Sebastian Tramp 
  
Henry Story 
email: henry.story@bblfish.net
  
Andrei Sambra 
email: andrei.sambra@it-sudparis.eu
  
Philipp Frischmuth 
  
Michael Martin 
  
Sören Auer 
  
Extending the WebID Protocol with Access Delegation

The WebID protocol enables the global identication and authentication of agents in a distributed manner by combining asymmetric cryptography and Linked Data. In order to decide whether access should be granted or denied to a particular WebID, the authenticating web server may need to retrieve other proles and linked resources to work out e.g. if the requesting agent is member of an authorized group. If these resources are required to be publicly available for the server to access it, then this would be a major privacy limitation on a linked Social Network. In this paper we explore dierent ways in which an agent can act as a user and we propose an extension to the WebID protocol which allows for delegation of access authorization from a WebID to a third party, e.g. allowing a server to be able to act on behalf of its users. This extends the range of application scenarios where WebID authentication can be eciently deployed while increasing privacy.

Introduction

The World Wide Web is a peer to peer communication system designed from the outset to work in a global space, between agents distributed around the world and acting in parallel, with no center of control, in a space where new agents can at any point join and there is no complete overview of the whole system. These agents need know nothing of each other up to the point of their interaction. This is the force that leads the web to its declarative functional architecture, with its emphasis on naming and a logic of unalterability of the meaning of names (URIs).

Agents on the web communicate with each other through a limited number of actions: by making requests for resources (GET), by creating resources (POST or PUT), or even by deleting resources. Creation or deletion of resources usually require authentication of the agent making the request, and so in many cases do requests for information.

The WebID protocol enables the global identication of agents using asymmetric cryptography in a way that ts cleanly with this architecture: namely in such a way that agents can verify each others identity without having had any previous interactions and in such a way as to allow trust to build up in a decentralized manner.

A WebID is a URI that refers to an agent -person, robot, group or other thing that can have intentions. The WebID should be a URI which when dereferenced returns a representation whose description uniquely identies the agent as the controller of a public key [START_REF] Sporny | WebID 1.0: Web Identication and Discovery[END_REF][START_REF] Story | FOAF+SSL: RESTful Authentication for the Social Web[END_REF] The WebID protocol is used currently mostly for client authentication 4 . It is worth noting that the host serving the WebID proles controls the identity of every agent whose URI is within that server's namespace. This service is known as the origin server [START_REF] Barth | The Web Origin Concept[END_REF]. It is the origin of all resources served by it.

We can easily think of the origin server as not only able to respond to requests, but also as an agent able to make requests. Indeed WebID authentication requires the server to make WebID prole requests to other servers in order to verify the identity of agents making a request to it. The WebID specication describes this task as being accomplished by a separate agent, the WebID verier -which could indeed be done by another service on the web (WebID proxy authentication servers). But it can also be so closely tied to the web service that it would be natural to think of it as part of that same service. The WebID prole furthermore could be served by the same agent as the one making the request, in which case we have a minimal case of a peer to peer communication. Note that fetching a WebID prole for WebID authentication should be done anonymously, for fear of authentication deadlocks 5 .

Things get more interesting in the authorization space. Consider a very natural application of WebID: allowing friends of one's friends access to some resources. This authorization rule will require the web server to fetch each of its users' friends proles, in order to build up the list of authorised users. But there is a privacy issue involved here: not everyone wants to make all of their social network publicly visible, and some may not want to make any of it publicly visible. Those people may then protect their FOAF prole with access control rules such as only allowing friends of their friends access to it. How can a server that needs access to these FOAF proles in order to apply its own access control rules get access to the information? Would the server itself need to be listed as 4 Server authentication using IETF DANE follows much the same logic, except that the lookup for the identity is not done using the HTTP protocol but DNSSEC [START_REF] Homan | The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. Internetdraft[END_REF]. 5 For example one can imagine an agent S with prole Ps requesting a resource on server R which requires authentication. S would send R its certicate, thereby requiring R to dereference a friend of a friend by each of the users friends? Should the server take on the identity of the user it is fetching resources for? How would it be able to do so? What other solutions are there? These are the questions we will try to answer in this paper. The rest of the paper is organized in the following way: Section 2 describes preliminary requirements which we had in mind for our solution, Section 3 goes into detail with the WebID specication and adds support for authorization delegation, in Section 4 we describe our reference implementations based on two web applications which is followed by Section 5 where we compare our proposal with two other protocols, namely CORS and OAuth. Finally, we conclude our work in Section 6 and give directions for future work.

Preliminary Requirements

In order to make discussion of the problems easier, we distinguish the following roles in the access delegation process:

1. The secretary acts in the name of another agent, the principal. 2. The principal is the agent who has a secretary that acts on its behalf.

The solution we propose will be based on the following general principles: Distinguish secretary from principal -Identity should as far as possible be transparent. A secretary should have it's own WebID. The motivation for this is: (1) It allows resource guards to permit or deny requests based on this information.

(2) Secretary that have many principals do not need to switch their certicate between requests. (3) It makes it possible to describe the relation between a principal and its secretary using Linked Data.

Easy to use -The one and only place to describe which secretary are allowed to operate for a principal should be the principal's WebID prole. To grant delegated access to a secretary agent, no other actions than adding 1 triple to the WebID prole should be needed. Retracting this grant should involve simply removing it from the WebID prole.

Minimal protocol footprint -By using HTTP and working declaratively by placing statements in documents, we make adoption of the delegation easier and avoid complex protocol developments. We believe that this is a crucial feature of Linked Data in general.

Eciency -Finally, the proposed solution should scale with growing number of users and connections. In our context this means that an Social Web application should be able to act in the name of thousands of users. This section is organized in subsections which build up step by step to the proposed protocol, adding and validating the need at each step for the next one, the nal proposed protocol satisfying the previous principles. ] .

Listing 1. Prole allowing three dierent agents to act as Romeo Any server requiring authentication of an agent using WebID must implicitly trust the origin server [START_REF] Barth | The Web Origin Concept[END_REF] hosting the WebID prole, since the prole hosting server can change any information in the prole.

When the user owns the origin server and there is a one-to-one relation between the two, as it is the case in a personal FreedomBox 6 , then the origin server is just an extension of the user, and in that case trusting the server is the same as trusting the user.

It should be noted that each device can still be distinguished by servers in case of a problem by logging the exact public key that was used to connect to a service. It should be possible then to track down which device's private key had been compromised in case of unusual behaviour .

Things become more interesting when an origin server agent A is serving a number of dierent proles P 1 . . . P n each identifying respectively users U 1 . . . U n and needs to act on behalf of each of these users. This would be the situation for company servers, government agencies, educational institutions, charities, football clubs, etc. This brings up two issues that need to be taken into account, an issue of data perspective and an issue of eciency.

Keeping views distinct -First whenever A connects as U 1 to a remote resource R it has to place the data received in a separate graph from the one it stores public non authenticated data in, and to the one it stores a representation to the same resource R seen when connected as the dierent user U 2 . This is because the resource may return dierent representations depending on who is connecting to it -one representation for close friends of the owner of R perhaps, and one for more distant ones. This can be illustrated using N3 graphs, by specifying a relation between a view on a resource (using a yet to be settled on vocabulary), and a graph which is the log:semantics of that view (cf. Listing 2). It is very important that the agent receiving information from dierent users not merge the information that was destined to dierent users, or else information leakage will severely reduce the trust other agents have in that server A. This requires carefully keeping identied information that was aimed at dierent users separate, perhaps by creating dierent graph stores: one for public -non authenticatedinformation, and one graph store for each user the server needs to authenticate as. Eciency -Secondly, whenever the Origin Server needs to act as U 1 to a remote server R it will need to open a new TLS connection to that server using the cer-ticate C u1 for that user. This could require N parallel connections to the same server S. Opening TLS connections is somewhat expensive, as it requires expensive asymmetric key cryptographic computations. When N becomes large, this ineciency will be perceived as a serious drawback between two organisations. Conclusion It is possible for any number of software agents to act AS the user by creating themselves a public key as described above. This does require a very strong trust relation to exist between the agent acting as the user and the user herself, as the two will be mostly indistinguishable in the linked web of trust. This method also becomes inecient the greater the number of dierent users an agent is working for. In order to reduce the number of open connections to any server down to a minimum, it would be useful if the origin server could identify itself directly when making a request and specify on behalf of which of its users it was acting on per request so as to be able to make multiple requests on the same TLS connection. One way would be for the origin server acting as client to simply use the same public key as the origin server acting as server -that is it could use the same public key as the one used by the TLS server. It could even use the same certicate. This would make clear to any server it was connecting to, that it could rely on this server as much as it could on the identity of any resource, and in particular any WebID proles served by that server. Still, such an agent connecting to a remote service on behalf of one of its users would then need to identify which user it was acting on behalf of, or the remote service receiving a request would not know which access control rule to apply to the requesting origin server. For example in our previous example in the Romeo and Juliet story we showed how the Capulet family FreedomBox only shows Juliet as knowing Romeo, when Romeo makes the request on the resource, but not when the request is made by Romeo's father, lord Montague. That was an easy access control rule for the Capulet FreedomBox to make when the request was using the WebID protocol, since there it would know via the WebID authentication process exactly which identity the user was making the request as. But if it is the Origin Server connecting to the Capulet (FreedomBox), identied as their Montague Origin Server, then what representation should the Capulet FreedomBox return? Should it return the reduced version available to Lord Montague? Or should it return the more complete version available to Romeo and his close friends?

The proposal here is for the Origin Server to add to each HTTP request (made over TLS) an On-Behalf-Of header identifying the user on behalf of which the request is being made with that user's WebID, as shown below: The Capulet FreedomBox Guard having veried that this request does indeed come from the origin server of Romeo's prole <https://montague.net/romeo> would then be able to accept that since the requesting server could in any case act as Romeo whenever it chose to do so, this protocol making exchange between the Montague and Capulet houses more ecient without making it less secure, this be justication enough for it (the Capulet FreedomBox) to serve the representation that Romeo would have received had he connected to the server directly. In Section 5 we will argue that this is very similar to the way CORS deals with access control, namely by adding a header to a request in order to clarify what agent is making the request. This On-Behalf-Of header makes it possible for the secretary to open only one TLS connection to a remote server and be able to specify for each request on behalf of whom it is making it. The Montague FreedomBox could make a request to the Capulet Freedom Box On-Behalf-Of Romeo, a few milliseconds later On-Behalf-Of Lord Montague, and so on. Again as explained in the previous section it is the responsibility of the Montague FreedomBox to keep the returned information separate, and act with discretion whenever it is acting on behalf of one or the other of the users. As such it's role is not unlike the role of Friar Laurence in the play -dedication to people's private matters requires tact and discretion.

Limitations Using the same cryptographic key between the server acting as client and as server risks making the keys available to a wider audience, and so increases the risk of key compromise. It may be useful if it were possible to decouple the identity of the agent acting on behalf of another user -the secretary -from the Origin Server.

Solution 3: Secretary acting on Behalf of a User

The origin server acting as a client on behalf of a user can then be thought of as a keeper of secrets for that user. It should know how to distinguish what remote servers tell it when it is acting on behalf of one user, from what a remote server tells it when it is acting on behalf of another user. The role of the keeper of secrets for a person is known as the secretary role -a prestigious role taken on for example by gures such as the Secretary of State, Hillary Clinton.

If we now identify the secretary that can act on behalf of a user using a WebID, we can generalise the protocol somewhat. That is, when an agent -such as the Montague FreedomBox Laurence with WebID <http://montague.net/fb #laurence> -authenticates to a remote server it can use its own WebID. This would allow the secretary to have her own public key, and so to reduce the risk of her private key being compromised aecting the server public key.

But how would the remote server know that it can trust that secretary to be acting on behalf of a particular user? It can no longer just compare the TLS keys of the requesting agent to see if it comes from the same Origin Server. We need to make this relation explicit by use of a special RDF relation provisionally called :secretary 7

The remote server can then verify that the identied agent is the secretary of the agent he wishes to act on behalf of (as specied in the On-Behalf-Of header, by dereferencing that user's prole and verifying that the user species the :secretary relation there, as it would if Romeo had the FOAF proles as shown in Listing 3. <https ://montague. net/romeo#m> a foaf : Person ; foaf : name " Romeo ";

: key [ : modulus " cb24 ... ed85 " ^^xsd : hexBinary ; : exponent 65537 ];

: secretary <https ://montague. net/fb#laurence>. The following enumeration describes each authentication step of Figure 1 in detail but concentrates on the context of access delegation: (1) The secretary opens a TLS connection with the server of the protected resource. (2) Once TLS is set up, the HTTP request is sent to the server (e.g. a HTTP GET), with an additional On-Behalf-Of header, which thereby denes the requesting agent as a secretary and the referred to agent as the principal (3) The guard intercepts this request, and in turn requests client authentication using TLS session renegotiation. The secretary authenticates as itself by sending a Certicate containing a WebID referring to it. The TLS-Light service veries that the secretary really is in possession of the private key corresponding to the public key sent in the certicate. This is dened in the TLS protocol [START_REF] Dierks | The Transport Layer Security (TLS) Protocol Version 1.2[END_REF]. [START_REF] Dierks | The Transport Layer Security (TLS) Protocol Version 1.2[END_REF] The guard ask the verication agent to verify the secretary WebID which is named in the certicate (5a). This process is exactly as described in the WebID protocol [START_REF] Story | FOAF+SSL: RESTful Authentication for the Social Web[END_REF]. The guard also asks the verier agent to check the secretary claim implied by the On-Behalf -Of header. (5b) The principal agent's relation to the secretary is veried by dereferencing the principal's WebID Prole, and verifying it responds with a true to the SPARQL ASK query ASK { ?principal :secretary ?secretary . } where the ?principal and ?secretary variables have been bound to the correct URIs. ( 6) The authentication and verication process having succeeded, the authorization process checking if the principal would get access to the requested resource. [START_REF] Kagal | conjunction with the 4th International Semantic Web Conference[END_REF] The resource representation can then be returned or not depending on the access control rules.

Implementation and Evaluation

As two real-world examples we describe two dierent implementations where WebID delegation is deployed and needed. MyProle is a WebID identity service application and OntoWiki a semantic data wiki.

MyProle8 is a web service demonstrating how easy it is to create a WebID prole, and also building up distributed social web applications upon it. Its main purpose is to provide a unied user account, or simply user prole. Currently these are tied to the MyProle project web site, but it has been designed from the ground up to work with distributed Linked Data, making it then easy to dissociate the software stack from the MyProle project domain name, allowing it to be deployed on a machine under the user's control, preferably even a device located within the user physical reach.

In the case of MyProle, it is very important to be able to oer WebID access delegation, because a single MyProle server instance can host multiple users, and must fetch resources for each user asynchronously in order to be able to provide a seamless and rapid user experience. To improve user experience and overall performance, a caching mechanism is used to refresh local copies or "views" of external data. Due to multiple users coexisting on the same server, the caching mechanism needs to be able to distinguish views of remote resources as seen by dierent users, as they are served by remote servers depending on their access control and resource ltering policies.

Let's take for example the following case: Ann and Barry are both local users on a single MyProle server. Charley is an external user with access control policies set up on his private server. When Ann requests to view Charley's prole data, a personalized view of the prole is displayed, corresponding to access control policies by Barry for requests made by Ann. When Barry requests to view Charley's prole, dierent prole data is displayed, since there are dierent access control policies for Barry. The caching mechanism needs to be able to cache two dierent prole views, each corresponding to access control policies specic for the user requesting the data. As the number of users on MyProle grows this has to be done as eciently as possible, and so re-using TLS connections where possible is a laudable aim.

OntoWiki [START_REF] Auer | OntoWiki -A Tool for Social, Semantic Collaboration[END_REF] is a web application, which allows publication, exploration as well as manipulation of arbitrary RDF knowledge bases in distributed scenarios. We refer to it as a data wiki, since it adopts the wiki philosophy (ease of editing, tracking of changes, integrated discussions) on the one hand, while focussing on structured information on the other hand. Furthermore OntoWiki is an adaptable application framework, which supports the creation of Linked Data based applications on the web [START_REF] Heino | Developing Semantic Web Applications with the OntoWiki Framework[END_REF]. In addition to the usual features of wikis, OntoWiki provides a sophisticated extension system, such that it can be adapted for a variety of use-cases. Although the wikis usually enable anyone to edit everything, numerous real-world applications require access-control mechanisms. OntoWiki has built-in support for authorization on graph and action level. Furthermore several authentication protocols can be employed, including amongst others the WebID protocol.

A rst use-case for WebID access delegation within OntoWiki arises from an important functionality within OntoWiki, namely import of external data. Since WebID proles can contain personal information that is in need of protection, access to such data should be restricted with the WebID protocol. Although a user may (or may not in the case of a periodically executed automatic synchronization process) initiate the import procedure manually via the OntoWiki user interface, the actual fetching is done in the background. An OntoWiki instance does not know of any private keys of users of the system. Thus the system is not able to use that information when requesting data. With WebID access delegation though, the prole can be fetched on behalf of the user instead.

Another use-case where access delegation can be employed is within the Semantic Pingback protocol [START_REF] Tramp | Weaving a Social Data Web with Semantic Pingback[END_REF]. With Semantic Pingback owners of resources can be notied when for example a link to such a resource is created elsewhere on the web. In order to protect the protocol against spam attacks, a Pingback server will fetch the desired resource and check, whether the stated link is indeed contained in the data. The source resource that links to the target resource and thus is fetched by a Pingback server might be access restricted, for example in a scenario where a friending process is initiated [START_REF] Story | Friending On The Social Web[END_REF]. For privacy reasons the owner of the WebID proles will very likely hide the triples in question (e.g. foaf:knows) on anonymous access attempts. With WebID access delegation again, the resources can be fetched by the Pingback server on behalf of the resource owner.

This will require some further changes to the delegation protocol discussed up to now. Specically the :secretary relation currently does not distinguish what kind of responsibilities the principal wishes to give to the secretary. It is currently assumed that the secretary has full rights. For ontowiki knowing the social network may be all that is needed to make access control decisions. Full delegation powers may not be needed. The ability to describe more limited secretary relations could be very helpful here.

Related Work

OAuth 2.0 [START_REF] Hardt | The OAuth 2.0 Authorization Framework[END_REF] is the latest version of the OAuth protocol, which is being presented as an access delegation protocol, enabling users to grant access to thirdparty services to their personal resources, instead of sharing their passwords with those third-party services. OAuth includes two main parts: obtaining an access token by asking the resource owner (i.e. the user) to grant access, and then using the tokens to access protected resources. The advantage here is that Ann only had to use her Twitter credentials to log into Flattr. However, the disadvantage is that Flattr requires an existing trust relationship with Twitter, thus limiting the number of supported services. Even if OAuth provides authentication as a by-product of having the resource owner authorize a third-party client to her resource server, its main focus is on resource authorization rather than on federated identity. The conclusion is that OAuth is used to provide access for external services to local user resources without disclosing the user's credentials. Or in other words: OAuth is used to allow an agent to request a users resources while WebID delegation is used to allow an agent to request resources the user could request herself.

Cross Origin Resource Sharing (CORS) In this paper we proposed to add an On-Behalf-Of header to each HTTP request made by a secretary in order to be able to identify the principal she is working for in that particular request. This is quite a major semantic addition to HTTP, but for which there is a widely adopted precedent, namely CORS 9 , the Cross Origin Resource Sharing specication at the W3C. CORS identies the remote principal with an Origin header, and uses any HTTP authentication method to identify the secretary which is the browser.

Let us look at this in more detail. CORS has two agents, one acting on behalf of the other, and these are: (1) The Browser: it takes the role of the secretary as it is acting on behalf of JavaScript agents -the principals. (2) JavaScript code: hosted on the internet and identied by the Origin Server that hosted the JavaScript. This JavaScript agent requests resources from the Browser, but it is unable to do it directly.

The use cases for CORS are slightly dierent from the ones for our delegation proposal. In CORS the browser is using its own identity credentials when connecting to remote servers (e.g. a bank), as it needs to alert the remote service that the request originates from a particular agent. The browser also needs to make sure the remote server understands this, especially when authentication is required, to allow the remote server to evaluate the strength of the JavaScript trust relation. In the Section 3 use cases, the remote site trusts the principal, but may not be aware of the secretary. In our proposal, the identication of the agent in the On-Behalf-Of header is much more precise. Combined with the ability of the secretary to also identify herself with a WebID, it builds an explicit trust relation between the principal and the secretary. The vagueness of the Origin identity of the principal in CORS makes a lot of this more dicult.

It is a topic of further research to evaluate in which circumstances it is important for the secretary to also make sure that the remote server is aware that the connection being made is On-Behalf-Of the specied principal. For otherwise it is possible that the secretary herself be made liable for the actions she is making on behalf of her principal, especially were she to make PUT, POST or DELETE requests. The CORS protocol determines this by requiring an initial HEAD request to a resource to be made, which will determine whether the server understands CORS. With the help of TLS the server hosting the remote resource could have a WebID Prole describing it to be an understander of the On-Behalf-Of header, making the protocol a lot more ecient and secure once more.

Conclusion and Future Work

In this paper we discussed dierent ways in which an agent, such as a Social Web application, can act on behalf of a user and request as well as manipulate resources on the Web in the name this user. Our proposal for supporting such a communication schema involves an extension to the WebID protocol, which allows for delegation of access authorization from one agent to another agent, both identied by their WebID. The technical solution for this concept annotates HTTP requests by adding the On-Behalf-Of header eld which refers to the WebID of the user in whose name the agent acts. This distinguish the identities of the user and the agent and allows for creation of policy descriptions which use both WebIDs to specify the relations between the agent and the user in order to setup the access rules for this agent. Since the protocol footprint is minimal, the main information entropy to decide whether an agent has the right to request a specic resource or not is available as part of the content of a WebID prole which can be requested as Linked Data. We believe that such an shift of the entropy from a protocol endpoint (such as in OAuth) to a machine readable document is a crucial feature of Linked Data in general and WebID in detail.

However, at this point we postpone the answer to the question of how we should describe the access control rules in a users WebID prole. There already exists rst attempts from the Linked Data / Semantic Web and the Read Write Web communities such as the WebAccessControl vocabulary10 , dg FOAF [START_REF] Schwagereit | Representing Distributed Groups with dgFOAF[END_REF] as well as dierent projects on policy creation and management [START_REF] Kagal | conjunction with the 4th International Semantic Web Conference[END_REF]. In our future work we will try to close the gap between the policy and access control vocabularies on the one hand and WebID authentication on the other hand. A rough abstract in which direction this should be elaborated is presented in Listing 2 and we hope that we can sensitize others to take up this challenge too.

3 . 2

 32 Solution 2: Origin Server acting on Behalf of a User

Listing 3 .Fig. 1 .

 31 Fig. 1. Extended WebID authentication sequence

  S's prole Ps in order to verify the WebID. If Ps itself requires authentication of R and if R sends a certicate containing a WebID with its prole Pr, and if Pr itself requires authentication then it looks like we have a deadlock.

  The simplest solution for any user agent A wishing to act as the user U , is for it to create a public/private key pair, and with the public key thus generated create a certicate C u with U 's WebID in the Subject Alternative Name position and add the public key to the user U 's prole P u (seeListing 1). Having done this the agent A can then connect using the certicate C u and its associated private key, to any service it wishes to, when it wants to work for/as the user U . This has the advantage of requiring no change to the WebID protocol. It does give the agent A all powers of the user U and so this type of privilege should be limited to agents which are either extensions of U or ones U can or must fully trust anyway.

	3.1	Solution 1: Acting as the user
	<http ://montague. net/romeo#m> a foaf : Person ; foaf : name " Romeo ";
	cert : key [ a cert : RSAPublicKey ;
	rdfs : label " August 2 2012 at 10 am CET , in Firefox laptop browser ";
	cert : modulus " cb24 ... ed85 " ^^xsd : hexBinary ; cert : exponent 65537;
	],	
	[ a cert : RSAPublicKey ;
		rdfs : label " August 2, 2012 at 14:30 CET by Montague Family FB Laurence ";
		cert : modulus "2 e34 ... aa24 " ^^xsd : hexBinary ; cert : exponent 65537;
	],	
	[ a cert : RSAPublicKey ;
		rdfs : label " August 10 , 2012 at 14:30 Rome time with Nokia Cell Phone ";

cert : modulus " 77 e5 ... c342 " ^^xsd : hexBinary ; cert : exponent 65537;

  Views on Juliet's FOAF prole by Freedom Box Laurence, when acting as Romeo and when acting as Lord Montague

	[ a subj : View ; subj : of <https :// capulet . org/ juliet /friends> ; subj : by <https ://montague. net/romeo#me> ; subj : using [ : modulus "2 e34 ... aa24 " ^^xsd : hexBinary ; : exponent 65537 ]
	] log : semantics { <https :// capulet . org/ juliet#ms> foaf : knows <https ://montague. net/romeo#m>, <https :// capulet . org/fb#john>, <http ://montague. net/fb#laurence> . } .
	# view that the F .B Laurence has as Lord Capulet of Juliet 's friends
	# notice that the relationship of Juliet knowing Romoe is missing here
	[ a subj : View ; subj : of <https :// capulet . org/ juliet /friends> ; subj : by <https ://montague. net/father#lord> ; subj : using [ : modulus " ec224 ...532 " ^^xsd : hexBinary ; : exponent 65537 ]
	] log : semantics { <https :// capulet . org/ juliet#ms> foaf : knows <https :// capulet . org/fb#john>, <http ://montague. net/fb#laurence> . } .
	Listing 2.

# view that the F .B Laurence has as Romeo of Juliet 's friends

http://www.freedomboxfoundation.org/

A object property with a domain and range as foaf:Agent which we will provisionally place in the cert: namespace, though it may be more appropriately placed in the auth: namespace.

http://myprofile-project.org/

http://www.w3.org/TR/cors/

http://www.w3.org/wiki/WebAccessControl