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ABSTRACT: Decision-making under uncertainty implies dealing with information about different choices
and their consequences that is partial for the decision-maker. In front of uncertainty, either the decision can be
postponed, waiting for complementary information or the decision can be only made on the available infor-
mation, despite possible consequences on the decision. We propose a model to identify and structure needed
information. Human factors are taken into consideration in this structure. Then, to process the collected infor-
mation, we propose a Fuzzy Decision Support System (FDSS) which deals with uncertain information. In this
approach, a sequence of decisions leads to a final choice, taking progressively into account new information
whose role is to refine available information. Human representation and reasoning mode are imitated, respec-
tively by fuzzy sets and fuzzy inference rules. We apply the proposed FDSS to a case study held on a ski resort.
The results with this approach prove effective compared to those a naive decisional approach.

1 INTRODUCTION

Project management involves making decisions in a
context of uncertainty. These decisions result from
some inference rules on some quantitative or qual-
itative variables, with usually uncertain values that
come from different sources and could become pro-
gressively complete and precise. Generally, it is only
at the end of the project that precise and accurate val-
ues of most variables are available. However, a project
manager has to make decision, throughout the differ-
ent phases to make the project evolves, even if the
information is uncertain or the inference rules are not
strict. It might be difficult to process all the uncertain
information and alarm signals in the decision-making
process. In such circumstances, usually the decision-
maker adopts a reductive approach to make a deci-
sion only based on the piece of information that is
available and looks more important. In doing so, the
risk is that the decision is made without some crucial
information. We propose a FDSS that takes into ac-
count both quantitative and qualitative variables and

*This work was supported by the Foundation for an Indus-
trial Safety Culture (Fondation pour une Culture de Sécurité In-
dustrielle).

tolerates the lack or imprecision of information. In
this approach, the requested information is first identi-
fied and structured, then a sequence of decisions leads
to a final choice, taking progressively into account
new information. Human representation, and reason-
ing mode are modeled by fuzzy sets and fuzzy infer-
ence rules (Zadeh 1965). The structure of this paper
is as follows. In section 2, we propose a definition of
uncertainty and explain how this vision of uncertainty
leads us to structure information so that it takes into
account human factors. Section 3 details the mecha-
nism of the proposed model. In section 4, an applica-
tion case in ski is presented. The objective is to help
a skier decide whether to change one’s itinerary to
avoid avalanches. In section 5, we discuss the results
of the system and in section 6, we explain how it could
be improved.

2 DECISION MAKING UNDER
UNCERTAINTY

In order to better understand the decision-making pro-
cess, we need to understand the notion of uncertainty
(Klir 2005). Thus, in this section, decision-making
under uncertainty is defined and some approaches to
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Figure 1: Typology of imperfection of information

cope with uncertainty are presented. Then, the human
dimension is integrated in the definition and charac-
terization of uncertainty.

2.1 Literature review

The decision-maker usually chooses an option based
on a benefit/risk balance of the available options. The
process involves selecting the best among several op-
tions through an evaluation of the parameters of each
option and its consequences (Panneerselvam 2006).
Decision theories study how this benefit/risk balance
is calculated by the decision-maker. Simon criticized
the implicit hypothesis of decision theories according
to which the necessary information is always avail-
able (Simon 1969). In fact, the decision-maker does
not always have the requested information at his dis-
posal to make a decision. If he knows all the possible
options and their consequences, he is in the case of
a deterministic decision. In a non-deterministic case
or decision under uncertainty, the information about
different options and their consequences is imperfect
for the decision-maker (Panneerselvam 2006). Before
defining the imperfection of information, it should
be noted that two concepts of information and un-
certainty are strongly interconnected. Information has
got to decrease uncertainty (Klir 2006). Imperfection
is a property of information that does not eliminate
uncertainty.

Several typologies of imperfection of information
are described in Tacnet’s thesis (Tacnet 2009). All of
them consider uncertainty as a form of imperfection
of information. We consider uncertainty as a result
of the imperfection of information. In figure 1, we
propose a typology of the different forms of imper-
fection of information that cause uncertainty. These
forms are explained as follows. Absence: information
is totally unavailable. Incompleteness: information is
partial unavailable. Imprecise: existence of multiple
and conflicting interpretations for the same informa-
tion (Thiry 2002). Volatility: information can change
rapidly. Contradictory: existence of paradoxical infor-
mation. Ambiguity: existence of multiple information
for the same variable. Multidisciplinary: information
that concerns multiple domains. Reliability: informa-
tion whose source is not reliable. Abundance: a great
deal of information.

The degree of uncertainty can be different from a

decisional situation to another one. The degree of un-
certainty would then correspond to the difference be-
tween requested information and available informa-
tion to make a decision. Some authors (Thiry 2002)
defined uncertainty via this difference. We consider it
as the degree of uncertainty.

The previously mentioned Simon’s critique, em-
phasizing the importance of the availability of in-
formation and human representation, up to that mo-
ment ignored by decision theories, leads decision the-
ories to a new direction (Tsoukias 2008). The new
approaches study and formalize decision, taking into
account the imperfection of information that could
correspond to human representation. The interval the-
ory is one of the first formalization for imprecise in-
formation (Moore 1966). Fuzzy sets, established by
Zadeh in 1965, offer a new perspective to process im-
precision of human language (Tsoukias 2008). The
fuzzy sets theory concerns the degree of member-
ship of a set. To manipulate imperfect knowledge in
a non-probabilistic frame, a possibility distribution
of a proposition could be represented by a fuzzy set
(Tacnet 2009). In this way, the possibility theory is
developed (Zadeh 1978, Dubois and Prade 1988) to
formalize the necessity and the possibility degree of
an event. The counterfactual theory, developed by an
American philosopher (Lewis 1973), proposes the re-
lation of comparative possibility for two events, that
expresses an event is more conform to what we know
about the real world than another event (Dubois and
Prade 2006). Psychological and philosophical theo-
ries, such as Simon and Lewis research works, offered
a new vision to process uncertainty.

Even if information is available, cognitive psychol-
ogy affirms that our ability to process information is
restricted by the limit of our immediate memory that
affects our judgment (Miller 1956). Therefore, to pro-
cess a great deal of information or to cope with un-
certainty, the human being needs to be helped by de-
cision support systems that take into account uncer-
tainty. However, as Simon outlines it, the human is at
the center of a decision process (Tsoukias 2008) and
the decision is influenced by his mental representation
of the real world. For these reasons, in the next sec-
tion, uncertainty is defined taking into account human
dimension.



Uncertainty
generators

B
R I

PR I JEE—

Subject Object Context

Individual Colleotive ‘ States Internal factors

factors factors External factors

Objectives

Figure 2: Typology of uncertainty generators

2.2 Human dimension in the characterization of
uncertainty

In academic literature, we distinguish two main ap-
proaches to define uncertainty: the subjective and ob-
jective approaches. Objective approaches define un-
certainty by emphasizing an object’s state which is
unknown and unsure. Subjective approaches define
uncertainty by emphasizing mental states of the sub-
ject who is unsure. We consider that uncertainty is a
relationship between a subject and an object. It is im-
portant to take both human factors and object proper-
ties (states) into account in the characterization of un-
certainty. For these reasons, we propose the following
definition of uncertainty: a subject’s conscious lack of
knowledge about an object, which is not yet clearly
defined (or known), in a context requiring a decision
(Hassanzadeh et al. 2010). Based on this definition, a
typology for uncertainty generators is proposed in fig-
ure 2, which helps identify and classify generators of
uncertainty in three classes: subject, object, and con-
text. The subject class refers to human factors such
as subject’s psychological traits and professional ex-
periences as individual factors, and to contradictory
opinions and debates as collective factors. The object
class refers to states of the object that are dynamic and
could be changed and affect the objectives which de-
pends on the object’s states. The context class refers
to internal environmental factors such as organiza-
tional and hierarchical elements, and to external en-
vironmental factors such as the circumstances of the
decision. This vision allows us to take into account
and control some of the generators of uncertainty, in
order to reduce it as much as possible and deal with
what remains according to the type of the generator.
The proposed typology, as a basis of our model, helps
organize variables that should be taken into account
in decision-making under uncertainty.

3 MODEL

The purpose of this model is support decision under
uncertainty, including three main elements: 1) input
uncertain variables, 2) non-strict inference rules, and
3) decision modalities.

3.1 Organization of variables

In order to make a decision, variables which could
affect our decision have to be identified. The pro-
posed typology in section 2.2 gives the identified vari-
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Figure 3: Example of a tree of the variables at the first phase of
a project

ables a structure. Then, according to the project’s ob-
jectives, different phases of the project are defined.
The project’s phases are marked by decision mile-
stones that evaluate the obtained results at the end of
each phase. In doing so, a sequence of decisions con-
ducts to the final objectives. The list of available vari-
ables should be identified for each decisional mile-
stone. Figure 3 shows the classification of the vari-
ables, at the first phase of a project, in a directed tree
(a connected acyclic simple graph). The root of the
tree symbolizes the decision of this phase. The rectan-
gles symbolize the classes of the typology and are the
generic variables for all projects. It should be noted
that the classes of the typology are also considered
as variables. The circles symbolize all the identified
variables in this project. These variables specify the
generic variables. For example, the variable Collec-
tive factors is specified by the variables v; et v. Like-
wise, each variable could be specified by other vari-
ables and is connected to them by arcs (arrows): vy
is specified by vy; and v;5. The number of the vari-
ables and their positions change from one project to
another. Both rectangles or circles are called nodes.
A node is white if its value (information) is available,
and grey if its value is not available. For example, here
v1; and v15 are not yet available at this phase.

3.2 Characteristics of variables

A set of characteristics describes each variable in or-
der to study its behavior and its impact on the deci-
sion. Some of these properties are as follows: name
(identifier), type (quantitative, qualitative), unite (for
quantitative variables), range (possible intervals for
quantitative variables and different modalities for
qualitative variables), state (static if it does not change
or dynamic if it changes), source of information (that
provides information. For example, experts, news, In-
ternet), measurement instruments and methods (in-
strument or calculation methods for quantitative vari-
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Figure 4: The tree of the variables at the last phase of the ski resort project

ables, and descriptive methods for qualitative vari-
ables, for example, observation, experimentation),
and imperfection of information, illustrated in fig-
ure 1 (absent, incomplete, imprecise, volatile, contra-
dictory, ambiguous, multidisciplinary, reliable, abun-
dant). Table 1 of the section 4.2 gives two examples
in application case.

3.3 Behavior of variables

The behavior of a variable refers to its availibility
in different phases of the project. In the tree (figure
3), the white and grey nodes respectively represent,
available and unavailable variables at the first phase
of the project. Grey nodes become white in the next
phases, when their values become available. The total
in-degree of a node (the number of entering nodes) il-
lustrates how many variables are needed to know the
exact value of a studied node (incoming node). The
degree of uncertainty of a compound variable is cal-
culated by the ratio of grey in-degree nodes/total in-
degree and outlines the difference between requested
information and available information to calculate the
variable in a phase of project. For example, in figure
3 the degree of uncertainty of the variable vy, is %
We call elementary variables the leaf nodes (the nodes
with the white in-degree equal to zero) and compound
variables, the non-leaf nodes. In the context of project
management, an elementary variable could have two
behaviors. It could stay elementary until the end of
the project, if it does not have any grey entering node
(grey in-degree nodes equal to zero). It means that its
value is not calculated from other variables, but it does
not mean its value is precise and exact, it could be up-
date in the next phases, when new information arrives.
An elementary variable could become a compound in
the next phases, if it has grey entering nodes (grey

in-degree nodes non zero). For example, in a studied
phase, none of its entering variables is available, but
we could have a general estimation of its value. Little
by little, in the next phases, it could be possible to ob-
tain or estimate the values of its grey entering nodes,
thus they become white and the studied variable be-
comes a compound variable.

In a studied phase, hence grey variables are not
available, decision is based on white variable. The
number of the grey variables (unavailable variables)
is useful to measure the degree of uncertainty.

3.4 Representation of variables

After the identification, the classification, and analy-
sis of the variables’ behavior, representation of their
values is required to study their changes. Represen-
tation of variables in a formal language should allow
to apply logic operators to calculate their impact on
the decision. Human representation of each variable
could be modeled by fuzzy sets that are not sharp-
edged, contrary to classic sets whose borders are strict
and do not allow an object to position at the border be-
tween two sets. For this reason, fuzzy sets are applied
to model the impact of uncertain variables.

The value of each variable could be qualified by
linguistic terms to express its impact on its incom-
ing variable. The value of v (a number, an interval, or
a modality) is qualified by a set of linguistic terms,
such as A = {ay, ..., a;,...,a,}. These linguistic term
can be represented by a fuzzy sets that could have im-
precise borders with each other. For example, in fig-
ure 3, suppose that v; is Collaboration factor that has
an impact on its incoming variable Collective factors
and the range of this factor is a note between 1 and
20. This note could be qualified by a set of linguis-
tic terms such as A; = {bad, average, good}. Three



Name Type Unite Range State Source Measurement | Imperfection
Skill discussion,
level qualitative | none 3 levels static group members observation incomplete
Incline map, photo, inclinometer, descriptive
of slope | quantitative | degree | 4 intervals | static experimentation methods imprecise

Table 1: Characteristics of variables

fuzzy membership functions represent these terms
and divided the range of the values of the variable v,
into three subsets. Some values of v; could be posi-
tioned at the border of several linguistic terms. For
example, 7 is 60% bad, 40% average, and 0% good. It
should be noted that the choice of these functions and
fuzzy intervals depends on expert’s judgment (Tacnet
2009).

3.5 Inference rules

To calculate the influence of the variables on the
decision, the inference rules are created. The value
of a compound variable v depends on the set
of its elementary or compound entering variables:
{v1, ..., 03, ..., }, 1 < < n. These entering variables
do not have the same impact on v and are ordered
according to the importance of the impact of each v;
on v. This importance order has to be taken into ac-
count to establish the inference rules. An average or a
weighted average is not an adequate solution to calcu-
late (Simon et al. 2007) the value of a compound vari-
able. We use a fuzzy inference system (FIS) to calcu-
late the value of v from the values of v;. The value
of each variable could be a number, an interval or a
modality, but it is qualified by a linguistic term that
corresponds to human perception. Therefore, a set of
linguistic terms, A;, is designated to each v;, in order
to qualify it, and B is a set of linguistic terms that
qualify v. Decision rules are defined as a function as
follows: f: Ay x ... x A; X ...A,, — B, where A; x
.. X A; X ... A, is the Cartesian product of A;, means
the set of combination of (ay,...,a;,...,a,) such that
a; € A;. For example, the value of a compound vari-
able such as Collective factors in figure 3 depends
on the values of its two entering variables v; and
v9. Suppose A; = Ay = B = {bad, average, good},
a decision rule could be as follows: (bad, average) =
average. From these combinations the inference rules
can be extracted to integrate in the FIS. For each input
such as (v1, ..., v, ...,vy,), several rules could be acti-
vated with different degrees. The aggregation of these
rules gives a result for the output variable.

3.6 Decision as an especial variable

The decision, the root of the tree in figure 3, is consid-
ered as a compound variable and it is calculated in the
same way. But, it has two main differences with other
variables: 1) it is the root of the tree and by definition
it is not the entering variable of another variable, 2)
directly or indirectly, the arcs are all directed towards

this variable. It means all precedent steps finalize to
calculate this variable and it is the output of the sys-
tem whose modalities depend on the objectives of the
studied phase. For example, in a pharmaceutical R&D
project the output of a milestone decision can be No
Go, Stand by, Go, or Acceleration.

The level of a variable is defined by its distance
(number of arcs) between the variable and the root of
the tree. At the highest level (/,,..), all variables are
elementary and are the inputs of the system (if not, it
cannot be the highest, because the tree is a connected
graph). At an inferior level of [,,,,, there is one com-
pound variable (if not, all variables are elementary
and there is no need to calculate). Each compound
variable including the root, is calculated as explained
in precedent section. It should be noted that the uncer-
tainty of the variables, defined in section 3.3, propa-
gate from superior levels into inferior levels and ar-
rives to the root of the tree, wherein it translates to the
confidence index of the decision. For a phase of the
project, the confidence index of the decision (the vari-
able of the root), is defined by this ratio of all white
in-degree nodes of the tree/ total nodes of the tree—1
(excluding the root).

4 A FDSS TO ASSESS AVALANCHE RISK

Based on the meteorological, nivological, and to-
pographical available information, a guide plans an
itinerary, avoiding avalanches. Information becomes
more complete and accurate in time when he advances
in his project. Therefore, the main characteristics of
our problem are gathered in this example: a series
of decisions based on uncertain and dynamic infor-
mation that becomes more precise step by step. The
output of the decision output in a ski resort project
is as follows: No Go, Change itinerary, Go. Many
methods exist to avoid avalanches (McCammon and
Haegeli 2005). We are interested in 3 X 3 formula
of Munter (Munter 2006), that is a strategy for Go/
No Go decisions to help a guide decide whether to
change his itinerary to avoid avalanches, developed
by Werner Munter, a Swiss mountain guide. As far
as we know, Munter’s method is the first method that
takes human factors into consideration. According to
Munter’s method, the guide has to process three cat-
egories of uncertain information: human factors, ter-
rain, and snow pack/weather, and has to make sequen-
tial decisions at three different times: at home, in the
mountain, and at the beginning of a slope. Munter
provides a 9-element grid, 3 categories of information
by 3 times, wherein a series of variables of each cat-
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egory has to be collected and evaluated by the guide
each time. This evaluation is updated with the new in-
formation. Based on Munter’s 3 x 3 formula, we pro-
pose a FDSS to help the guide, including human fac-
tors of the members of his group, decide more effec-
tively and quickly. The proposed FDSS is designed to
accept non-precise values for variables and to support
the gradual increasing of precision, when new infor-
mation is received. Moreover, integrating certain hu-
man factors such as the experience level, psychologi-
cal and physical states, helps the guide make a more
appropriate decision.

4.1 Organization of variables

The list of variables that has to be taken into account
by a guide to avoid avalanches, in the majority comes
from Munter’s grid and is completed by some vari-
ables of the other methods such as Stop-or-Go card
of Larcher (McCammon and Haegeli 2005). Munter
classified these variables in three categories: human
factors, terrain, and snow pack/weather. Respecting
this classification, we propose to organize the vari-
ables in sub-classes as detailed in figure 4.

4.2 Characteristics of variables

A set of characteristics is given to each variable, in
order to study its behavior, its changes, and its impact
on the decision. For example, the variables Skill level,
as a qualitative variable, and Incline of the slope, as
a quantitative variable, are presented here. For Skill
level the set of proper-ties is as follows. Type: qualita-
tive, unite: none, range: 3 levels (bad, average, good),
state: static (skill level of a skier does not change
during one resort), source of information: members
of group, measurement methods: discussion, observa-
tion (if the guide does not know the members of the
group, he asks them at regional milestone, and ob-
serves them at local and zonal milestones), and char-
acteristic of information value: incomplete (with hy-
pothesis that the guide does not know the Skill level

of all members of the group).

For Incline of the slope, the set of properties is
as follows: Type: quantitative, unite: degree, range:
0°-29°: moderately steep, 30°-34°: steep, 35°-39°:
very steep, > 40°: extremely steep, state: static (the
slope angle does not change), source of information:
maps, photos, Internet, measurement methods: ob-
servation, inclinometer, experimentation, descriptive
method described by Munter (Munter 2006), and im-
perfection of information value: imprecise (estima-
tion of a slope angle on a map or evaluation by the
guide could be imprecise). Table 1 recapitulates these
characteristics.

4.3 Behavior of variables

The guide chooses an itinerary at the regional mile-
stone that could be modified at the local or zonal
milestones, if new information invalidate initial hy-
pothesis. Some variables could be missed at regional
or local milestones. For example, the variable Dis-
cipline of the group is absent at the regional mile-
stone, if the guide does not know the group. Some
variables could become precise at local or zonal mile-
stones. For example, for the variable Nivological in-
formation, a general evaluation (estimation) is avail-
able at the regional milestone. At the local milestone,
more information is available about the two entering
variables of Nivological information: Snow cohesion
and Avalanche, but Warning signs, one of the two en-
tering variables of Avalanche is perceptible only at
the zonal milestone. Nivological information is an el-
ementary variable at the regional milestone and be-
comes a compound variable at the local and zonal
milestones, when its two grey entering variables be-
come available.

4.4  Representation of variables

The quantitative elementary variables are the inputs
of the system and could be measured by instruments
such as thermometer, anemometer, wind sensor, hy-
grometer, inclinometer, and rain gauge. The qualita-
tive elementary variables are qualified by the guide.
The compound variables are determined by their en-
tering variables. For example, the variable Exter-
nal factors that is composed of Nivological informa-
tion and Meteorological information, is determined
by its two entering variables : External factors =
f(Nivological, Meteorological). The two variables
Nivological information and Meteorological informa-
tion have three modalities: bad, average, good. the
variable External factors has four modalities: bad, av-
erage, satisfactory, and good. Suppose that the value
of the variable Nivological information € [0, 10]. Us-
ing classic sets, for a given value of Nivological in-
formation, we only have two possibilities: 0 or 1 (bad
or good). Using fuzzy sets, we could give a number in
[0, 1] to evaluate this variable. Membership functions



allow to represent the subsets bad, average, and good
that divided € [0, 10]. To model these linguistic terms,
we propose trapezoidal membership functions that are
wildly applied in fuzzy decision-making, based on ex-
perts’ opinions (Simon et al. 2007) and correspond to
our need. Since, the gap between classic sets and hu-
man mental representation is due to strict borders of
classic sets. For extreme cases classical sets are ap-
propriated. For the value of Nivological information,
the interval [0,3] is completely bad (extreme case),
there is no need to differentiate 1 or 2. A trapezoidal
membership function allows to have an interval such
as [0, 3], as the kernel of the subset that represents
the term bad. Therefore trapezoidal membership func-
tions, as a compromise between classic and fuzzy
sets, are suitable to represent extreme cases such as
classical sets and to solve the problem of strict bor-
ders by fuzzy sets.

4.5 Inference rules

To calculate the value of each compound variable
from its entering variables, a set of inference rules
is requested. To create these inference rules, we
study the impact of entering variables. For exam-
ple, the two entering variables of External factors
have to be compared. As we can see in figure 4,
Nivological information is composed of Snow co-
hesion and Avalanche information, Nivological =
f(Cohesion, Avalanche). The Meteorological infor-
mation is composed of Temperature, Wind, and Visi-
bility, Meteo = f(Temperature, Wind, Visibility).
Their impact on External factors are not the same. Ac-
cording to the opinion of our expert! the variables Co-
hesion of snow and Avalanche information are very
important criteria that should be taken into consider-
ation to avoid the risk of being caught in avalanche.
Thus, Nivological information is more decisive than
Meteorological information. Inference rules are eas-
ier to create for the extreme values than intermediate
values. Adopting a cautious approach towards risk,
if one of Nivological information and Meteorological
information is bad, the variable the External factors is
also bad. the variable External factors is good, if both
Nivological information and Meteorological informa-
tion are good. Hence, Nivological information is more
important than Meteorological information, one of the
inference rules can be as follows. If Nivological infor-
mation is average and Meteorological information is
not bad, the External factor is average. If Meteorolog-
ical information is average and Nivological informa-
tion is good, the External factor is satisfactory.

The result of these rules is illustrated in figure 5.
The value of External factors comparatively changes
between 0 and 1 and increases more with the increase
of the value of Nivological information than the one
of the value of Meteorological information.

'The authors express thanks to Francois Gil, guide of Albi
French Alpine Club for sharing his opinions and experiences.
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Figure 6: Simulation results

5 RESULTS AND DISCUSSION

To choose an itinerary, a guide makes decisions at
three milestones: at home (regional decision), in the
mountain (local decision), and at the beginning of
a slope (zonal decision). To help the guide to make
decisions more quickly and effectively, the proposed
FDSS calculates the value of the decisions at each
milestone. The Go/No Go decision, the root of the
tree in figure 4, depends on 34 variables. At the re-
gional milestone, only 15 variables are available. At
the local milestone, the value of 16 other variables
are known. At the zonal milestone, all the variables
are known with precision. Each time a decision is re-
quired, 3 simulations are achieved, at the first time
(regional milestone): a pessimist one (situation 1), a
middle one (situation 2) and an optimistic one (situ-
ation 3) that determine the given values of leaf vari-
ables to calculate the decision value. When the deci-
sion is No Go, the simulations are stopped since the
guide would decide to stop the tour. As it is shown
in figure 6, the proposed FDSS includes 15 scenario.
The results of the FDSS are compared with the re-
sults of a naive decisional approach that, as human
behaviors when a great deal of information has to be
processed, would take into account only the variables
that could look more important such as the meteoro-
logical information and the depth of the new snow-
fall. An analogy with two series of accident is made
in order to conduct the decision in the simulations:
(1) three recent avalanches occurred in the weekend
of 18-20 March 2011, in Haute-Savoie, a French de-
partment?, (2) one week later, on 26 March 2001, in
Bourg-Saint-Pierre, in the canton of Valais in Switzer-
land, another avalanche caused at least four deaths 3.
Several crucial variables are ignored by the skiers.
The analogy with the accident cases shows that the
guide would be optimist with the known variables at
the regional milestone. The FDSS would calculated
0.82 and therefore to continue the tour, with a confi-

dence index of %. At the local milestone, the analogy

*http://alpes.france3.fr/info/
alpes--8-morts-en-un-week-end-67951452.html

3News on French public television channels of 27
march 2011, available on http://www.2424actu.fr/
actualite-du-jour/



with the accident cases shows that the guide would
also be optimist with a confidence index of % and
then pursue their ski tour. Finaly, at the zonal mile-
stone, different values of all variables are known. For
the case (1) the variable Temperature gradient, that
has a crucial impact on the variable Cohesion of snow,
(see figure 4), and the Danger rating (due to a hilly
landscape) are known. For the case (2) the follow-
ing variables are known : Danger rating (consider-
able), Group size (there were 11 people), Risky ele-
ments (trees, narrow corridor), Cohesion of snow that
depends on Temperature (mild), and Incline of the
slope (steep). Based on the values of these variables
that characterize the situations, the FDSS gives a de-
cision value decreased till 0.17 in the both cases. It
means the situations are risky and the guide has not to
go. Contrary to that, a naive approach that only takes
into consideration some of the available information
would ignore this piece of information. By applying
this naive approach, the guide would decide to go, as
it happened in the both case (1) and (2).

This comparison shows how an approach that does
not integrate all information can lead to disastrous sit-
uations. A such FDSS is then able to allow process a
high number of uncertain variables and alarm signals.
Therefore, we think that it could help skiers avoid
avalanches.

6 CONCLUSIONS AND PERSPECTIVES

In project management, the decision-maker has to
cope with uncertainty in a sequence of milestone de-
cisions wherein information become complete little
by little. Suspending the decision, waiting for new in-
formation, or taking into account only the available
information could unfavorably affect the decision. In
this approach, we try to reproduce human reasoning
process, applying a fuzzy inference system, to sup-
port decision under uncertainty. A typology for uncer-
tainty generators is proposed, integrating three main
classes: subject, object, and context. The main steps
of the proposed approach are as follows. First, the
variables that influence decision are identified, col-
lected, and organized according to the classes of the
proposed typology of uncertainty generators. Second,
a set of characteristics that describes each variable is
established. Third, the availability of each variable ac-
cording to different project’s phase is studied. Fourth,
the variables are evaluated and ordered according to
the importance of their impact on the decision. Fifth,
the inference rules are created, taking into account the
order of importance of the variables. An application
case for a ski resort project illustrated the proposed
method. The results are compared with a naive deci-
sional approach to cope with uncertainty and shows
the proposed approach is effective. As a perspective,
we propose to study the case wherein it is not pos-
sible to identify all requested variables at the begin-
ning of the project. To define a more convenient con-

fidence index of the decision, the importance of each
absent variable could be taken into account. Another
perspective is the application the model to collective
decision in industrial cases such as Go/No go mile-
stones in drug development projects that face a high
degree of uncertainty.
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