65537;
14] .

Listing 1. Pro�le allowing three di�erent agents to act as Romeo

Any server requiring authentication of an agent using WebID must implicitly
trust the origin server [2] hosting the WebID pro�le, since the pro�le hosting
server can change any information in the pro�le.

When the user owns the origin server and there is a one-to-one relation
between the two, as it is the case in a personal FreedomBox6, then the origin
server is just an extension of the user, and in that case trusting the server is the
same as trusting the user.

It should be noted that each device can still be distinguished by servers in
case of a problem by logging the exact public key that was used to connect to a
service. It should be possible then to track down which device's private key had
been compromised in case of unusual behaviour .

6 http://www.freedomboxfoundation.org/

Things become more interesting when an origin server agent A is serving a
number of di�erent pro�les P1 . . .Pn each identifying respectively users U1 . . .Un

and needs to act on behalf of each of these users. This would be the situation
for company servers, government agencies, educational institutions, charities,
football clubs, etc. This brings up two issues that need to be taken into account,
an issue of data perspective and an issue of e�ciency.

Keeping views distinct - First whenever A connects as U1 to a remote resource R
it has to place the data received in a separate graph from the one it stores public
non authenticated data in, and to the one it stores a representation to the same
resource R seen when connected as the di�erent user U2. This is because the
resource may return di�erent representations depending on who is connecting
to it - one representation for close friends of the owner of R perhaps, and one
for more distant ones. This can be illustrated using N3 graphs, by specifying a
relation between a view on a resource (using a yet to be settled on vocabulary),
and a graph which is the log:semantics of that view (cf. Listing 2). It is very im-
portant that the agent receiving information from di�erent users not merge the
information that was destined to di�erent users, or else information leakage will
severely reduce the trust other agents have in that server A. This requires care-
fully keeping identi�ed information that was aimed at di�erent users separate,
perhaps by creating di�erent graph stores: one for public - non authenticated -
information, and one graph store for each user the server needs to authenticate
as.

1 # view that the F.B Laurence has as Romeo of Juliet 's friends
2 [a subj:View;
3 subj:of <https :// capulet . org/ j u l i e t / f r i ends> ;
4 subj:by <https ://montague . net/romeo#me> ;
5 subj:using [:modulus "2e34 ... aa24"^^xsd:hexBinary; :exponent 65537]
6] log:semantics {
7 <https :// capulet . org/ j u l i e t#ms> foaf:knows <https ://montague . net/romeo#m>,
8 <https :// capulet . org/fb#john>, <http ://montague . net/fb#laurence> .
9 } .

10

11 # view that the F.B Laurence has as Lord Capulet of Juliet 's friends
12 # notice that the relationship of Juliet knowing Romoe is missing here
13 [a subj:View;
14 subj:of <https :// capulet . org/ j u l i e t / f r i ends> ;
15 subj:by <https ://montague . net/ father#lord> ;
16 subj:using [:modulus "ec224 ...532"^^xsd:hexBinary; :exponent 65537]
17] log:semantics {
18 <https :// capulet . org/ j u l i e t#ms> foaf:knows
19 <https :// capulet . org/fb#john>, <http ://montague . net/fb#laurence> .
20 } .

Listing 2. Views on Juliet's FOAF pro�le by Freedom Box Laurence, when acting as
Romeo and when acting as Lord Montague

E�ciency -Secondly, whenever the Origin Server needs to act as U1 to a remote
server R it will need to open a new TLS connection to that server using the cer-

ti�cate Cu1 for that user. This could require N parallel connections to the same
server S. Opening TLS connections is somewhat expensive, as it requires expen-
sive asymmetric key cryptographic computations. When N becomes large, this
ine�ciency will be perceived as a serious drawback between two organisations.

Conclusion It is possible for any number of software agents to act AS the user
by creating themselves a public key as described above. This does require a very
strong trust relation to exist between the agent acting as the user and the user
herself, as the two will be mostly indistinguishable in the linked web of trust.
This method also becomes ine�cient the greater the number of di�erent users
an agent is working for.

3.2 Solution 2: Origin Server acting on Behalf of a User

In order to reduce the number of open connections to any server down to a
minimum, it would be useful if the origin server could identify itself directly
when making a request and specify on behalf of which of its users it was acting
on per request so as to be able to make multiple requests on the same TLS
connection. One way would be for the origin server acting as client to simply use
the same public key as the origin server acting as server - that is it could use
the same public key as the one used by the TLS server. It could even use the
same certi�cate. This would make clear to any server it was connecting to, that
it could rely on this server as much as it could on the identity of any resource,
and in particular any WebID pro�les served by that server.

Still, such an agent connecting to a remote service on behalf of one of its
users would then need to identify which user it was acting on behalf of, or the
remote service receiving a request would not know which access control rule to
apply to the requesting origin server. For example in our previous example in
the Romeo and Juliet story we showed how the Capulet family FreedomBox
only shows Juliet as knowing Romeo, when Romeo makes the request on the
resource, but not when the request is made by Romeo's father, lord Montague.
That was an easy access control rule for the Capulet FreedomBox to make when
the request was using the WebID protocol, since there it would know via the
WebID authentication process exactly which identity the user was making the
request as. But if it is the Origin Server connecting to the Capulet (FreedomBox),
identi�ed as their Montague Origin Server, then what representation should the
Capulet FreedomBox return? Should it return the reduced version available to
Lord Montague? Or should it return the more complete version available to
Romeo and his close friends?

The proposal here is for the Origin Server to add to each HTTP request
(made over TLS) an On-Behalf-Of header identifying the user on behalf of which
the request is being made with that user's WebID, as shown below:

GET /juliet/knows HTTP/1.1

Host: capulet.org

On-Behalf-Of: https://montague.net/romeo#me

User-Agent: FreedomBox_FamilyEdition/0.1

Accept: application/rdf+xml,text/turtle,application/xhtml+xml

The Capulet FreedomBox Guard having veri�ed that this request does indeed
come from the origin server of Romeo's pro�le <https://montague.net/romeo>

would then be able to accept that since the requesting server could in any
case act as Romeo whenever it chose to do so, this protocol making exchange
between the Montague and Capulet houses more e�cient without making it less
secure, this be justi�cation enough for it (the Capulet FreedomBox) to serve the
representation that Romeo would have received had he connected to the server
directly. In Section 5 we will argue that this is very similar to the way CORS
deals with access control, namely by adding a header to a request in order to
clarify what agent is making the request.

This On-Behalf-Of header makes it possible for the secretary to open only
one TLS connection to a remote server and be able to specify for each request
on behalf of whom it is making it. The Montague FreedomBox could make a
request to the Capulet Freedom Box On-Behalf-Of Romeo, a few milliseconds
later On-Behalf-Of Lord Montague, and so on. Again as explained in the previous
section it is the responsibility of the Montague FreedomBox to keep the returned
information separate, and act with discretion whenever it is acting on behalf of
one or the other of the users. As such it's role is not unlike the role of Friar
Laurence in the play - dedication to people's private matters requires tact and
discretion.

Limitations Using the same cryptographic key between the server acting as
client and as server risks making the keys available to a wider audience, and
so increases the risk of key compromise. It may be useful if it were possible to
decouple the identity of the agent acting on behalf of another user - the secretary
- from the Origin Server.

3.3 Solution 3: Secretary acting on Behalf of a User

The origin server acting as a client on behalf of a user can then be thought of as
a keeper of secrets for that user. It should know how to distinguish what remote
servers tell it when it is acting on behalf of one user, from what a remote server
tells it when it is acting on behalf of another user. The role of the keeper of
secrets for a person is known as the secretary role - a prestigious role taken on
for example by �gures such as the Secretary of State, Hillary Clinton.

If we now identify the secretary that can act on behalf of a user using a
WebID, we can generalise the protocol somewhat. That is, when an agent - such
as the Montague FreedomBox Laurence with WebID <http://montague.net/fb

#laurence> - authenticates to a remote server it can use its own WebID. This
would allow the secretary to have her own public key, and so to reduce the risk
of her private key being compromised a�ecting the server public key.

But how would the remote server know that it can trust that secretary to
be acting on behalf of a particular user? It can no longer just compare the TLS

keys of the requesting agent to see if it comes from the same Origin Server. We
need to make this relation explicit by use of a special RDF relation provisionally
called :secretary7

The remote server can then verify that the identi�ed agent is the secretary
of the agent he wishes to act on behalf of (as speci�ed in the On-Behalf-Of

header, by dereferencing that user's pro�le and verifying that the user speci�es
the :secretary relation there, as it would if Romeo had the FOAF pro�les as
shown in Listing 3.

1 <https ://montague . net/romeo#m> a foaf:Person;
2 foaf:name "Romeo";
3 :key [:modulus "cb24 ... ed85"^^xsd:hexBinary; :exponent 65537];
4 :secretary <https ://montague . net/fb#laurence>.

Listing 3. Minimal WebID pro�le including a public key and a secretary relation

Cache

Alice's Server

Client cert request

TLS-Light

Service
Guard

WebID

Verifier

Protected

Resource

Bob's

Secretary

Secretary Server

Secretary

Profile

Bob's

Profile

Bob's Server

Secretary

Verif ication

Certificate & private

key verification
HTTPS GET

HTTPS GET

Authorization

TLS setup

5a

Bob

Alice

Alois

Social Graph

5b

7

4

6

1

2

3

exponent

modulus

modulus

exponent

?

?

?

?

Basic WebID Check

Secretary Check

Fig. 1. Extended WebID authentication sequence

The following enumeration describes each authentication step of Figure 1 in
detail but concentrates on the context of access delegation: (1) The secretary
opens a TLS connection with the server of the protected resource. (2) Once TLS
is set up, the HTTP request is sent to the server (e.g. a HTTP GET), with an

7 A object property with a domain and range as foaf:Agent which we will provision-
ally place in the cert: namespace, though it may be more appropriately placed in
the auth: namespace.

additional On-Behalf-Of header, which thereby de�nes the requesting agent as a
secretary and the referred to agent as the principal (3) The guard intercepts this
request, and in turn requests client authentication using TLS session renegotia-
tion. The secretary authenticates as itself by sending a Certi�cate containing a
WebID referring to it. The TLS-Light service veri�es that the secretary really
is in possession of the private key corresponding to the public key sent in the
certi�cate. This is de�ned in the TLS protocol [4]. (4) The guard ask the ver-
i�cation agent to verify the secretary WebID which is named in the certi�cate
(5a). This process is exactly as described in the WebID protocol [11]. The guard
also asks the veri�er agent to check the secretary claim implied by the On-Behalf

-Of header. (5b) The principal agent's relation to the secretary is veri�ed by
dereferencing the principal 's WebID Pro�le, and verifying it responds with a
true to the SPARQL ASK query ASK { ?principal :secretary ?secretary . }

where the ?principal and ?secretary variables have been bound to the correct
URIs. (6) The authentication and veri�cation process having succeeded, the au-
thorization process checking if the principal would get access to the requested
resource. (7) The resource representation can then be returned or not depending
on the access control rules.

4 Implementation and Evaluation

As two real-world examples we describe two di�erent implementations where
WebID delegation is deployed and needed. MyPro�le is a WebID identity service
application and OntoWiki a semantic data wiki.

MyPro�le8 is a web service demonstrating how easy it is to create a WebID
pro�le, and also building up distributed social web applications upon it. Its main
purpose is to provide a uni�ed user account, or simply user pro�le. Currently
these are tied to the MyPro�le project web site, but it has been designed from
the ground up to work with distributed Linked Data, making it then easy to
dissociate the software stack from the MyPro�le project domain name, allowing
it to be deployed on a machine under the user's control, preferably even a device
located within the user physical reach.

In the case of MyPro�le, it is very important to be able to o�er WebID
access delegation, because a single MyPro�le server instance can host multiple
users, and must fetch resources for each user asynchronously in order to be able
to provide a seamless and rapid user experience. To improve user experience
and overall performance, a caching mechanism is used to refresh local copies or
"views" of external data. Due to multiple users coexisting on the same server,
the caching mechanism needs to be able to distinguish views of remote resources
as seen by di�erent users, as they are served by remote servers depending on
their access control and resource �ltering policies.

Let's take for example the following case: Ann and Barry are both local
users on a single MyPro�le server. Charley is an external user with access control

8 http://myprofile-project.org/

http://myprofile-project.org/

policies set up on his private server. When Ann requests to view Charley's pro�le
data, a personalized view of the pro�le is displayed, corresponding to access
control policies by Barry for requests made by Ann. When Barry requests to view
Charley's pro�le, di�erent pro�le data is displayed, since there are di�erent access
control policies for Barry. The caching mechanism needs to be able to cache two
di�erent pro�le views, each corresponding to access control policies speci�c for
the user requesting the data. As the number of users on MyPro�le grows this
has to be done as e�ciently as possible, and so re-using TLS connections where
possible is a laudable aim.

OntoWiki [1] is a web application, which allows publication, exploration as
well as manipulation of arbitrary RDF knowledge bases in distributed scenarios.
We refer to it as a data wiki, since it adopts the wiki philosophy (ease of editing,
tracking of changes, integrated discussions) on the one hand, while focussing on
structured information on the other hand. Furthermore OntoWiki is an adapt-
able application framework, which supports the creation of Linked Data based
applications on the web [5]. In addition to the usual features of wikis, OntoWiki
provides a sophisticated extension system, such that it can be adapted for a va-
riety of use-cases. Although the wikis usually enable anyone to edit everything,
numerous real-world applications require access-control mechanisms. OntoWiki
has built-in support for authorization on graph and action level. Furthermore
several authentication protocols can be employed, including amongst others the
WebID protocol.

A �rst use-case for WebID access delegation within OntoWiki arises from an
important functionality within OntoWiki, namely import of external data. Since
WebID pro�les can contain personal information that is in need of protection,
access to such data should be restricted with the WebID protocol. Although
a user may (or may not in the case of a periodically executed automatic syn-
chronization process) initiate the import procedure manually via the OntoWiki
user interface, the actual fetching is done in the background. An OntoWiki in-
stance does not know of any private keys of users of the system. Thus the system
is not able to use that information when requesting data. With WebID access
delegation though, the pro�le can be fetched on behalf of the user instead.

Another use-case where access delegation can be employed is within the Se-
mantic Pingback protocol [12]. With Semantic Pingback owners of resources can
be noti�ed when for example a link to such a resource is created elsewhere on the
web. In order to protect the protocol against spam attacks, a Pingback server will
fetch the desired resource and check, whether the stated link is indeed contained
in the data. The source resource that links to the target resource and thus is
fetched by a Pingback server might be access restricted, for example in a scenario
where a friending process is initiated [10]. For privacy reasons the owner of the
WebID pro�les will very likely hide the triples in question (e.g. foaf:knows) on
anonymous access attempts. With WebID access delegation again, the resources
can be fetched by the Pingback server on behalf of the resource owner.

This will require some further changes to the delegation protocol discussed
up to now. Speci�cally the :secretary relation currently does not distinguish

what kind of responsibilities the principal wishes to give to the secretary. It
is currently assumed that the secretary has full rights. For ontowiki knowing
the social network may be all that is needed to make access control decisions.
Full delegation powers may not be needed. The ability to describe more limited
secretary relations could be very helpful here.

5 Related Work

OAuth 2.0 [3] is the latest version of the OAuth protocol, which is being pre-
sented as an access delegation protocol, enabling users to grant access to third-
party services to their personal resources, instead of sharing their passwords with
those third-party services. OAuth includes two main parts: obtaining an access
token by asking the resource owner (i.e. the user) to grant access, and then using
the tokens to access protected resources. The advantage here is that Ann only
had to use her Twitter credentials to log into Flattr. However, the disadvantage
is that Flattr requires an existing trust relationship with Twitter, thus limiting
the number of supported services. Even if OAuth provides authentication as a
by-product of having the resource owner authorize a third-party client to her
resource server, its main focus is on resource authorization rather than on feder-
ated identity. The conclusion is that OAuth is used to provide access for external
services to local user resources without disclosing the user's credentials. Or in
other words: OAuth is used to allow an agent to request a users resources while
WebID delegation is used to allow an agent to request resources the user could
request herself.

Cross Origin Resource Sharing (CORS) In this paper we proposed to add an On-

Behalf-Of header to each HTTP request made by a secretary in order to be able
to identify the principal she is working for in that particular request. This is quite
a major semantic addition to HTTP, but for which there is a widely adopted
precedent, namely CORS9, the Cross Origin Resource Sharing speci�cation at
the W3C. CORS identi�es the remote principal with an Origin header, and uses
any HTTP authentication method to identify the secretary which is the browser.

Let us look at this in more detail. CORS has two agents, one acting on behalf
of the other, and these are: (1) The Browser: it takes the role of the secretary
as it is acting on behalf of JavaScript agents - the principals. (2) JavaScript
code: hosted on the internet and identi�ed by the Origin Server that hosted the
JavaScript. This JavaScript agent requests resources from the Browser, but it is
unable to do it directly.

The use cases for CORS are slightly di�erent from the ones for our delega-
tion proposal. In CORS the browser is using its own identity credentials when
connecting to remote servers (e.g. a bank), as it needs to alert the remote service
that the request originates from a particular agent. The browser also needs to
make sure the remote server understands this, especially when authentication is
required, to allow the remote server to evaluate the strength of the JavaScript

9 http://www.w3.org/TR/cors/

http://www.w3.org/TR/cors/

trust relation. In the Section 3 use cases, the remote site trusts the principal, but
may not be aware of the secretary. In our proposal, the identi�cation of the agent
in the On-Behalf-Of header is much more precise. Combined with the ability of
the secretary to also identify herself with a WebID, it builds an explicit trust
relation between the principal and the secretary. The vagueness of the Origin

identity of the principal in CORS makes a lot of this more di�cult.
It is a topic of further research to evaluate in which circumstances it is impor-

tant for the secretary to also make sure that the remote server is aware that the
connection being made is On-Behalf-Of the speci�ed principal. For otherwise it
is possible that the secretary herself be made liable for the actions she is making
on behalf of her principal, especially were she to make PUT, POST or DELETE re-
quests. The CORS protocol determines this by requiring an initial HEAD request
to a resource to be made, which will determine whether the server understands
CORS. With the help of TLS the server hosting the remote resource could have
a WebID Pro�le describing it to be an understander of the On-Behalf-Of header,
making the protocol a lot more e�cient and secure once more.

6 Conclusion and Future Work

In this paper we discussed di�erent ways in which an agent, such as a Social
Web application, can act on behalf of a user and request as well as manipulate
resources on the Web in the name this user. Our proposal for supporting such
a communication schema involves an extension to the WebID protocol, which
allows for delegation of access authorization from one agent to another agent,
both identi�ed by their WebID. The technical solution for this concept annotates
HTTP requests by adding the On-Behalf-Of header �eld which refers to the
WebID of the user in whose name the agent acts. This distinguish the identities
of the user and the agent and allows for creation of policy descriptions which use
both WebIDs to specify the relations between the agent and the user in order to
setup the access rules for this agent. Since the protocol footprint is minimal, the
main information entropy to decide whether an agent has the right to request
a speci�c resource or not is available as part of the content of a WebID pro�le
which can be requested as Linked Data. We believe that such an shift of the
entropy from a protocol endpoint (such as in OAuth) to a machine readable
document is a crucial feature of Linked Data in general and WebID in detail.

However, at this point we postpone the answer to the question of how we
should describe the access control rules in a users WebID pro�le. There already
exists �rst attempts from the Linked Data / Semantic Web and the Read Write
Web communities such as the WebAccessControl vocabulary10, dgFOAF [8] as
well as di�erent projects on policy creation and management [7]. In our future
work we will try to close the gap between the policy and access control vocab-
ularies on the one hand and WebID authentication on the other hand. A rough
abstract in which direction this should be elaborated is presented in Listing 2
and we hope that we can sensitize others to take up this challenge too.

10 http://www.w3.org/wiki/WebAccessControl

http://www.w3.org/wiki/WebAccessControl

References

1. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki - A Tool for
Social, Semantic Collaboration. In Proceedings of the ISWC2006, volume 4273 of
LNCS. Springer, 2006.

2. A. Barth. The Web Origin Concept. Technical report, IETF, 2011. http://tools.
ietf.org/html/rfc6454.

3. Ed. D. Hardt. The OAuth 2.0 Authorization Framework. Technical report, IETF,
2012. http://tools.ietf.org/html/draft-ietf-oauth-v2-31.

4. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol � Version
1.2. Technical report, IETF, 2008.

5. Norman Heino, Sebastian Dietzold, Michael Martin, and Sören Auer. Developing
Semantic Web Applications with the OntoWiki Framework. In Networked Knowl-
edge - Networked Media, volume 221, pages 61�77. Springer, 2009.

6. P. Ho�man and J. Schlyter. The DNS-Based Authentication of Named En-
tities (DANE) Transport Layer Security (TLS) Protocol: TLSA. Internet-
draft (expires: December 16, 2012), IETF, 2012. http://www.ietf.org/id/

draft-ietf-dane-protocol-23.txt.
7. Lalana Kagal, Tim Finin, and James Hendler, editors. Proceedings of the Semantic

Web and Policy Workshop, held in conjunction with the 4th International Semantic
Web Conference, 7 November, 2005, Galway Ireland, 2005.

8. Felix Schwagereit, Ansgar Scherp, and Ste�en Staab. Representing Distributed
Groups with dgFOAF. In Proceedings of the (ESWC2010), June 2010.

9. Manu Sporny, Toby Inkster, Henry Story, Bruno Harbulot, and Reto Bachmann-
Gmür. WebID 1.0: Web Identi�cation and Discovery. Editor's draft, W3C, 2011.

10. Henry Story, Andrei Sambra, and Sebastian Tramp. Friending On The Social Web.
In Federated Social Web Europe 2011, 2011.

11. Henry Story Story, Bruno Harbulot, Ian Jacobi, and Mike Jones. FOAF+SSL:
RESTful Authentication for the Social Web. In Proceedings of SPOT2009, 2009.

12. Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, and Sören Auer. Weaving
a Social Data Web with Semantic Pingback. In Proceedings of the EKAW 2010,
volume 6317 of LNAI. Springer, 2010.

http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://www.ietf.org/id/draft-ietf-dane-protocol-23.txt
http://www.ietf.org/id/draft-ietf-dane-protocol-23.txt

	Extending the WebID Protocol with Access Delegation

