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Abstract Recent advances in structural tests for regression on functional variable are used to con-
struct test of no effect. Various bootstrap procedures are considered and compared in a simulation
study. These tests are finally applied on real world datasets dealing with spectrometric studies
using the information collected during this simulation study. The results obtained for the Tecator
dataset are relevant and corroborated by former studies. The study of a smaller dataset concerning
corn samples shows the efficiency of our method on small size samples. Getting information on
which derivatives (or which parts) of the spectrometric curves have a significant effect allows to
get a better understanding of the way spectrometric curves influence the quantity to predict. In
addition, a better knowledge of the structure of the underlying regression model may be useful to
construct a relevant predictor.

Keywords · no effect test · regression · functional variable · bootstrap · spectrometric curves.

1 Introduction

Many real world issues involve functional type phenomena (evolution of a quantity over time,
spectrometric curves, sound records, images, ...). Recent advances in computerized measuring
devices now allow to collect, stock and treat data discretized on thinner grids which enable to reflect
their functional nature. In order to avoid the classical drawbacks of a multivariate modelization,
it is often more relevant to adopt a more general point of view and consider these data as the
discretization of functional random variables (i.e. random variables taking values in an infinite
dimensional space). More precisely, we consider in this paper functional random variables taking
values in a semi-metric space (E , d), following the definition introduced in Ferraty and Vieu (2000).
Functional statistics have become an important topic of modern statistics. A more complete
overview of recent advances in statistics for functional data is given in the monographs by Ramsay
and Silverman (1997, 2002, 2005), Bosq (2000), Ferraty and Vieu (2006) and in the reviews by
Davidian et al. (2004), González Manteiga and Vieu (2007), Valderama (2007), or Ferraty (2010)
(see also for additional references Ferraty and Romain (2011) and the web site of the working
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group STAPH of Toulouse: http : //www.lsp.ups − tlse.fr/staph/). In this paper, we consider
more precisely regression models of the form

Y = r (X) + ǫ, (1)

where Y is a real random variable, X is a functional random variable taking values in a semi-metric
space (E , d), and the residual ǫ fulfills E [ǫ | X] = 0. Many estimation results have been proposed
for such models in the linear case (see for instance Ramsay and Dalzell, 1991, Cardot et al., 1999,
Ramsay and Silverman, 2005, and Crambes et al., 2009) or in the nonparametric case with kernel
methods (see Ferraty and Vieu, 2006 for a review). Other alternative methods have also been con-
sidered by James and Silverman (2005), Rossi and Conan Guez (2005), Laloë (2007), or Hernandez
et al. (2008), among others.

Testing the validity of structural assumptions made on the underlying regression model is a
different issue. They may be interesting by themselves (testing the validity of an a priori model,
of a given kind of modelization, . . . ). However, structural tests are also complementary tools to
estimation methods. On the one hand, they may be used before any estimation to test if X has
an effect on Y and more generally if this effect has a specific nature. Because many estimation
methods are based on structural hypotheses (linear model, single-index model,. . . ), it seems relevant
to check the validity of these assumptions. On the other hand, estimation results may lead to the
formulation of new structural assumptions whose validity has to be considered. An interesting
question is for instance the detection of the features of a functional data (for instance the portions
of a curve) that have a significant effect on the response variable. The construction of no effect
tests is a way to answer to such issues. Recently, a kernel method to construct general structural
tests in regression on functional variable has been proposed by Delsol et al. (2011), extending the
ideas of Härdle and Mammen (1993). The aim of this paper is to present how this general approach
can be used to construct no effect tests. The considered testing procedure completes former no
effect tests proposed in the specific case of functional linear models by Cardot et al. (2003, 2004)
or Müller and Stadtmüller (2005) and a no effect test based on projection methods introduced by
Gadiaga and Ignaccolo (2005). The no effect test presented in this paper allows to consider non
linear alternatives and does not depend on the choice of the projection basis.

The remainder of the paper is organized as follows. In the next section, we consider the
issue of no effect test, give the expression of the test statistic and state its asymptotic normality
under the null hypothesis and its divergence under the alternative. Then Corollary 1 focuses on
specific local alternatives. To improve the performances of our approach, various residual based
bootstrap methods are introduced to compute efficiently the threshold value. Section 3 is devoted
to simulation studies to compare the performances of our bootstrap methods. The issue of the
choice of the smoothing parameter and the bootstrap iterations number is also discussed. Finally,
the application of our testing procedures to Tecator and Corn spectrometric datasets is presented
in Section 4. The proofs of the main results of this work are given in Section 6.

2 No effect tests in regression on functional variable

2.1 Problem presentation and test statistic

This paper does not directly focus on the classical issues of estimating the regression operator
or predicting a value of the response variable. The aim is to get a better understanding of the
underlying regression model from the use of no effect tests. Such tests may be used as a prelimi-
nary step to check if the explanatory curve (or some of its features) has a significant effect on the
response, what may be also useful to construct a relevant prediction method. We want to test if
the explanatory functional variable X has an effect on the variable of interest Y by checking if the
regression operator r is constant.

Assume now we have three independent i.i.d. samples D : (Xi, Yi)1≤i≤n, D0 : (X0,i, Y0,i)1≤i≤mn

and D1 : (X1,i, Y1,i)1≤i≤ln of respective lengths n, mn and ln corresponding to the same regression
model (1) (as explained below, the regression operator [and hence the response] of this model may
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depend on n under the alternative hypothesis). In practice these samples may come from an origi-
nal sample of size Nn = n+mn+ ln. Then, for any function f : E 7→ R such that E[|f(X)|] < +∞,
we use the notation

∫

f(x)dPX(x) := E[f(X)] and denote PX the law of X. Finally, by simplicity,
we introduce the notation Y0 := 1

mn

∑mn

i=1 Y0,i (similar notations are used later to make reference
to empirical means of other variables).

The aim of this paper is to present a theoretical and practical way to test the null hypothesis

H0 : {∃C ∈ R, P (r (X) = C) = 1}

against the set of local alternatives

H1 :

{

∀n ∈ N
∗, ηn := inf

C∈R

‖rn − C‖
L2(wdPX) > 0

}

,

where rn are the regression operators corresponding to a sequence of local alternative models
Y n = rn(X) + ǫ, w is a known weight function (see the definition of the test statistic below),
and (ηn)n∈N

is a sequence of positive numbers which may tend to 0 (see assumption (7)). The
alternative hypothesis H1 allows to consider the case of a fixed alternative model Y = r(X) + ǫ
with H1 : {infC∈R ‖r − C‖L2(wdPX) > 0}. But H1 is defined in such a way that one may focus on
a sequence of local alternative models Y n = rn(X) + ǫ (from which, for each n, D,D0, and D1 are
three independent i.i.d. samples) for which the distance between the true regression operator rn and
the family of constant operators may tend to 0 when n goes to infinity. Note the law of explanatory
variables and residuals do not depend on n (only the law of the responses depends on n). Such
alternatives are usually considered to put in relief the way the test statistic is able to detect smaller
and smaller differences when n grows. Consider for instance a sequence of regression models defined
by rn = C + ηn∆(x) (common local alternative, see e.g. Stute, 1997, Lavergne and Patilea, 2007),
with ηn → 0 and fulfilling assumption (6). Even if the sequence (rn)n∈N tends to a constant operator
when n grows, the power of the test still tends to one (see Corollary 1). Stating the consistency
under such sequences of local alternatives is relevant to investigate from a theoretical point of view
the power of the test. However, in simulations studies and data set examples we usually deal with
fixed sample sizes and fixed alternatives. In real world studies the underlying regression model
usually does not change if more observations are made. Considering local alternative instead of
fixed ones mainly have a theoretical interest: giving a better understanding of the test behavior in
limit situations.
By simplicity, we forget the dependence on n in our notations, write Yi instead of Y n

i and r instead
of rn under the set of local alternatives H1. We consider in this paper the following test statistic:

Tn =

∫

(

n
∑

i=1

(

Yi − Y0

)

K

(

d (x,Xi)

hn

)

)2

w (x) dPX (x) ,

in which K and d respectively stand for a kernel function and a semimetric on E . It corresponds to
the test statistic proposed in Delsol et al. (2011) in the specific case of no effect tests. The use of a
weight function w is a standard tool in structural testing procedures (see for instance [32], [8]]) as
an alternative to the assumption that the law of X has a bounded support (see for instance [37]).
In our simulations and applications, the weight function w is the indicator of a ball B(0,M) , with
M large enough to ensure all Xi’s are in this ball. However, it is possible to consider other choices
of the weight function (for instance to remove outliers). The test statistic Tn also depends on the
nature of the kernel function K. It is usual to use a quadratic kernel (see for instance [25] for its
definition) in practice. The use of an other kernel function may be more relevant in some specific
situations. However, one may expect that as in estimation, the impact of the choice of the kernel
is small with respect to the influence of the choice of the smoothing parameter.

In order to explain more the effect of the choice of the semi-metric, let us assume that there
exist X̃ (respectively (X̃i)1≤i≤n, (X̃0,i)1≤i≤mn

, and (X̃1,i)1≤i≤ln ) such that d(X, X̃) = 0 a.s.

(respectively ∀1 ≤ i ≤ n, 1 ≤ j ≤ mn, 1 ≤ k ≤ ln, d(X̃i, Xi) = d(X̃0,j , X0,j) = d(X̃1,k, X1,k) =
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0 a.s.). By definition of Tn one gets

Tn = E[(
n
∑

i=1

(Yi − Y0)K(
d(Xi, X)

hn

))2w(X)]

= E[(
n
∑

i=1

(Yi − Y0)K(
d(X̃i, X̃)

hn

))2w0(X̃)],

with w0(X̃) = E[w(X)|X̃]. Hence, Tn actually considers assumptions H0 and H1 on the model
Y = r(X̃) + ǫ̃, with E[ǫ̃|X̃] = 0. If d is a metric, d(x1, x2) = 0 ⇔ x1 = x2 and there is no
ambiguity on the model. However, when a projection semi-metric is used, the null hypothesis and
the alternative one concern the effect of the selected components of the explanatory variable. When
a semi-metric based on derivative is considered, we actually test the no effect of the derivative of the
curve. Consequently, when d is a semi-metric, the test actually focuses on the null and alternative
hypotheses for any model Y = r(X̃) + ǫ̃, with d(X, X̃) = 0 a.s. and E[ǫ̃|X̃] = 0. Moreover, the
main results of this work may be obtained for these new hypothesis if assumptions are changed in
consequence (X and ǫ replaced by X̃ and ǫ̃). By simplicity we keep the notations used for model
(1).

2.2 Assumptions and theoretical results

In order to obtain the asymptotic normality of Tn, we need some assumptions. These conditions
were initially introduced and discussed in Delsol et al. (2011) where various sets of alternative
assumption are also considered. We start with assumptions on the statistic Tn:

w is nonnegative, not PX a.s. null, has a bounded support W ,

and is bounded. (2)

K has a compact support [0, 1], is nonincreasing and C1 on ]0, 1[

and K (1) > 0. (3)

For all γ > 0 the γ neighborhood of W is defined by

Wγ := {u ∈ E , ∃s ∈ W,d (u, s) ≤ γ}

and some assumptions are made on the regression model:

Under H1, ∃γ0 > 0, ∃C0 > 0, ∃β > 0, ∀x, y ∈ Wγ0
, ∀n ∈ N

∗, |rn(x)− rn(y)| ≤ C0d
β(x, y), (4)

∃M > 0, E
[

ǫ4|X
]

≤ M a.s. and E
[

ǫ2 | X
]

= σ2
ǫ > 0. (5)

Finally, we introduce some notations for key elements and sets that appear in our study:

Fx (s) = P (d (x,X) ≤ s) , Fx,y (s, t) = P (d (x,X) ≤ s, d (y,X) ≤ t) ,

Ω4 (s) =

∫

E×E

F 2
x,y (s, s)w (x)w (y) dPX (x) dPX (y) .

The following assumptions are linking the sequence ηn, the smoothing parameter hn and small ball
probabilities:

∃C1, C2, ∃Φ : R+
∗ → R

+
∗ , ∀x ∈ Wγ0

, ∀n ∈ N, C1Φ (hn) ≤ Fx (hn) ≤ C2Φ (hn) , and Φ(hn) → 0,(6)

∃vn → +∞, θn := vn

(

1

n
1
2Φ

1
4 (hn)

+ hβ
n

)

→ 0 and ηn ≥ θn, (7)

∃C3 > 0, Ω4 (hn) ≥ C3Φ
3+l (hn) with l <

1

2
and nΦ1+2l (hn) → +∞. (8)

The sequence rn is uniformly bounded on Wγ0
,

1

mn

mn
∑

i=1

rn(X0,i) = Op(1)

and nΦ
1−l
2 (hn)m

−1
n → 0. (9)
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Let us make some comments on previous conditions (see Delsol et al., 2010, for a deeper discussion).
Firstly, assumption (3) is common for functional kernel smoothing methods (see for instance [25]
or [20]). The assumptionK(1) > 0 may be replaced by any assumption allowing to state there exists

two positive constants C and C’ such that E[K(d(X,x)
hn

)] ≥ CFx(hn) and E[K(d(X,x)
hn

)K(d(X,y)
hn

)] ≥
C ′Fx,y(hn). Assumption (4) requires some smoothness of the local alternatives with respect to the
semi-metric d. This notably implies that rn(x1) = rn(x2) for any x1, x2 such that d(x1, x2) = 0.
If d is a semi-metric, this is not trivial and means the effect of X is reduced the effect of any X̃
such that d(X̃,X) = 0 a.s.. Hence the test is only able to detect alternative corresponding to an
effect of X̃. In fact the test considers hypothesis on the regression model with explanatory variable
X̃ (see comments at the end of Section 2.1). Then, assumption (5) can be extended to take into
account heteroscedastic errors. However, this would require to change the remaining assumptions
and make them less readable. It is also possible to make a weaker assumption on ηn if one considers
local alternatives of the form r (X) = C + ηn∆n (see Corollary 1). Then, assumptions made on
the law of X mainly concern the nature of the small ball probabilities Fx (h) and Fx,y (h) . The
choice of the semi-metric is crucial because it has a direct influence on the regularity assumption
made on the regression operator (and hence the null and alternative hypotheses) but also on the
nature of these small ball probabilities. It is for instance possible to show that assumption (6)
holds for some processes when one uses a projection semi-metric or that assumption (8) is fulfilled
with l = 0 in the case of fractal processes. Finally, assumption (9) holds for instance if mn = n
but it is possible to consider datasets of different sizes.
We now introduce the variables T1,n and T2,n that provide respectively bias and variance dominant
terms. Their law does not depend on the nature of the regression operator.

T1,n =

∫ n
∑

i=1

K2

(

d (Xi, x)

hn

)

ǫ2iw (x) dPX (x) ,

T2,n =

∫

∑

1≤i 6=j≤n

K

(

d (Xi, x)

hn

)

K

(

d (Xj , x)

hn

)

ǫiǫjw (x) dPX (x) ,

We are now able to state the following theorem dealing with the asymptotic normality of Tn under
the null hypothesis and its divergence under the alternative.

Theorem 1 Under assumptions (2)-(9) one gets:

– Under (H0),
1√

V ar(T2,n)
(Tn − E [T1,n])

L→ N (0, 1) ,

– Under (H1),
1√

V ar(T2,n)
(Tn − E [T1,n])

P→ +∞.

It is usual to consider local alternatives of the form H′
1 : {∀n ∈ N

∗, rn(x) = C + ηn∆n(x)}
where C is a constant, ηn a sequence of positive numbers, and ∆n a uniformly bounded sequence
of centered operators. In this case, the lower bound for the conditional mean in Lemma 3 may be
precised and we are able to state a more precise result under H′

1 when the following assumptions
hold:

∃γ0 > 0, ∃C0 > 0, ∃β > 0, ∀x, y ∈ Wγ0
, ∀n ∈ N

∗, |∆n(x)−∆n(y)| ≤ C0d
β(x, y), (10)

E[∆n(X)] = 0, ∃C∆ > 0, ∀n ∈ N
∗∆n(X) ≤ C∆, inf

n,C
‖∆n − C‖L2(wdPX) > 0, and hn → 0.(11)

The next corollary give a better understanding of the behavior of the test under these local alter-
natives.

Corollary 1 Let Zn = 1√
V ar(T2,n)

(Tn − E [T1,n]). Under assumptions (2)-(3), (5)-(6) and (8)-

(11) one gets:

– Under (H0), Zn
L→ N (0, 1) ,

– Under (H′
1),

1. if nΦ2(hn)η
2
nΩ

− 1
2

4 (hn) → 0, then Zn
L→ N (0, 1) ,

2. if nΦ2(hn)η
2
nΩ

− 1
2

4 (hn) → +∞, then Zn
P→ +∞.
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3. if ∃µ1, µ2 > 0, ∀n ∈ N
∗, µ1 ≤ nΦ2(hn)η

2
nΩ

− 1
2

4 (hn) ≤ µ2 , then Zn is asymptotically Gaus-

sian with positive mean Bn (uniformly bounded w.r.t. n) and variance 1 (i.e. Zn − Bn
L→

N (0, 1)) with

Bn ∼ nΦ2(hn)η
2
nΩ

− 1
2

4 (hn)

∫

(∆n(x))
2(E

[

K
(

d(X,x)
hn

)]

Φ−1(hn))
2w(x)dPX(x)

σ2
ǫ

√

2
∫ ∫

(

E[K(d(X,x)
hn

)K(d(X,y)
hn

)]
)2

w(x)w(y)dPX(x)dPX(y)Ω−1
4 (hn)

.

In practice one has to estimate the critical value of the test. The most natural way would be
to estimate the bias and variance dominant terms and use directly the quantiles of the asymptotic
law. However, the estimation of bias and variance terms seems difficult and it is often irrelevant
to use directly the quantiles of the asymptotic law to estimate the threshold. Instead of doing
so, bootstrap methods are introduced to generate Nboot datasets, with similar distribution as the
original dataset, for which the null hypothesis approximately holds. Then, we compute on each
datasets the test statistic and, for a given level α, as the critical value we take the 1− α quantile
of these values.

Finally, the test statistic Tn is based on an integral with respect to dPX . Because this inte-
gral can be regarded as a conditional expectation, we propose to use the following Monte Carlo
approximation:

Tn ≈ Vn :=
1

ln

ln
∑

k=1

(

n
∑

i=1

(

Yi − Y0

)

K

(

d (X1,k, Xi)

hn

)

)2

w (X1,k) .

2.3 Residual based bootstrap procedures

From the pioneer work of Efron (1979), bootstrap methods have encountered a strong interest.
They have been extensively studied in the context of nonparametric regression with scalar or mul-
tivariate covariate. They allow for example to improve the performances of confidence bands (see
for instance Härdle and Marron, 1990, Cao, 1991, Hall, 1992) and testing procedures (see for in-
stance Hall and Hart,1990, Härdle and Mammen, 1993, Stute et al., 1998) and can also be useful
to choose the smoothing parameter (see for instance Hall, 1990, Gonzalez Manteiga et al., 2004).
In the functional context, bootstrap methods have been less developed (see Cuevas and Fraiman,
2004, Fernández de Castro et al., 2005 and Cuevas et al., 2006). Our approach follows ideas in-
troduced for the functional nonparametric regression model in the recent work of Ferraty et al.
(2010) which focuses on the use of residual-based bootstrap methods to estimate confidence bands
and provides both theoretical and practical interesting results.

Direct methods that consist in making bootstrap directly on the pairs (Xi, Yi) are not adapted
to our situation. Indeed, it is obvious that if in the original dataset r is not constant, this will be
the same for bootstrap datasets obtained from such procedures. We propose to keep Xi unchanged
and apply bootstrap methods on the estimated residuals. Then, we construct bootstrap responses
making as if the null hypothesis is true.

We first introduce some notations to make easier the understanding of the bootstrap procedure.
If F is the cumulative distribution function of a given law L, and U ∼ U([0; 1]), then F−1(U) ∼ L,
where F−1 denote the generalized inverse of F . Consequently, it is natural to propose to generate
bootstrap samples from an estimation of this cumulative distribution obtained from the original
dataset. A first estimation is the empirical cumulative distribution function, whose use leads
to resampling methods (bootstrap values are drawn with replacement from the original sample).
Let (Z1, . . . , Zq) be q real random variables and denote (Z(1), . . . , Z(q)) the corresponding order
statistics. We define the function G{(Z1,...,Zq)} : [0; 1] 7→ R by

G{(Z1,...,Zq)}(u) =











Z(i) + (u(q + 1)− i)(Z(i+1) − Z(i)) if u ∈ [ i
q+1 ;

i+1
q+1 [, 1 ≤ i < q

Z(1) − 0.1|Z(1)| if u ∈ [0; 1
q+1 ]

Z(q) + 0.1|Z(q)| if u ∈ [ q
q+1 ; 1]
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G is the general inverse of kind of estimator of F (see the next lines). Let F̃q be the linear
interpolation between the points (Z(i),

i
q
) (piecewise affine and continuous approximation of F

between Z(1) and Z(q)). Now, we may consider

F1(t) =











0 if t < Z(1),

1 if t > Z(n),

F̃q(t) elsewhere

to be able to generate bootstrap values in [Z(1), Z(q)] that are not in the original sample. Because
we would like to be able to generate bootstrap values out of the range of the original sample, we
finally consider

F2(t) =











−1/q if t ≤ Z(1) − 0.1|Z(1)|,
1 if t ≥ Z(n) + 0.1|Z(n)|,
q

q+1F1(t) elsewhere

The function G is the generalized inverse of F2 which is an approximation of the common cumu-
lative distribution of Z ′

is if q is large.

We propose the procedure presented hereafter in which r̂ stands for the functional kernel esti-
mator constructed from the three samples D, D0 and D1.

Bootstrap Procedure:

Pre-treatment:

1. Compute estimated residuals: ǫ̂i = Yi− r̂ (Xi) , 1 ≤ i ≤ n and ǫ̂0,i = Y0,i− r̂ (X0,i) , 1 ≤ i ≤ mn.

2. Center estimated residuals: ˆ̂ǫi = ǫ̂i − ǫ̂, 1 ≤ i ≤ n, and ˆ̂ǫ0,i = ǫ̂0,i − ǫ̂0, 1 ≤ i ≤ mn.

Repeat for 1 ≤ b ≤ Nboot steps 3-5 to generate Nboot bootstrap values of Tn:

3. Generate bootstrap residuals (three alternative methods):

a) Resampling or Naive bootstrap:
(

ǫ∗,bi

)

1≤i≤n
, respectively

(

ǫ∗,b0,i

)

1≤i≤mn

, are drawn with

replacement from
{

ˆ̂ǫi, 1 ≤ i ≤ n
}

, respectively from
{

ˆ̂ǫ0,i, 1 ≤ i ≤ mn

}

.
or
b) Smooth Naive bootstrap: ǫ∗,bi = G{(ˆ̂ǫi)1≤i≤n}(Ui), 1 ≤ i ≤ n, and ǫ∗,b0,i = G{(ˆ̂ǫ0,i)

1≤i≤mn
}(U0,i),

1 ≤ i ≤ mn, where ((Ui)1≤i≤n, (U0,j)1≤j≤mn
)
i.i.d.∼ U ([0; 1]).

or
c) Wild bootstrap: ǫ∗,bi = ˆ̂ǫiUi, 1 ≤ i ≤ n and ǫ∗,b0,i = ˆ̂ǫ0,iU0,i, 1 ≤ i ≤ mn, where the variables

((Ui)1≤i≤n, (U0,i)1≤i≤mn
)

i.i.d.∼ PB , are independent of (Xi, Yi)1≤i≤N and fulfill E [U1] = 0,

E

[

U j
1

]

= 1, j = 2, 3.

4. Generate bootstrap responses “under H0”: Y
∗,b
i = Y0+ ǫ∗,bi , 1 ≤ i ≤ n and Y ∗,b

0,i = Y0+ ǫ∗,b0,i , 1 ≤
i ≤ mn.

5. Compute bootstrap test statistic: T ∗,b
n computed from the sample

(

Y ∗,b
i , Xi

)

1≤i≤n
,
(

Y ∗,b
0,i , X0,i

)

1≤i≤mn

and (X1,i)1≤i≤ln .

Compute the empirical threshold value:

6. Take as threshold the empirical (1− α)-quantile of the family
(

T̃ ∗,b
n

)

1≤b≤Nboot

, where α is the

nominal level of the test. Denote τα its value.
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Finally, we reject assumption H0 if our test statistic Tn takes a value tn ≥ τα. This is equivalent
to reject H0 if the value empirical signification degree 1

Nboot

∑Nboot

b=1 1
T

∗,b
n >Tn

is smaller than the
nominal level α.

Remark: We study three wild bootstrap procedures constructed from three distributions
P 1
B , P

2
B , P

3
B initially introduced in Mammen (1993):

– P 1
B =

√
5+1

2
√
5
δ 1−

√
5

2

+
√
5−1
2
√
5
δ 1+

√
5

2

where δ is the Dirac function.

– P 2
B is the law of the random variable U defined by U = V1√

2
+

(V 2
2 −1)
2 , where V1, V2

i.i.d.∼ N (0, 1).

– P 3
B is the law of the variable U defined by U =

(

ζ1 +
V1√
2

)(

ζ2 +
V2√
2

)

− ζ1ζ2, where V1 and V2

are independent N (0, 1) random variables, ζ1 =

√

3
4 +

√
17
12 and ζ2 =

√

3
4 −

√
17
12 .

However, it is possible to apply the previous algorithm with any law PB .

In the remainder of the paper we use the following notations to make reference to the various
bootstrap methods we want to compare:

Res. Resampling procedure
S.N.B. Smooth Naive Bootstrap procedure
W.B.1 Wild Bootstrap procedure with P 1

B

W.B.2 Wild Bootstrap procedure with P 2
B

W.B.3 Wild Bootstrap procedure with P 3
B

3 Simulation studies: Nonparametrically generated growth curves

The aim of the present section is to compare empirical level and power properties of these bootstrap
procedures. It is also important to study how many bootstrap iterations are necessary to get
relevant results and to focus on the problem of choosing the smoothing parameter. The usual
nominal level α = 0.05 is used in our simulations and applications unless another value is precised.

In many simulation studies, the simulated curves are generated parametrically and hence only
depend on few parameters. To avoid this drawback, one focuses on datasets in which the curves are
simulated in a nonparametric way. To simulate each functional random variable Xi, we propose
the following procedure:

1. Simulate 1000 standard Gaussian random variables (ǫj)1≤j≤1000,

2. Compute Ut =
∑t

j=1 ǫj for 1 ≤ t ≤ 1000,

3. Compute U+
t = Ut + |min (min1≤t≤1000 Ut, 0) |, for 1 ≤ t ≤ 1000

4. Compute Xi,t =
∑t

j=1
U

+

j

1000 for 1 ≤ t ≤ 1000.

The values
(

Ut√
1000

)

1≤t≤1000
may be viewed as the discretization

(

Bi

(

t
1000

))

1≤t≤1000
of a Brow-

nian motion defined on [0; 1] with Bi (0) = 0. Then Wi (t) = Bi (t) + |min
(

infs∈[0;1] Bi (s) , 0
)

|
corresponds to a vertical translation of Bi (t) which only takes nonnegative values. Finally Xi (t) is
defined as the integral of

√
1000Wi between 0 and t. Each value Xi,t corresponds to approximation

of the value of Xi at the discretization point t/1000. The way simulated curves are defined implies
they all start from zero. The functional variables (Xi)1≤i≤n may be viewed as growth curves (see
Figure 1).
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Fig. 1 Sample of 100 nonparametrically simulated growth curves Xi’s.

Each simulated dataset contains 300 independent pairs (Xi, ǫi), where ǫi ∼ N (0, 1). For
each dataset, we consider various linear models (respectively non linear models) of the form Y =

k
∫ 1

0
X (t) cos (7.5t) dt + ǫ (respectively Y = k exp(−

∫ 1

0
X (t) cos (7.5t) dt) + ǫ) and construct for

each model three independent sub-datasets D, D0, and D1 containing 100 pairs (Xi, Yi). Each
sub-dataset is then used in a similar way as in the previous section. In this simulation one uses the
L
2 ([0; 1]) metric, a quadratic kernel K(t) = (1− t2)1[0;1](t) and the smoothing parameter hn = 4

(see Table 4 to get a study of the effect of the choice of the smoothing parameter). Table 1 gathers
the empirical probabilities of rejecting the no-effect assumption for various values of k computed on
10000 samples with Nboot = 100. R represents the empirical signal-to-noise ratio. The parameter
k quantifies the effect of the explanatory variable X on the response variable Y . When k = 0,
the variable X has no effect on Y , we are under the null hypothesis hence the empirical rejection
probability corresponds to the empirical level of the test. On the contrary, when k > 0 we are
under the alternative hypothesis and the empirical rejection probability represents the empirical
power of the test. Furthermore, the greater k is, the more the effect of X on Y is important (for
each family of models), and the more the empirical power of the test grows (see Table 1).

The first line of Table 1 hence corresponds to the empirical level of our no effect testing pro-
cedures while the other lines contain the empirical power of our testing procedures for various
alternatives. The results of the proposed methods are fairly good and have a similar nature. How-
ever the resampling procedure and the second and third wild bootstrap procedures seem a little
better in terms of level while wild bootstrap methods seem more powerful than smooth naive boot-
strap and give similar results than resampling. In addition, as discussed below, wild bootstrap
procedures are by nature more robust to the heteroscedasticy of the errors (see the discussion of
Table 3). Testing procedures are globally relevant to respect the nominal level but some methods
(resampling, second and third wild bootstrap for instance) seem better. Table 2 presents empirical
levels obtained on the same 10000 samples (those used to get Table 1) for various values of α.

We have only considered homoscedastic errors until now. In the multivariate case, it is well-
known that wild bootstrap methods are adapted to the presence of heteroscedastic errors. It would
be interesting to study the behavior of our methods in the heteroscedastic context. Let a : t 7→
cos (7.5t), b : t 7→ sin (7.5t) and define heteroscedastic errors : ǫki ∼ N

(

0,
(

1 + k|
∫ 1

0
X (t) b (t) dt|

))

.
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Table 1 Comparison of empirical level and power properties

Res SNB WB1 WB2 WB3 R
Y = ǫ 0.051 0.043 0.054 0.050 0.051 1

Y = 1

3

∫

1

0
X (t) cos (7.5t) dt+ ǫ 0.204 0.179 0.211 0.206 0.204 1.151

Y = 2

3

∫

1

0
X (t) cos (7.5t) dt+ ǫ 0.653 0.606 0.673 0.661 0.662 1.605

Y =
∫

1

0
X (t) cos (7.5t) dt+ ǫ 0.933 0.913 0.951 0.946 0.945 2.360

Y = 4

3

∫

1

0
X (t) cos (7.5t) dt+ ǫ 0.990 0.983 0.996 0.994 0.994 3.417

Y = 5

3

∫

1

0
X (t) cos (7.5t) dt+ ǫ 0.998 0.995 0.999 0.999 0.999 4.776

Y = 5 exp
(

−

∫

1

0
X (t) cos (7.5t) dt

)

+ ǫ 0.182 0.156 0.183 0.178 0.179 1.145

Y = 10 exp
(

−

∫

1

0
X (t) cos (7.5t) dt

)

+ ǫ 0.618 0.570 0.621 0.608 0.605 1.582

Y = 15 exp
(

−

∫

1

0
X (t) cos (7.5t) dt

)

+ ǫ 0.907 0.881 0.905 0.904 0.906 2.310

Y = 20 exp
(

−

∫

1

0
X (t) cos (7.5t) dt

)

+ ǫ 0.980 0.968 0.978 0.976 0.977 3.330

Y = 25 exp
(

−

∫

1

0
X (t) cos (7.5t) dt

)

+ ǫ 0.993 0.988 0.992 0.991 0.991 4.641

Table 2 Comparison of empirical level for various values of α

Model α Res SNB WB1 WB2 WB3
0.01 0.012 0.007 0.012 0.009 0.011

Y = ǫ 0.05 0.051 0.043 0.054 0.050 0.051
0.1 0.102 0.085 0.102 0.099 0.100
0.2 0.196 0.175 0.197 0.198 0.196

Table 3 Level and power properties in the case of heteroscedastic errors

k 0 0.25 0.5 0.75 1 1.25

Y = ǫk Res 0.061 0.037 0.041 0.037 0.027 0.029

Y = ǫk WB3 0.050 0.054 0.049 0.055 0.050 0.049

Y =
∫

1

0
X (t) a (t) dt+ ǫk Res 0.935 0.857 0.740 0.610 0.491 0.399

Y =
∫

1

0
X (t) a (t) dt+ ǫk WB3 0.942 0.878 0.806 0.701 0.604 0.530

R 2.363 1.956 1.697 1.526 1.409 1.326

We compare the results obtained by resampling and the third wild bootstrap methods on 1000 sam-
ples, with Nboot = 100 and α = 0.05, when the heteroscedasticity effect (i.e. k) grows. The way we
construct our alternative model implies that when k grows, the signal to noise ratio R decreases.
Hence the power of the test should decrease when k grows. As expected, wild bootstrap performs
better than resampling one because it does not destroy the heteroscedastic structure. The main
idea of bootstrap is to construct artificial samples whose distribution mimics the distribution of
the original sample in case of a no effect model to get a good approximation of the distribution of
Tn under the null hypothesis. Consequently, the resampling method may be unadapted in case of
heteroscedasticity because if E[(r − r̂)2(X1)] = o(1) (which holds under general assumptions, see
for instance Ferraty and Vieu, 2006), E[(ǫbj)

2|Xj ] =
1
n
(
∑

1≤i 6=j≤n E[σ
2(X1)] + σ2(Xj)) + op(1) but

E[ǫ2j |Xj ] = σ2(Xj). Such differences explain resampling method are not relevant (under the null
hypothesis and under alternatives) in the heteroscedastic case while wild bootstrap ones are still
adapted (because under the same assumption E[(ǫbj)

2|Xj ] = σ2(Xj) + op(1)). We observe in Table
3 a significant difference between the results obtained by the third wild bootstrap method and
those obtained by the resampling procedure. The empirical power of the wild bootstrap method
is significantly greater than the one obtained by the resampling procedure when the heteroscedas-
ticity is important. Moreover, the empirical level of the wild bootstrap stays near the theoretical
level 0.05 while the resampling procedure leads to much worse results. As a conclusion, if one
knows that the model under study is homoscedastic, the use of both wild bootstrap or resampling
will lead to comparable results. However, if one has no information on the heteroscedasticity or
homoscedasticity of the residuals, one would rather use a wild bootstrap procedure.

Consequently, we pay more attention to wild bootstrap methods in the remainder of the paper
and choose the third wild bootstrap procedure because it seems to make the balance between good
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level and power properties.

We are now interested in exploring how the choice of the smoothing parameter has an influence
on the level and the power of our testing procedures. We run our no effect test for various values
(fixed or data-driven) of the smoothing parameter on the same simulated samples (constructed
as before) in order to understand the impact of the smoothing parameter. Table 4 presents the
empirical rejection probabilities obtained with Nboot = 100 and α = 0.05 from these 1000 samples
(Xi, ǫi)1≤i≤300. For each sample we consider two models

M0 : Y = ǫ and M1 : Y = 10 exp

(

−
∫ 1

0

X (t) a(t)dt

)

+ ǫ

corresponding to null and alternative hypothesis respectively. It appears clearly that a wrong
choice of the smoothing parameter (too big or too small) lead to a loss in empirical power and
may also have a negative effect on empirical level. The choice of the smoothing parameter has
hence to be considered with care (it is common to statistical procedures based on kernel smooth-
ing). However, the empirical level of the test does not seem to be dramatically affected by the use
of a large smoothing parameter (over-smoothing r−E[Y ] is not an issue under the null hypothesis).

Cross-validation criterion is commonly used to get an appropriate value hCV of the smoothing
parameter for estimation purposes. However, nothing guarantees this data-driven value of the
smoothing parameter is still relevant for testing. Because K has a compact support, taking a
small smoothing parameter makes the integrand null. As explained at the end of Section 2, the
integral over dPX is estimated using Monte-Carlo approximation on a third subsample (D1 :
{(X1,k, Y1,k), 1 ≤ k ≤ ln}). We introduce hmin as the infimum of the smoothing parameter values
for which the integrand is strictly positive at any curve of D1 that belongs to W . In other words,
hmin corresponds to the infimum of the values of the smoothing parameter h for which

min
1≤k≤ln, X1,k∈W

n
∑

i=1

K

(

d (Xi, X1,k)

h

)

> 0.

Because K is decreasing on [0; 1] and K(1) > 0 (or more generally K(t) > 0 for 0 ≤ t < 1) this
infimum is defined by

hmin := max
1≤k≤ln, X1,k∈W

(

min
1≤i≤n

(d (Xi, X1,k))

)

.

For each sample, we compute the value of h0 = E(hmin ∗10000+1)/10000, where E stands for the
integer part function. This choice of the smoothing parameter ensures the integrand is positive at
any curve of D1 belonging to W .

The results presented in Table 4 illustrate that these data-driven choices of the smoothing param-
eter lead to relevant empirical level and power properties even if they are not designed for testing.
Figure 2.a presents the results of Table 4 in a graphical way to make easier the understanding of the
way empirical level (dotted curve) and power (solid curve) depends on the choice of the smoothing
parameter (the horizontal line represents the nominal level α = 0.05). Then, Figure 2.b presents
boxplots of the data-driven values of h0, hCV 0 (model M0), and hCV 1 (model M1) computed on
simulated samples in order to give an idea of their position with respect to fixed values. Some
values of hCV 0 are greater than 50 and does not appear because we have restricted our plot to a
vertical range of [0; 50] in which fixed values of the smoothing parameter have been considered.
We can observe hmin and hCV 1 take value concentrated around values for which we have obtained
good empirical level and power properties. Under the null hypothesis, the cross-validation criterion
may lead to take huge values of the smoothing parameter (the largest one was more than 171),
However, this does not seem to lead to non relevant empirical level properties.
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Table 4 Effect of the choice of the smoothing parameter on level and power.

h h0 hCV 1 3 5 7 9 11 16 21 30 50
M0 0.058 0.056 0.003 0.064 0.057 0.056 0.060 0.048 0.066 0.054 0.057 0.055
M1 0.524 0.483 0.398 0.753 0.454 0.279 0.183 0.137 0.111 0.091 0.085 0.079

Table 5 Effect of the choice of the bootstrap iteration number on level and power.

Nboot 20 50 100 200 500 1000
Level 0.044 0.056 0.044 0.047 0.047 0.047
Power 0.529 0.644 0.613 0.619 0.628 0.632

This work aims to present a new no-effect test, study its performances on simulations, and
illustrate its practical use on spectrometric data. The automatic choice of an optimal smoothing
parameter for testing purposes is a relevant challenge for the future, but I think it is out of the
scope of this work. The seminal paper by Gao and Gijbels (2009) in the multivariate context is a
relevant starting point.
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Fig. 2 a) Effect of the smoothing parameter on empirical level and power. b) Repartition of the values taken by
data-driven smoothing parameters.

Our testing procedures also depends on the value of the bootstrap iteration number that has
to be chosen by the user. Table 5 illustrates how empirical level and power may be sensitive to
the number of bootstrap iterations Nboot. The rejection probabilities given in this table have been
obtained on 10000 samples, on which null and alternative hypotheses have been considered, for
various values of Nboot. As expected, empirical level and power may change a lot and be irrelevant
for small values of Nboot. A number of bootstrap iterations (Nboot) around 100 or 200 seems enough
to have a good approximation of the quantiles. Taking a higher number of bootstrap iterations
leads to similar results and takes more time.
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Table 6 No effect tests for the original curve X (unobserved), the denoised curve Z and the residual part R.
Empirical rejection probabilities obtained on 1000 samples with Nboot = 100, α = 0.05 and h = h0.

Explanatory variable used for the test
Model X Z R
M0 0.056 0.055 0.054
M1 0.502 0.505 0.056

Table 7 No effect tests for BM , BM3 and R3. Empirical rejection probabilities obtained on 1000 samples with
Nboot = 100, α = 0.05 and h = h0.

Explanatory variable used for the test
Model BM BM3 R3

M ′

1
: Y = ǫ 0.050 0.043 0.062

M ′

2
: Y = 5 exp

(

−

∫

1

0
BM3 (t) cos (7.5t) dt

)

+ ǫ 0.493 0.509 0.050

M ′

3
: Y = 24 exp

(

−

∫

1

0
R3 (t) cos (7.5t) dt

)

+ ǫ 0.065 0.046 0.523

Let us now conclude this section with two simulations in which only some features of the curves
have an effect on the response variable to observe if our testing procedures are relevant to detect
them. By simplicity, we consider situations where the informative and non-informative features of
the curves are independent to check if the test is relevant to detect their respective nature. How-
ever, the features of a curve (derivatives, parts) may be dependent. In this case, the detection of
informative features is more complex and require to consider variable selection tests. An heuristic
use of no effect tests on residuals is also discussed in Section 4.

Assume first explanatory curves are observed with an additive independent white noise η, that is
to say we observe X̃i(t) = Xi(t) + η(t) instead of Xi(t). A spline approximation (with three knots
and splines of order 3) Z of each curve X is used to remove the independent noise (see Fig 3.a).
The empirical rejection probabilities presented in Table 7 show our no effect testing procedures is
able to detect the effect of the de-noised curve Z and does not detect any significant effect of the
residual curve R = X̃ − Z.
A similar use of no effect test is finally considered to check if the effect of a Brownian motion

BM starting from 0 may be reduced to the effect of its first three principal components scores
(explaining more than 90 percent of the variability). For each simulated sample, three models
M ′

1,M
′
2, and M ′

3 have been introduced to cover no-effect of BM , effect of BM reduced to BM3

(projection of BM on its first three components), and effect of BM reduced to R3 = BM −BM3.
As expected, the effect of BM3 (respectively R3), which may be regarded as the global shape (see
Figure 3.b) of BM (respectively the deviation of BM from its global shape), is well detected as
significant for model M ′

2 (respectively model M ′
3) and not significant elsewhere. However, even if

signal to noise ratios in models M ′
2 and M ′

3 are similar, a significant effect of BM itself is only
detected for M ′

2. The use of the L
2 metric gives a lot of importance to the first components of

BM (explaining a great part of variability of BM) and is hence not relevant when the effect only
comes from the residual part of the trajectory. The use of the semi metric induced by the three
first PC scores is equivalent to consider BM3 as explanatory variable, while the use of a metric
based on remaining scores would lead to consider R3 (see the comment at the end of Section 2.1).
These no effect tests may be seen as tools to check if rd(x) = E[Y |d(X,x) = 0] is constant or not.
The use of various semi-metrics may be relevant to detect the effect of some features of a curve
(see Section 4).
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Fig. 3 a) An example of noisy curve X̃ (dotted line), its denoised version Z (dashed line) and the true curve X (solid
line). b) An example of simulated Brownian motion trajectory BM (solid line) and its projection BM3 (dotted line)

4 Application to spectrometric datasets

In many practical situations one is interested in getting the chemical composition of a given sub-
stance. Such situations may for instance appear in domains like chemistry, medicine or food
industry. Health related and nutritional considerations have a strong impact on food industry
since people want to have more and more informations and guarantees on the quality of the prod-
ucts they consume. Chemical analysis allows to get the exact composition of an aliment but costs
time and money. To avoid these drawbacks, industrials often prefer to give an estimation of this
chemical composition from the observation of spectrometric curves that can be obtained more eas-
ily. During a spectrometric study, one emits a light of a given wavelength on the substance under
study and one measures how much it absorbs the light emitted. This operation is repeated for
various wavelengths, what allows to construct a spectrometric curve that represents the absorbance
in function of the wavelength of the light emitted. This kind of data is by nature functional. See
for instance the discussion in Leurgans et al. (1993): “[...] the spectra observed are to all intents
and purposes functional observations”. The functional representation of spectrometric data is a
common practice in the chemometrics community since the seminal paper by Alsberg (1993). A
lot of work has been done on multivariate feature selection in this field with the aim of selecting
wavelength ranges (see Leardi, 2003, and the references therein). The no effect tests discussed in
this paper offer an interesting way to test if some functional features have a significant effect.

We consider in this paper two real world datasets coming from food industry where the use of
spectrometric curves to predict the chemical composition of the aliment can be considered. Pre-
vious studies of spectrometric samples have allowed to observe that derivatives of spectrometric
curves play an important role in the prediction of the chemical composition of the substance. This
fact is also corroborated by empirical procedures classically used in chemistry in the same context
(see the discussion in Ferraty and Vieu, 2002). Two questions arise from these considerations.
Which derivatives have a significant effect to predict the quantity of a given chemical element con-
tained into the substance? Which parts of the spectrometric curve have a significant effect to make
this prediction? These two questions can be investigated by means of no effect testing procedures.

We propose to use our no effect tests taking as explanatory variables the successive derivatives
(or some parts) of spectrometric curves. We will use in the remaining of the manuscript the
L
2 metric (unless more precision is given). Note that the choice of the semi-metric has a direct

influence on the nature of the null and alternative hypothesis of our tests (see the comment at the
end of Section 2.1).
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4.1 Tecator dataset

The first dataset is related to the issue of predicting the moisture, fat and protein contents of finely
chopped meat pieces.
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Fig. 4 Sample of spectrometric curves

For each of the 215 meat pieces, we have at our disposal the spectrometric curve Xi (with a wave-
length range of 850 - 1050 nm and 100 measures per curve) and the exact values of moisture (YMi),
fat (YFi) and protein (YPi) contents (obtained by chemical analysis). This dataset, called Tecator
dataset in the literature, is available on Statlib web site (http://lib.stat.cmu.edu/datasets/tecator).
It can be regarded as a reference dataset in functional statistics. Indeed, since the original study
of Borggaard and Thodberg (1992) based on neural networks, many authors have considered the
issue of predicting the fat content from the spectrometric curve (see for instance Ferraty and Vieu,
2002, Ferré and Yao, 2005, Aneiros-Pérez and Vieu, 2006, Ferraty et al., 2006, Ferraty and Vieu,
2006, Ferré and Villa, 2006, Ferraty et al., 2007, or Mas and Pumo, 2007, for some recent refer-
ences). This dataset has also been considered through other issues like curve classification (see
Dabo-Niang et al., 2006) or common structure detection (see Ferraty et al., 2007). Most of these
works were oriented towards estimation or classification issues while in the present paper we focus
on no effect tests. The aim of structural testing procedures is clearly different and is interesting
by itself (testing some a priori model or some theoretical assumptions on the model) but also as
a complementary tool to these methods (check the validity of structural assumptions used to con-
struct an estimator, test some questions arising from estimation results, ...).

Before discussing our results let us explain how they have been obtained. For each set of no
effect tests, the original sample is randomly splitted into three datasets of respective length n = 90,
mn = 90, and ln = 35. The empirical signification degree (defined above in Section 2.3) of each test
is computed from these three subsamples with the third wild bootstrap method, the smoothing
parameter h0, and Nboot = 100. The values of empirical signification degrees obtained for 100
repetitions of this procedure are presented through boxplots (see for instance Fig 5). In this plots,
an horizontal line stands for the nominal level α = 0.05. A significant effect is detected if the values
of the empirical signification degree are smaller, what means their boxplot is concentrated below
this line. Because the value of the empirical signification degree depends on the way the original
sample is splitted, in some cases it is not clear if we should decide that the effect is significant or
not (some values are smaller than α but others are greater). The construction of testing procedures



16

avoiding the issue of splitting the original dataset is an important aim for further improvements of
our testing procedure but is out of the scope of this work.

At first glance, spectrometric curves have a similar shape and seem to differ mainly by a vertical
shift (see Figure 4) which may be artificial or irrelevant in our context. It is usual in chemometrics
to transform the original spectrometric curves to remove this shift and eventually consider deriva-
tives (see the discussion in Ferraty and Vieu, 2002). However, one may wonder if these shifts do not
contain any useful information on fat, protein or moisture content. DenoteM the pointwise average
mean of the spectrometric curves. Each curve Xi of the dataset is decomposed in the following way
Xi = Ai +Ri, where Ai is the average curve M plus the vertical shift of Xi and Ri stands for the
remainder. Please note Ai − Aj (respectively Ri − Rj) corresponds to the difference between the
averages mi and mj of the curves Xi and Xj (respectively to the difference (Xi−mi)− (Xj−mj)).
A first set of no effect tests is made to check if the original curve (explanatory variables Xi’s),
its vertical shift (explanatory variables Ai’s), or the remainder (explanatory variables Ri’s) have a
significant effect on moisture, fat or protein content.
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Fig. 5 Empirical signification degrees of no effect tests for the original curve, the vertical shift and the remainder.

The test detects a significant effect of the remainder on protein, fat and moisture contents. The
effect of the spectrometric curve is detected as significant only for fat and moisture contents and
we globally observe greater values of the empirical signification degree than those obtained with
the remainder. This may come from the fact the L2 of the differences between curves gives a lot of
importance to differences between their average values which may have only a small (or inexistent)
effect on the chemical content. Indeed, the effect of the vertical shift appears to be non significant
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on protein content and is not actually clearly significant for fat content (and moisture content in a
smaller proportion). However, a significant effect of this vertical shift on fat and moisture content
is often detected. As explained above, this vertical shift is usually removed from the explanatory
variable. Is there a loss of information by doing so or is the information provided by the vertical
shift also present in the residual part? The average m of the curve X depends significantly on the
remainder R (see results of no effect tests using mi as response variable and Ri as explanatory
variable in Figure 6.a). To understand if this vertical shift provides its own information one
should in principle use variable selection tests. However, because this paper focuses on no effect
tests, an heuristic approach is considered. The information on fat, moisture and protein contents
contained in the remainder R is first removed by estimating the corresponding residuals RF , RM

and RP (using an additive model with several derivatives of R whose successive order is chosen
by cross-validation and k-nearest-neighbor functional kernel estimators [see Ferraty an Vieu, 2006,
Burba et al., 2009 for some references], where the number of neighbors k is chosen locally by
cross-validation). No effect tests do not detect any significant effect of the vertical shift (using as
explanatory variables Ai’s) on estimated residuals (see Figure 6.b)) and allow to check the effect
of the remainder has been removed (see Figure 6.c)).

Fig. 6 Results of No effect tests a) of the remainder R on the average of the curve m, b) of the vertical shift on
the residuals RF , RM , and RP , c) of the remainder on the residuals RF , RM , and RP .
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As discussed above the derivatives of the spectrometric curves (see Figures 4 and 7) are usually
considered to put in relief relevant features of the curves (see Ferraty and Vieu, 2002, 2006).
No effect tests constructed from the spectrometric curve and semi-metrics based on L

2 norm of
derivatives detect a significant effect of the derivatives of order 1,2,3 and 4 on fat, moisture and
protein content (see Figure 8).

850 900 950 1000 1050

−4
−2

0
2

4
6

8

First derivative

wavelength

Ab
so

rb
an

ce

850 900 950 1000 1050

−1
50

−5
0

0
50

10
0

Second derivative

wavelength

Ab
so

rb
an

ce

850 900 950 1000 1050

−6
00

0
−2

00
0

0
20

00
60

00

Third derivative

wavelength

Ab
so

rb
an

ce

850 900 950 1000 1050

−3
e+

05
−1

e+
05

1e
+0

5
3e

+0
5

Fourth derivative

wavelength

Ab
so

rb
an

ce

Fig. 7 Sample of derivatives of spectrometric curves
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Table 8 Leave one out mean squared errors

Derivation order 0 1 2 3 4
Moisture 28.361 5.311 3.009 6.191 3.947

Fat 48.938 6.685 2.731 6.747 3.967
Protein 4.523 1.450 2.100 1.579 1.628

Table 9 Boosting and leave one out mean squared errors

Number of derivatives used 1 2 3 4 Successive orders
Moisture 3.009 1.827 1.483 1.366 2,1,4,3

Fat 2.731 1.834 1.520 1.423 2,4,1,3
Protein 1.450 1.156 1.081 1.074 1,3,4,2

Moreover, the empirical signification degrees obtained with the original spectrometric curves
seem to be globally greater than those observed for their derivatives (the L

2 norm gives a lot of
importance to vertical shifts which contain few relevant information, see the discussion above).
The successive derivatives of spectrometric curves are linked by nature. Hence the result of our
test does not ensure every derivative provide its own relevant information and one can wonder if
the effect of all the derivatives is summarized by the effect of the best predictor. Former studies
of this sample (see for instance Ferraty and Vieu, 2002, 2006) have shown the second derivative
of the spectrometric curve is the best predictor for fat content. The detection of a significant
effect of other derivatives does not allow to understand if this effect is contained in the effect of
the second derivative. Such questions are relevant to detect informative features of the curve and
should be considered through variable selection tests. However, the recent work Ferraty and Vieu
(2009) shows the regression of estimated residuals on other derivatives of the spectrometric curve
may be relevant to improve the quality of the estimation (see also Table 9 for an application of
these boosting ideas to improve leave one out mean squared error). Hence it seems the estimated
residuals still depend on the other derivatives of the spectrometric curve. In this paper we focus
on no effect tests and propose in a heuristic way to use no effect tests on estimated residuals to see
if these additional effects are significant.
The efficiency of the successive derivatives to estimate the chemical content is investigated through
leave one out mean squared errors 1

n

∑n
i=1(Yi − r̂−i(Xi))

2 in which r̂−i stand for the k-nearest
neighbor functional kernel estimator constructed from the sample (Xj , Yj)1≤j 6=i≤215 (the number
of neighbors k is chosen by local cross-validation). The second derivative appears to be the best
predictor for fat and moisture contents while the first derivative is more relevant to predict protein
content (see Table 8). The quality of the estimation is illustrated in Figure 9.

Estimated residuals

RMi := YMi − ˆrM

(

X
(2)
i

)

, RFi := YFi − r̂F

(

X
(2)
i

)

and RPi := YPi − r̂P

(

X
(1)
i

)

are obtained using k-nearest-neighbor kernel estimators (the number of neighbors k is chosen by
local cross-validation each time such estimators are used in the remaining pages).

No effect tests detect a significant effect (for a level α = 0.05) of the third derivative on fat
content residuals for 53 random decompositions of the sample. The test detects a significant effect of
the first and fourth derivatives on fat content residuals only for a smaller number of decompositions
(30 and 39). No significant effect is detected for the other cases (or the test is significant for few
decompositions of the sample). This does not mean the considered derivative has no effect on the
estimated residuals, but only that this effect is not strong enough to be detected as significant
by our testing procedure (for a nominal level α = 0.05). A bad estimation of the residuals may
decrease signal to noise ratio and make more difficult the detection of additional effects. Moreover,
the construction of more powerful testing procedures might lead to the detection of other significant
effects.
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Fig. 9 Quality of the estimation of fat, moisture and protein contents using respectively twice the second derivative
and the first one.
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In this study of tecator data, no effect tests have been used to detect informative features
(vertical shift, deviation to the mean curve plus vertical shift, derivatives) of the spectrometric
curve. Because these features may be dependent an heuristic method using no effect tests on
residuals (w.r.t. the best predictive feature) is used to look for additional effect of the other
features. No evidence is given that removing the vertical shift leads to a loss of information.
And the dependence of moisture content residuals (obtained from the second derivative) on other
derivatives observed in former studies is significantly detected.

4.2 Corn dataset

We now consider a smaller dataset coming from the spectrometric study of 80 corn samples. This
dataset has a fairly small size. However, some simulation studies on small datasets (not presented
in this manuscript) show our testing procedures still have fairly good level and power properties
in such cases.
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Fig. 11 Sample of spectrometric curves

For each corn sample we have at our disposal a spectrometric curve (with a wavelength range of
1100 - 2498 nm with 700 measures per curve, see Figure 11) and the exact values of moisture,
oil, protein and starch contents (obtained by chemical analysis). This dataset is available at the
following address : http : //software.eigenvector.com/Data/Corn/index.html (where a thorough
description of the data is given). The issue related to this dataset still is to study how the chemical
composition of the corn samples is explained by the corresponding spectrometric curve. However,
the small size of this dataset constitutes an additional interesting challenge. Of course, our results
could be improved if we had at our disposal a more important dataset.

A first analysis is conducted as for Tecator dataset to detect significant effect of the derivatives.
The original sample is splitted into three sub-datasets of respective length n = 40, mn = 20 and
ln = 20.
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Fig. 12 No effect tests in moisture, oil, protein and starch content prediction

The first derivative has a significant effect on moisture content and the fourth derivative has
significant effect on protein content for 61 random decompositions. The significant effect of the
original curve (and the third derivative in smaller proportion) on moisture content and of the third
derivative on protein content is less clear. No significant effect is detected for oil and starch content.

To end this study, let us focus now on moisture and protein content prediction. The whole
spectrometric curve is splitted into seven consecutive curves Xa, Xb, Xc, Xd, Xe, Xf , and Xg (see
Fig. 13) and the question is to detect parts which have a significant effect on moisture or protein
content. This decomposition has been chosen in an arbitrary way and other decompositions could
be considered. Semi-metrics based on derivatives are considered to help detect significant effect of
different features.

1200 1400 1600 1800 2000 2200 2400

0.0
0.2

0.4
0.6

0.8

wavelength

Ab
so

rb
an

ce

Xa Xb Xc Xd Xe Xf Xg

Fig. 13 Spectrometric curves decomposition
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Fig. 14 No effect tests and spectrometric curves decomposition with various semi-metrics (based on derivatives of
order 0, 1, 2,3, and 4)
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Fig. 15 No effect tests and spectrometric curves decomposition with various semi-metrics (based on derivatives of
order 0, 1, 2, 3, and 4).
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On the one hand, the tests put in relief a significant effect of Xb, Xd and Xe on moisture content
for various semi-metrics (see Figure 14). The effect of Xb and Xf may be seen as significant for
some semi-metrics (derivative of order one and two respectively). However, no clear evidence of
the effect of extreme parts Xa and Xg is given. On the other hand, Xe has a significant effect
on protein content for several semi-metrics (see Figure 15). The significant effect of parts Xa, Xf

(and in a smaller proportion Xc) may be discussed from the results obtained with third, second
(and first) derivative. No clear evidence of the effect of Xb, Xd and Xg is observed.

These testing procedures have been used to detect portions of the spectrometric curve which
are “informative” on moisture or protein content. Some differences in terms of selected parts and
derivation orders are observed between these two situations. This illustrates the information on
moisture and protein contents may come from different features of the original curve. However,
the successive parts (and their derivative) of the original spectrometric curve clearly depend one
from the other. Hence, the information provided by a portion of the curve may be included into
the effect of an other. Consequently, it would be interesting to use variable selection tests. We
may propose, as in the study of Tecator data, to estimate the residuals obtained from the best
predictive part and apply no effect tests on estimated residuals in an heuristic way. Residuals are
obtained using a linear spline estimator (see for instance Crambes et al., 2009) computed from Xb

for moisture content and Xe for protein content (the best predictive parts in terms of leave one out
mean squared error). See estimation quality in Figure 16. The same no effect testing procedures
are used on these estimated residuals. No significant effect is detected (see Figure 17 and 18).
What only leads to the conclusion the test does not allow to detect as significant the effect of other
parts of the curve on estimated residuals. A better estimation of residuals, a larger sample or a
more powerful testing procedure might lead to detect significant effects on residuals. Moreover,
variable selection tests would be more adapted to actually test if the information contained in the
whole spectrometric curve concerning moisture content (respectively protein content) is given by
Xb (respectively Xe).

Fig. 16 Linear estimation of moisture and protein contents from Xb and Xe



25

Xa Xb Xc Xd Xe Xf Xg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No effect tests: Protein

Parts of the curve (derivation order 0)

E
m

pi
ric

al
 S

ig
. D

eg
re

e

Xa Xb Xc Xd Xe Xf Xg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No effect tests: Protein

Parts of the curve (derivation order 1)
E

m
pi

ric
al

 S
ig

. D
eg

re
e

Xa Xb Xc Xd Xe Xf Xg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No effect tests: Protein

Parts of the curve (derivation order 2)

E
m

pi
ric

al
 S

ig
. D

eg
re

e

Xa Xb Xc Xd Xe Xf Xg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No effect tests: Protein

Parts of the curve (derivation order 3)

E
m

pi
ric

al
 S

ig
. D

eg
re

e

Xa Xb Xc Xd Xe Xf Xg

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No effect tests: Protein

Parts of the curve (derivation order 4)

E
m

pi
ric

al
 S

ig
. D

eg
re

e

Fig. 17 No effect tests on estimated residuals of protein content with various semi-metrics (based on derivatives of
order 0, 1, 2, 3, and 4).
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Fig. 18 No effect tests on estimated residuals of moisture content with various semi-metrics (based on derivatives
of order 0, 1, 2, 3, and 4).
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In a more general context, one can imagine to develop an automatic testing procedure to detect
which part of a spectrometric curve has an effect to predict the proportion of a specific substance.
This would allow to adjust the necessary wavelength range we have to study to predict this propor-
tion. Such an automatic procedure to detect functional features provides an interesting alternative
to the classical multivariate feature selection methods considered in chemometrics (see Leardi,
2003, for more references).

5 Conclusion

A new way to construct no effect tests in regression on functional variable is introduced and
various bootstrap no effect testing procedures to compute the threshold are proposed. An extensive
simulation study has been made to compare these methods and to consider the issue of the choice
of the smoothing parameter and the number of bootstrap iterations. As expected, wild bootstrap
methods appear to be more adapted to study models with heteroscedastic errors. This paper also
focuses on practical considerations arising from two real world spectrometric datasets. The issue
related to such datasets is often to predict the quantity of a given chemical element contained in
the substance we study. Many authors have noted that the derivatives of spectrometric curves
are good predictors. Because of this observation one may wonder which derivatives and which
parts of spectrometric curves have a significant effect on the variable of interest. The results
obtained on the tecator dataset are relevant and corroborated by former studies of this “reference”
dataset. Moreover, the last application on Corn dataset illustrates that our testing procedure
leads to interesting and efficient results even in the case of small datasets. The main theoretical
result presented in this work is relevant to ensure the good behavior of the test statistic Tn.
However, in practice, the direct use of the asymptotic distribution to fix the threshold value may
lead to irrelevant results. That is why we propose to use bootstrap procedures to compute this
threshold. The theoretical proof of the validity of these bootstrap procedures is actually in progress.
The asymptotic normality result stated in this manuscript is used as a preliminary step and the
remaining of the proof follows similar ideas as those used to state our result. Of course, this point
is an important challenge for the future and should be considered in an other work.

6 Proofs:

Here are the proofs of the main results of this manuscript. The letter C stand for any positive
constant (which may change from one line to the other).
Proof of Theorem 1: Theorem 1 is a direct application of Theorem 3.2 in Delsol et al. (2011).
Here are the main ideas of its proof.

Lemma 1 Under assumptions of Theorem 1, V ar(T1,n) = O(nΦ2(hn)) and T2,n is asymptotically
Gaussian with asymptotic variance Vn such that C1n

2Φ3+l(hn) ≤ Vn ≤ C2n
2Φ3(hn) for two positive

constants C1 and C2.

Lemma 2 Under H0 and assumptions of Theorem 1, one gets

Tn − T1,n − T2,n = Op(n
2Φ2

E[(r(X)− Y0)
2]) +Op(n

3
2Φ2(hn)E[(r(X)− Y0)

2]
1
2 )

Lemma 3 Under H1 and assumptions of Theorem 1, one gets

Tn − T1,n − T2,n = E[Tn − T1,n − T2,n|D0] +Rn,

with E[Tn − T1,n − T2,n|D0] ≥ Cn2φ2(hn)‖rn − Y0‖2L2(wdPX)(1 + op(1)) for some positive constant

C and Rn = op(E[Tn − T1,n − T2,n|D0]).

The proof of these lemma (given in a more general context in Delsol et al., 2010) is based on bounds
for the mean and variance of these terms (or their decomposition). We omit the details of these
tedious but straightforward computations to give more explanations on the main changes.
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Now, under the null hypothesis r ≡ E[Y ] and hence E[(r(X) − Y0)
2] = O( 1

mn
). Consequently,

Lemmas 1 and 2 together with assumptions 8 and 9 lead to

Tn − E[T1,n]
√

V ar(T2,n)
=

T2,n
√

V ar(T2,n)
+Op(

1
√

nΦ1+l(hn)
) +Op(

nΦ
1−l
2 (hn)

mn

) +Op(

√
nΦ

1−l
2 (hn)√
mn

).

=
T2,n

√

V ar(T2,n)
+ op(1)

Lemma 2 and Slutsky’s theorem are enough to conclude the asymptotic normality of Tn.

Under the alternative, ‖rn−Y0‖2L2(wdPX) ≥ η2n because Y0 is a constant operator. Then, Lemma
3 lead us to the conclusion

(1 +
Rn

E[Tn − T1,n − T2,n|D0]
) = 1 + op(1).

Hence, if An := {(1 + Rn

E[Tn−T1,n−T2,n|D0]
) ≥ 1

2}, for all ǫ > 0, there exists Nǫ such that for all

n ≥ Nǫ, P (An) ≥ 1− ǫ. On the other hand, on An one gets:

Tn − E[T1,n]
√

V ar(T2,n)
≥ T2,n
√

V ar(T2,n)
+Op(

1
√

nΦ(hn)
) +

C

2
nφ

1
2 (hn)η

2
n(1 + op(1)

≥ Op(1) +
C

2
nφ

1
2 (hn)η

2
n(1 + op(1))

≥ C

2
nφ

1
2 (hn)η

2
n(1 + op(1))

This is enough to state from assumption (7) the conclusion

∀A ∈ R, ∀ǫ > 0, ∃NA,ǫ, ∀n ≥ NA,ǫ, P (
Tn − E[T1,n]
√

V ar(T2,n)
≤ A) ≤ ǫ.

Proof of Corollary 1: The asymptotic normality under H0 is given by Theorem 1.

Assume now H′
1 holds. We first decompose Y0 = (C + 1

mn

∑mn

i=1 ǫ0,i)+ ηn
1

mn

∑mn

i=1 ∆n(X0,i) =:

Y00 + ηn∆ and Tn = T0n +Rn, with T0n the test statistic constructed from the variables ((Xi, C +
ǫi))1≤i≤Nn

. Because T0n is constructed from a no effect model, Theorem 1 can be used to state its
asymptotic normality. Only remains the study of the remaining term Rn which can be decomposed
in the following way (where ǫ0 stands for the empirical mean of the residuals in D0)

Rn = 2ηn

∫

(

n
∑

i=1

(∆n(Xi)−∆)K

(

d(Xi, x)

hn

)

)





n
∑

j=1

(ǫj − ǫ0)K

(

d(Xj , x)

hn

)



w(x)dPX(x)

+η2n

∫

(

n
∑

i=1

(∆n(Xi)−∆)K

(

d(Xi, x)

hn

)

)2

w(x)dPX(x)

= 2ηnR1,n + η2nR2,n (12)

Now, denotes S1n(x) =
∑n

i=1(∆n(x)−∆)K
(

d(Xi,x)
hn

)

and S2n(x) =
∑n

i=1(∆n(Xi)−∆n(x))K
(

d(Xi,x)
hn

)

.

One gets easily

E[R2,n|D0]

=

∫

E[S2
1n(x)|D0]w(x)dPX(x) +

∫

E[S2
2n(x)|D0]w(x)dPX(x)

+2

∫

E[S1n(x)S2n(x)|D0]w(x)dPX(x). (13)



28

For n large enough d(x,X) ≤ hn and x ∈ W implies X ∈ Wγ0
, hence assumption (10) on ∆n gives

|S2n| ≤ C0h
β
n

∑n
i=1 K

(

d(Xi,x)
hn

)

and

∫

E[S2
2n(x)|D0]w(x)dPX(x) = Op(n

2h2β
n Φ2(hn)).

On the other hand, one gets

∫

E[S2
1n(x)|D0]w(x)dPX(x)

=

∫

(∆n(x)−∆)2E





n
∑

i=1

K2

(

d(Xi, x)

hn

)

+
∑

1≤i 6=j≤n

K

(

d(Xi, x)

hn

)

K

(

d(Xj , x)

hn

)

|D0



w(x)dPX(x)

=

∫

(∆n(x)−∆)2n(n− 1)(E

[

K

(

d(Xi, x)

hn

)]

)2w(x)dPX(x)(1 + op(1)) (14)

Assumption (11), (14) and Cauchy Schwartz inequality lead to the conclusion

∫

E[S2
2n(x)|D0]w(x)dPX(x) = op(

∫

E[S2
1n(x)|D0]w(x)dPX(x)) (15)

∫

E[S2n(x)S1n(x)|D0]w(x)dPX(x) = op(

∫

E[S2
1n(x)|D0]w(x)dPX(x)). (16)

Because R1,n is centered conditionally to D0, it comes directly from (13)-(16) that

E[Rn|D0] = η2n

∫

(∆n(x)−∆)2n(n− 1)(E

[

K

(

d(Xi, x)

hn

)]

)2w(x)dPX(x)(1 + op(1)) (17)

Since ∆
P→ 0, one gets

E[Rn|D0] = η2n

∫

(∆n(x))
2n(n− 1)(E

[

K

(

d(Xi, x)

hn

)]

)2w(x)dPX(x)(1 + op(1)) (18)

Assume now

Rn − E[Rn|D0] =

{

op(n
2Φ2(hn)η

2
n) if ∃m1 > 0, ∀n ∈ N

∗, nΦ2(hn)η
2
nΩ

− 1
2

4 (hn) ≥ µ1,

op(
√

V ar(T2,n)) if nΦ
2(hn)η

2
nΩ

− 1
2

4 (hn) → 0.
(19)

Recall that there exists an explicit sequenceK2(1) ≤ Γn ≤ K2(0) such that V ar(T2,n) = 2(σ2
ǫ )

2Γnn(n−
1)Ω4(hn) (see Delsol et al., 2010). If (19) is true then one gets:

Zn :=
Tn − E[T1,n]
√

V ar(T2,n)
=

T0n − E[T1,n]
√

V ar(T2,n)
+

E[Rn|D0]

σ2
ǫ

√

2Γnn(n− 1)Ω4(hn)
+

Rn − E[Rn|D0]
√

V ar(T2,n)
.

If nΦ2(hn)η
2
nΩ

− 1
2

4 (hn) → 0, then Zn
L→ N (0, 1) because two last terms are negligible.

If ∃µ1, µ2 > 0, ∀n ∈ N
∗, µ1 ≤ nΦ2(hn)η

2
nΩ

− 1
2

4 (hn) ≤ µ2, the last term is negligible and the second
one provide an additional bias

Bn ∼ Φ2(hn)η
2
nΩ

− 1
2

4 (hn)

∫

(∆n(x))
2(E

[

K
(

d(Xi,x)
hn

)]

Φ−1(hn))
2w(x)dPX(x)

σ2
ǫ

√
2Γn

.

Finally, if nΦ2(hn)η
2
nΩ

− 1
2

4 (hn) → +∞, the second term diverges and the others are negligible

towards this one. Hence Zn
P→ +∞.
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To end the proof we have to show (19). We introduce the notation Γi(x) = K
(

d(Xi,x)
hn

)

and

Din = ∆n(Xi)−∆ and use the following bounds for means and conditional variances:

ǫ0 = Op(
1√
mn

) (20)

E[|
∫

∑

1≤i,j≤n

DinΓi(x)Γj(x)w(x)dPX(x)|] = O(n2Φ2(hn)) (21)

E[(

∫

∑

1≤i,j≤n

DinǫjΓi(x)Γj(x)w(x)dPX(x))2] = O(n3Φ4(hn)) (22)

V ar(

∫

∑

1≤i 6=j≤n

DinDjnΓi(x)Γj(x)w(x)dPX(x)|D0) = Op(n
3Φ4(hn)) (23)

V ar(

∫ n
∑

i=1

D2
inΓ

2
i (x)w(x)dPX(x)|D0) = Op(nΦ

2(hn)). (24)

They may be obtained with similar ideas as those used in Delsol et al. (2011) together with the
fact ∆n(Xi)−∆ is almost surely uniformly (in n) bounded. Hence their proof is omitted here.

From these bounds, one gets

Rn − E[Rn|D0] = ηn(Op(
1√
mn

)Op(n
2Φ2(hn)) +Op(

√

n3Φ4(hn))) + η2nOp(
√

n3Φ4(hn))

= Op(ηn
n2Φ2(hn)√

mn

) +Op(ηnn
3
2Φ2(hn)) +Op(η

2
nn

3
2Φ2(hn))

Assumptions (8) and (9) are hence enough to state (19).
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