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Abstract—In this paper, we present new fuzzy connectives
that allow to specify an order to the considered operation. These
operators are generalization of usual fuzzy connectives, i.e.
triangular norms and triangular conorms. A potential use of the
proposed operators consists in assessing to what extent several
values are high or low in unconstrained fuzzy sets is given. We
also present weighted k-order fuzzy connectives, where weights
are associated to different subsets of criteria. Finally, we show
that these fuzzy connectives can be used from a set-theoretic
point of view, enabling to define new kinds of fuzzy intersection
and union.

I. INTRODUCTION

The aggregation of information is an important issue of
intelligent decision systems design. In such systems, the data
to be analyzed often presents some kind of imprecision, so
that tools taking into account of this lack of knowledge are
needed. To this aim, numerous aggregation operators were
introduced in the last decades. Beyond them, one can find
the mean and its derivatives (e.g. quasi-arithmetic means,
OWA operators), fuzzy integrals, or the triangular norms, see
[1] for a large survey. Here, we consider the problem of
taking a decision while having some uncertainty regarding
the information at hand. In particular, we are interested
in defining measures which evaluate the degree to which
statements are satisfied, and how many. Most of works in
this area are based on quantifiers the user must specify [2],
[3], [4]. Our proposition is to allow the user to only specify
the number of required satisfactions or dissatisfactions. A
natural way to do this is to use a convenient combination
of conjunctive and disjunctive operators such as triangular
norms.

The paper is organized as follows. In Section II, we recall
some fundamentals of triangular norms and the disjunctive
k-order operator, namely the k-order fuzzy OR. We then
propose its dual conjunctive operator, called the k-order
fuzzy AND, and present how it can be used to seek for high or
low values in a set of values representing satisfaction degrees
in Section III. The derived weighted k-order connectives are
proposed in Section IV. Operations on fuzzy sets based on
the new operators are presented in Section V. Concluding
remarks and perspectives are given in Section VI.

II. PRELIMINARIES

A. Triangular Norms

The family of triangular norms, first introduced by Menger
[5] to generalize the triangle inequality of ordinary metric
spaces, has been used to characterize the generalized mul-
tivalued logic AND and OR operations in lattices, the con-
junction and disjunction in fuzzy logic. We briefly introduce
these operators in the sequel. First, we shall split this family
into two members: the triangular norms (t-norms for short)
and triangular conorms (t-conorms for short), corresponding
to intersection/conjunction, and union/disjunction operations,
respectively. A t-norm is a function > : [0, 1]2 → [0, 1]
satisfying: for any x, y and z in [0, 1]

(T1) commutativity: >(x, y) = >(y, x),
(T2) monotonicity: >(x, y) ≥ >(x, z) if y ≥ z,
(T3) associativity: >(x,>(y, z)) = >(>(x, y), z),
(T4) 1 as neutral element: >(x, 1) = x.

The associativity (T3) allows to extend a t-norm > to
a n-ary operator. Another representation theorem allows to
compute n-ary t-norms in an easy and efficient way thanks
to additive or multiplicative generators [6]. Given the strictly
decreasing additive generator f : [0, 1] → [0,∞], such as
f(1) = 0, then the t-norm > is defined by

>(x1, · · · , xn) = f (−1)
( n∑
i=1

f(xi)
)
. (1)

where f (−1) is the pseudo-inverse of f . In the sequel, we will
denote the n-tuples {x1, ..., xn} and {1−x1, ..., 1−xn} as x
and 1− x respectively. The dual operation of a t-norm is a
t-conorm ⊥ : [0, 1]2 → [0, 1] satisfying (T1), (T2) and (T3),
and (T4’) instead of (T4):

(T4’) 0 as neutral element: ⊥(x, 0) = x.
The four basic norm couples (>,⊥) are given in Table I.

B. The k-Order Fuzzy OR

In many decision making problems, one may want to be
able to determine whether all, a part or none of individual
scores are satisfied, from subsets representing satisfactions
to criteria (say x). The easiest way to determine if none of
the scores are satisfied is to compute the t-conorm ⊥(x). If



TABLE I
FOUR PROTOTYPICAL EXAMPLES OF TRIANGULAR NORMS.

Standard
>M (x, y) = min(x, y)

⊥M (x, y) = max(x, y)

Product
>P (x, y) = x y

⊥P (x, y) = x+ y − x y

Łukasiewicz
>L(x, y) = max(x+ y − 1, 0)

⊥L(x, y) = min(x+ y, 1)

Drastic
>D(x, y) =

 0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise

⊥D(x, y) =

 1 if (x, y) ∈]0, 1]2

max(x, y) otherwise

it is high1, then at least one of them is high. Inversely, if
one wants to determine if all the scores are high, the use of
a t-norm is preferable. The value of >(x) will be high if all
of the individual scores are high. By duality of > and ⊥, the
user can easily evaluate if at least one value is low or if all
the scores are low by respectively computing ⊥(1− x) and
>(1− x).

In [7], the authors introduce the k-order fuzzy OR (fOR-k),
which is a conjunctive combination of the disjunctive combi-
nations applied to specific subsets of x. Let P be the power
set of N = {1, 2, ..., n} and Pk = {A ∈ P : card(A) = k}2,
it is defined by

k

⊥(x) =
k

⊥
i=1,n

xi = >
A∈Pk−1

(
⊥

j∈N\A
xj

)
. (2)

This operator shows nice properties such as symmetry,
boundary conditions, monotonicity, allowing us to qualify
k

⊥(x) as an aggregation operator. Additional properties are
of particular interest, see [7] for proofs:

•
1

⊥(x) = ⊥(x) and
n

⊥(x) = >(x),
•

k

⊥(x) is exactly the kth highest element of x if the
standard norms (>M = min,⊥M = max) are taken.

This operator aims at evaluating if k values of x are high,
and has been used in pattern recognition problems, e.g. reject
options in pattern classification [7] and cluster validity [8].

III. THE k-ORDER FUZZY AND

A. Motivation

In this paper, our goal is to determine how many values
are high or low? For the special case of exactly one high
value, some propositions have been made, let us cite the
fuzzy exclusive OR operator [9], or specificity measures [4].

1we assume that a ∈ [0, 1] is high if a ≥ Neg(a), i.e. a is more satisfied
than not a, and that a is low if it is not high

2card(A) is the usual cardinality of the crisp set A

Another attempt can be found in [3], which consists, for
reinforcement purpose, in specifying fuzzy quantifiers to
obtain a lower bound on the high scores. Finally, in [2], still
with fuzzy quantifiers, the authors propose a measure which
enable to determine if a fuzzy set contains k elements, but
without specifying if they are high or low (implicitly, they
consider the high case).

B. Definition and Properties

We introduce the dual operator of the k-order fuzzy OR,
allowing us to evaluate if k values of x are low.

Definition 1. Let
k

⊥(x) be the k-order fuzzy OR, then its
dual operator, called the k-order fuzzy AND is given by

k

>(x) = 1−
k

⊥
(
1− x

)
. (3)

Proposition 1. By duality to (2),
k

>(x) is

k

>
i=1,n

xi = ⊥
A∈Pk−1

(
>

j∈N\A
xj

)
(4)

Proof:

k

>(x) = 1−
k

⊥(1− x)

= 1− >
A∈Pk−1

(
⊥

j∈N\A
(1− xj)

)
.

Since ⊥(x, y) = 1−>(1− x, 1− y), we obtain

k

>(x) = 1− >
A∈Pk−1

(
1− >

j∈N\A
xj

)
= 1−

(
1− ⊥

A∈Pk−1

(
>

j∈N\A
xj

))
= ⊥
A∈Pk−1

(
>

j∈N\A
xj

)
.

In the sequel, we will use
k

>(x) as defined by (4). Let us
present the properties the k-order fuzzy AND (fAND-k for
short) holds.

Theorem 1. The fAND-k operator (4) is an aggregation
operation in the sense that it satisfies the following properties:

(P1) boundary condition:
k

>(0) = 0 and
k

>(1) = 1,

(P2) monotony: if x ≤ y, then
k

>(x) ≤
k

>(y).3
for all norm couple (>,⊥).

3x ≤ y if xi ≤ yi, ∀i ∈ [1, n]



Theorem 2. The fAND-k aggregation operator (4) is sym-
metric:

k

>
i=1,n

xi =

k

>
i=1,n

xσ(i)

for any permutation σ(·).

Proofs of theorems 1 and 2 are straightforward and are left
for a forthcoming journal paper. From an application point
of view, symmetry is often required because it means that
the values to be aggregated are ”anonymous” with respect to
the operator.

The following property addresses the use of standard
norms (>M = min,⊥M = max). In this case, fAND-k
reduces to the kth-order statistic, which is widely used in
non-parametric statistics and inference.

Theorem 3. When using > = min and ⊥ = max, the
k-order fuzzy AND is exactly the kth-order statistic, i.e.
k

>(x) = x(n−k+1), where (·) is a permutation on x such
that x(1) ≥ x(2) ≥ · · · ≥ x(n).

Proof:

Let us decompose the fAND-k operator (4) as

k

>(x) =

(
⊥

A∈Pk−1\λ

(
>

j∈N\A
x(j)

))
⊥
(
>

j∈N\λ
x(j)

)
(5)

where λ = {n− k + 2, · · · , n}.
In the general case, we have >

j∈N\λ
x(j) ≤ x(n−k+1), which

reduces to >
j∈N\λ

x(j) = x(n−k+1) when using min for >.

Consequently, the only necessary condition to complete the
proof is to show that the first term of (5) is lower or equal
than x(n−k+1) as follows.
If A ∈ Pk−1\λ, then the subset λ ∩ (N\A) is not empty.
Let us denote ` the lowest index of this subset. Then we can
write, for all A ∈ Pk−1\λ:

>
j∈N\A

x(j) ≤ x(`) ≤ x(n−k+1).

It follows that, when using max for ⊥:(
⊥

A∈Pk−1\λ

(
>

j∈N\A
x(j)

))
≤ x(n−k+1),

which concludes the proof.

Theorem 4. Whatever the norm couple (>,⊥), the k-order
fuzzy AND is bounded from above and below by > and ⊥

respectively: ∀k ∈ N = {1, ..., n},

>(x) ≤
k

>(x) ≤ ⊥(x)

Moreover:
1

>(x) = >(x) and
n

>(x) = ⊥(x).

Proof:

Let us first consider the case 1 < k < n, and prove the
left-hand side inequality. Taking the decomposition (5) of
fAND-k with λ = {1, · · · , k − 1}, we get:
k

>(x) =

(
⊥

A∈Pk−1\λ

(
>

j∈N\A
x(j)

))
⊥
(
>

j∈{k,··· ,n}
x(j)

)
≥ >
j∈{k,··· ,n}

x(j)

≥ >
j∈{1,··· ,n}

x(j) = >(x)

by monotony, associativity and commutativity of t-norms.
The proof of the right-hand side inequality is slightly differ-
ent. We have, for all i ∈ N :

x(i) ≥ x(i)>
(
>

j∈N\A,j 6=i
x(j)

)
= >
j∈N\A

x(j).

By monotony, associativity and commutativity of t-conorms,
we have:

⊥
i∈Pk−1

x(i) ≥ ⊥
A∈Pk−1

(
>

j∈N\A
xj

)
and ⊥

i∈N
x(i) ≥ ⊥

i∈Pk−1

x(i),

which leads to ⊥(x) ≥
k

>(x) and thus concluding the first
part of the proof.

If k = 1, then
1

>(x) can be rewritten as

⊥
A∈P0

(
>

j∈N\A
xj

)
.

Since P0 is the empty set ∅, it follows that
1

>(x) = >
j∈N

xj ,

which is >(x).
If k = n, then we have:

n

>(x) = ⊥
A∈Pn−1

(
>

j∈N\A
xj

)
= ⊥
A∈Pn−1

(
>
j∈P1

xj

)
which is equal to ⊥

j∈N
xj because card(Pn−1) = n, therefore

to ⊥(x).



Given x,
k

>(x) is low if k values in x are low. If one
wants to get the truth value of the statement k values in x

are low, the strict negation (1−
k

>(x)) must be taken.

C. Examples

We first exemplify the k-order fuzzy connectives
computation using the standard norm couple (>,⊥)M .
Let us take n = 4 so that x = (x1, x2, x3, x4)
and N = {1, 2, 3, 4}, and let us set k = 3 so that
P2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Without loss of generality, let us assume that x is sorted such
as x(1) ≥ x(2) ≥ x(3) ≥ x(4). Selecting subsets which are
not in P2 gives:

3

⊥(x) = min
(
max(x(3), x(4)),max(x(2), x(4)),max(x(2), x(3)),

max(x(1), x(4)),max(x(1), x(3)),max(x(1), x(2))
)

= min
(
x(3), x(2), x(2), x(1), x(1), x(1)

)
= x(3) = x(k) and

3

>(x) = max
(
min(x(3), x(4)),min(x(2), x(4)),min(x(2), x(3)),

min(x(1), x(4)),min(x(1), x(3)),min(x(1), x(2))
)

= max
(
x(4), x(4), x(3), x(4), x(3), x(2)

)
= x(2) = x(n−k+1).

Next, we show how the k-order fuzzy connectives behave
with respect to two different norm couples of Table I for the
following examples of sets of satisfaction degrees, assumed
to be given by n = 5 experts:

• x = {0.9, 0.8, 0.3, 0.2, 0.1} composed of two high and
three low values, meaning that the experts clearly do
not agree with each other,

• y = {0.97, 0.81, 0.83, 0.87, 0.91} representing a fully
agreement on acceptation, and

• z = {0.15, 0.20, 0.09, 0.05, 0.09} representing a fully
agreement on rejection.

The values of the two fuzzy connectives of interest, namely
k

⊥(x) and (1 −
k

>(x)), are given in Table II, where high
values (say > 0.5) are in bold. From this table, one can
see that using both (>,⊥)M and (>,⊥)P give the expected
results:

•
k

⊥(x) are high up to k = 2 (0.800 and 0.821) and

(1−
k

>(x)) are high up to k = 3 (0.700 and 0.511),

• all
k

⊥(y) are high, i.e. up to k = 5 (0.810 and 0.516),

and all (1−
k

>(y)) are low,

TABLE II
EXAMPLES OF k-ORDER FUZZY CONNECTIVES VALUES (HIGH VALUES

ARE IN BOLD).

x k
connectives 1 2 3 4 5

(>,⊥)M
1−

k
>(x) 0.900 0.800 0.700 0.200 0.100

k
⊥(x) 0.900 0.800 0.300 0.200 0.100

(>,⊥)P
1−

k
>(x) 0.995 0.913 0.511 0.080 0.010

k
⊥(x) 0.989 0.821 0.257 0.020 0.004

y k
connectives 1 2 3 4 5

(>,⊥)M
1−

k
>(y) 0.190 0.170 0.130 0.090 0.030

k
⊥(y) 0.970 0.910 0.870 0.830 0.810

(>,⊥)P
1−

k
>(y) 0.483 0.011 0.002 0.000 0.000

k
⊥(y) 1.000 0.999 0.985 0.867 0.516

z k
connectives 1 2 3 4 5

(>,⊥)M
1−

k
>(z) 0.950 0.910 0.910 0.850 0.800

k
⊥(z) 0.200 0.150 0.090 0.090 0.050

(>,⊥)P
1−

k
>(z) 1.000 0.999 0.986 0.879 0.535

k
⊥(z) 0.465 0.009 0.000 0.000 0.000

• (1−
k

>(z)) are high, i.e. up to k = 5 (0.800 and 0.535),

and all
k

⊥(z) are low. Note that even if two values of
z are identical, they are well handled by the proposed
operators.

Note however that for the unanimous cases y and z, the
operators based on (>,⊥)P do not give as high (or low)
values for the extreme values of k under interest as one could
expect. This is mainly due to the reinforcement (respectively
downward and upward) of such triangular norm operators,
which are retrieved for extreme values of k, here 1 and 5.

Another reason is that t-norms, respectively t-conorms
reinforce each other when they are combined to define the k-
order fuzzy operators. Both reasons are accentuated for cou-
ples that are known to present a more severe reinforcement
property and a warned user should revise down (respectively
up) its perception of a high (respectively low) value, for
instance > 0.7 (respectively < 0.3). A solution to latter
problem for t-conorms, called noble reinforcement, has been
proposed in [3]. The objective of noble reinforcement is to
avoid that a collection of low values be reinforced when using
t-conorms. The author proposes to use parametric t-conorms
to solve the problem. Such a proposition, or the more recent
one in [10] could be adopted here, but it is quite out of the
scope of this paper, so it is left to be the topic of another
forthcoming paper.
For illustration purpose, we give in Fig. 1 the isolevels
of the proposed k = 2-order fuzzy connectives for all



Fig. 1. fOR-2 (top) and fAND-2 (bottom) operators based on standard (left)
and product (right) norm couples.

x ∈ [0, 1]3, where black (respectively white) areas indicate
low (respectively high) values.

IV. WEIGHTED k-ORDER FUZZY CONNECTIVES

A. Definitions

It is well known that parametrization of operators can
improve their performances because parameters often allows
to better represent the data to be analyzed. Moreover, in
many decision making systems, some criteria may not be
independent, and it is useful to modelize this dependence by
giving weights to subsets of criteria. To this end, we propose
to extend the definition of the k-order fuzzy connectives.
Several weighted triangular norms have been proposed so
far, e.g. in [11], [12].

Let w = {w1, ..., wn} be the n-tuple of weights associated
to the scores x. In [12], the authors define the weighted t-
conorm as ⊥w : [0, 1]n → [0, 1],

⊥w(x) = ⊥(w � x) (6)

where � is the binary operation � : [0,+∞[×[0, 1]→ [0, 1],

w � x = sup
(
y ∈ [0, 1] : ∃i, j ∈ N, i/j < w and u ∈ [0, 1]

such that ⊥(u, · · · , u︸ ︷︷ ︸
j times

) < x and y = ⊥(u, · · · , u︸ ︷︷ ︸
i times

)
)
. (7)

By duality, the weighted t-norm can be defined by

>w(x) = 1−⊥w(1− x). (8)

For continuous Archimedean t-conorms, the weighted t-
conorm can be obtained with an additive generator g as

follows, provided that w is a normal set of weights4:

⊥w(x) = g(−1)
( n∑
i=1

wig(xi)
)

(9)

where g : [0, 1] → [0,∞] is a strictly increasing function
with g(0) = 0.
If f and g are respectively the additive generators of > and
⊥, then the fOR-k operator 2 can be defined by:

k

⊥(x) = f (−1)

( ∑
A∈Pk−1

f
(
g(−1)

( ∑
j∈N\A

g(xj)
)))

(10)

In order derive the weighted fOR-k, we need to introduce
two weightings instead of the one (w) required to define the
weighted t-conorm (6):

• v = {vA : A ∈ Pk−1} of size card(Pk−1) =
(

n
k − 1

)
,

• W = {wA,j : A ∈ Pk−1, j ∈ N\A} of size(
n

n− k + 1

)
× (n− k + 1).

Note that each row wA of the array W corresponds to a
subset A of N , so the number or rows is exactly5 the size of
v, i.e. the number of all possible subsets of N of size k− 1,
although they do not concern the same subsets. Furthermore,
each wA must be normal, i.e.

∑
j∈N\A wA,j = 1.

Definition 2. Given f and g two additive generators of a
t-norm and its dual t-conorm, respectively, the weighted k-
order fuzzy OR is defined by:

k

⊥
W,v

(x) = f (−1)

( ∑
A∈Pk−1

vA f
(
g(−1)

( ∑
j∈N\A

wA,j g(xj)
)))

(11)
where W and v are user-defined sets of weights.

The weights in W and w can be related with capacities,
in particular to k-order additive fuzzy measures, see [13].
Whereas the specification of a k-order additive fuzzy

measure requires
∑k
j=1

(
n
j

)
coefficients, we only have to

specify the weights (or fuzzy measures) of subsets of N
whose cardinality is respectively k − 1 for v and n− k + 1
for W. Since W focuses on subsets which are not the ones
weighted by v, the importance given to each subset through
W does not interfere with those given by v, and v and
W are totally different. It is only a matter of giving to all
subsets of cardinality k − 1 and n − k + 1 a corresponding
weight satisfying the normal constraints. The dual operator

4w is said to be normal if
∑n

i=1 wi = 1

5indeed,
(

n
k − 1

)
=

(
n

n− k + 1

)



of the weighted fOR-k can be easily defined easily as follows.

Definition 3. Given f and g two additive generators of a
t-norm and its dual t-conorm, respectively, the weighted k-
order fuzzy AND is defined by:

k

>
W,v

(x) = g(−1)

( ∑
A∈Pk−1

vA g
(
f (−1)

( ∑
j∈N\A

wA,j f(xj)
)))

(12)
where W and v are user-defined sets of weights.

As requested, setting uniformly distributed weights in (11)
and (12), i.e. constant weights vA and wA,j such as v and
each row wA of W are normal, it is easy to show that
the k-order fuzzy connectives fOR-k (2) and fAND-k (4)
are retrieved. More generally, even when not setting uniform
weights, the properties of monotony and symmetry, as well
as boundary conditions, are satisfied.

As mentioned in Section III, the k-order fuzzy connectives
have been used in practical problems of pattern recognition
like reject option, cluster validity or feature selection. The
use of the weighted operators may improve the overall per-
formances by specifying weights according to some criteria
on the data to be analyzed.

B. Examples

We provide an illustrated example of weighting k-order
fuzzy connectives with n = 5 and k = 3. A lattice
representation of the different parts of P is given in Fig. 2,
where dashed ellipsoids correspond the different A ∈ Pk−1
and dotted ellipsoids to the subsets of N where j ∈ N\A is
acting. Weights have to be specified for subsets of cardinality
k − 1 = 2 (by v) and for each of them, for subsets of
cardinality n− k + 1 = 3 (by wA).

In Table III, we give some corresponding examples of
randomly generated v and W. One can see that the normal
constraints, required to use additive generators, are satisfied
for v (0.13+0.14+...+0.15=1) and each wA (if A = {1, 2},
then wA,3+wA,4+wA,5 = 0.35+0.24+0.41 = 1). The way
the weights can be set with respect to an application is out of
the scope of this paper and we invite the interested reader to
refer to [14] to see some propositions, e.g. the minimization
of an objective function to fit incoming data.

In Fig. 3, we give the isolevels of weighted k = 2-
order fuzzy connectives based on the standard norm couple
(>,⊥)M and the product one (>,⊥)P , where weights have
been randomly generated. While the fundamental properties
of the k-order fuzzy connectives are preserved, one can see
that the shapes of each operator have been radically modified
compared to the unweighted ones of Fig. 1, so that they can
be adapted to various situations.

∅
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{1, 4} {1, 4, 5}

{1, 5}
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{2, 3}
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{2, 3, 5}

{2, 4} {2, 4, 5}

{2, 5}

{3}
{3, 4} {3, 4, 5}

{3, 5}

{4} {4, 5}

{5}

Fig. 2. A lattice representation of the parts of P under interest for N =
{1, 2, 3, 4, 5}.

V. OPERATIONS ON FUZZY SETS

Let X be a nonempty universe and A a fuzzy set of X
defined by its membership function fA: X → I , x 7→ fA(x),
where I is a totally ordered set so that (I,≤) is a complete
and totally ordered lattice. We restrict here to the case where
X is a denumerable set of n elements, implying that a fuzzy
set A can be represented by the n-tuples (x, fA(x)) where
fA(x) = {fA(x1), ..., fA(xn)}. The union and intersection
of two fuzzy sets A and B are generally defined using a
t-conorm and its dual t-norm, respectively. Then, for each
x ∈ X , A∪B and A∩B are fuzzy sets whose membership
functions are respectively fA∪B(x) = fA(x)⊥fB(x) and
fA∩B(x) = fA(x)>fB(x).

In order to interpret the presented k-order fuzzy connec-
tives from a set-theoretic point of view, let us begin to
restrict to three fuzzy sets A, B and C defined on X , and



TABLE III
EXAMPLE OF WEIGHTS v AND W.

Subset A v wA
Relative indexes

j ∈ N\A

{1, 2} 0.13
0.35 {3}
0.24 {4}
0.41 {5}

{1, 3} 0.14
0.07 {2}
0.46 {4}
0.47 {5}

{1, 4} 0.03
0.34 {2}
0.52 {3}
0.14 {5}

{1, 5} 0.14
0.45 {2}
0.46 {3}
0.09 {4}

{2, 3} 0.10
0.13 {1}
0.27 {4}
0.60 {5}

{2, 4} 0.01
0.28 {1}
0.60 {3}
0.12 {5}

{2, 5} 0.04
0.67 {1}
0.15 {3}
0.18 {4}

{3, 4} 0.08
0.39 {1}
0.05 {2}
0.56 {5}

{3, 5} 0.18
0.42 {1}
0.21 {2}
0.37 {4}

{4, 5} 0.15
0.19 {1}
0.56 {2}
0.25 {3}

to focus on the most interesting case6 k = 2. The 2-order

6for k = 1 or 3, we have
1
> = >,

3
> = ⊥,

1
⊥ = ⊥ and

3
⊥ = >

Fig. 3. Weighted fOR-2 (top) and fAND-2 (bottom) operators based on
standard (left) and product (right) norm couples.
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Fig. 4. Membership functions of the 2-order union and intersection of
three triangular-shaped fuzzy sets A, B and C.

fuzzy union is defined by (A ∪ B) ∩ (A ∪ C) ∩ (B ∪ C)
and can be obtained thanks to the fOR-2 operator, which
is just the conjunctive combination of subsets obtained by
the disjunctive combination of all possible sets except k− 1
ones. Alternatively, the 2-order fuzzy intersection is defined
by (A∩B)∪ (A∩C)∪ (B ∩C) and can be obtained thanks
to the fAND-2 operator.

Examples of these 2-order operation on three fuzzy sets
whose membership functions are triangular ones are given
in Fig. 4 for the standard norm couple (>,⊥)M and the
product norm one (>,⊥)P . It is worth noting that the
2-order fuzzy union and the 2-order fuzzy intersection
are the same set for (>,⊥)M as one could expect from
properties of the operators: when three values are to be
aggregated, the 2nd lowest value is also the 2nd highest
one. Note also that, although the 2-order fuzzy intersection
and the 2-order fuzzy union are not equal, their membership
function present a relatively similar shape: increasing until
the second fuzzy set reaches its kernel, and decreasing
afterward. From this figure, one can finally see that the
membership functions of both 2-order fuzzy connectives are
null on regions where there is only one support.
For more three fuzzy sets, the principle is the same: the
k-order union is defined by the intersections of the unions
of all the combination of fuzzy sets, excluding in each term
k − 1 fuzzy sets, and the previous remarks still remain. For
instance, computing k-order fuzzy connectives on regions
where k − 1 supports of fuzzy sets are defined will results
in an empty subset.

Our final proposition addresses the problem of quantifying
if a fuzzy set A has exactly k elements using the proposed
connectives. Let us recall the definition by Ralescu, where
the author implicitly consider that having k elements is



equivalent to having k high elements:

Definition 4 ([15]). The cardinality of a fuzzy set A, denoted
card(A), is a fuzzy subset {0, 1, ..., n} with card(A(k))
being the possibility to which A has exactly k elements,
0 ≤ k ≤ n.

Proposition 2. Given a triangular norm couple (>,⊥), the
fuzzy cardinality of a fuzzy set A is given by

card(A(k)) =
( k

⊥ fA(x)
)
>
(
1−

k+1

⊥ fA(x)
)

(13)

The notation card(A(k)) is introduced to distinguish
the operator which quantifies if k elements are high,
from card(A(k)), the one which evaluate if there
are k low elements, and that we will call anti-
cardinality. Note that if the standard norms (>,⊥)M
are taken, then (13) matches the proposition of
Ralescu in [15], i.e. fA(x(k)) ∧ (1 − fA(x(k+1))) if
we assume that (·) is a permutation on x such as
fA(x(1)) ≥ fA(x(2)) ≥ · · · ≥ fA(x(n)).

Definition 5. The anti-cardinality of a fuzzy set A, denoted
card(A) is a fuzzy subset {0, 1, · · · , n} with card(A(k))
being the possibility to which A has exactly low k elements,
0 ≤ k ≤ n.

Proposition 3. Given a triangular norm couple (>,⊥), the
fuzzy anti-cardinality of a fuzzy set A is given by

card(A(k)) =
(
1−

k

>fA(x)
)
>
( k+1

> fA(x)
)

= 1−
(( k

> fA(x)
)
⊥
(
1−

k+1

> fA(x)
))

If A is a crisp set with c elements, the ordered fA(x) is
{1, ..., 1, 0, ..., 0} composed of (n− c) zeros and c ones. For
all triangular norms, we have:

card(A(k)) =

{
1 if k = c
0 otherwise

card(A(k)) =

{
1 if k = n− c
0 otherwise

which satisfies the given definitions.
A clear connection to specificity measures, or more generally
to amount of information measures (e.g. entropy in prob-
ability theory, granularity in fuzzy theory, and measure of
uncertainty in possibility theory) is obtained by setting k to
1. However, the proposed operators are more general, since
they can handle much more desiderata.

VI. CONCLUSION

In this paper, the k-order fuzzy connectives are presented.
We propose to use these operators in order to evaluate
whether exactly k values are high or low, respectively.

Some examples are given to illustrate the behavior of the
operators, and how to compute them. Weighted k-order fuzzy
connectives are also introduced for the purpose of modelizing
dependency between the values to be aggregated if any. The
use of the proposed k-order connectives to define new set-
theoretic operations on fuzzy sets is also proposed. Finally,
the definition of a generalized fuzzy cardinality, representing
to what extent a fuzzy set contains exactly k high or low
values, is proposed.
Among the perspectives we have in mind, let us mention the
linear or exponential combination of k-order fuzzy connec-
tives, as well as the uninorm like combination. We also plan
to apply our propositions on real world problems such as
pattern recognition and image analysis. Finally, a complete
characterization of the involved weights in terms of their
Moebius transform and Shapley value is under study.
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