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We study the following microscopic model of infection or epidemic reaction: red and blue particles perform independent nearestneighbor continuous-time symmetric random walks on the integer lattice Z with jump rates DR for red particles and DB for blue particles, the interaction rule being that blue particles turn red upon contact with a red particle. The initial condition consists of i.i.d. Poisson particle numbers at each site, with particles at the left of the origin being red, while particles at the right of the origin are blue. We are interested in the dynamics of the front, defined as the rightmost position of a red particle. For the case DR = DB (in fact, for a general d-dimensional version of it), Kesten and Sidoravicius established that the front moves ballistically, and more precisely that it satisfies a law of large numbers. In this paper, we prove that a central limit theorem for the front holds when DR = DB. Moreover, this result can be extended to the case where DR > DB, up to modifying the dynamics so that blue particles turn red upon contact with a site that has previously been occupied by a red particle. Our approach is based on the definition of a renewal structure, extending ideas developed by Comets, Quastel and Ramírez for the so-called frog model, where DB = 0.

Introduction

Consider the following microscopic model of infection or epidemic reaction on the integer lattice Z. There are two types of particles: red and blue, both moving as independent, continuous-time, symmetric, nearest-neighbor random walks, with total jump rate D R for red particles and D B for blue particles. The interaction rule between particles is the following: when a red particle jumps to a site where there are blue particles, all of them immediately become red particles; when a blue particle jumps to a site where there are red particles, it immediately becomes a red particle. The initial condition is the following: at time zero, each site in x ∈ Z bears a random number of particles whose distribution is Poisson with parameter ρ > 0, the numbers of particles at distinct sites being independent. Moreover, particles at the left of the origin (including the origin) are red, while particles at the right of the origin are blue. We are interested in the asymptotic behavior of the rightmost site r t occupied by a red particle at time t, which we call the front. This is the one-dimensional version of a model studied on Z d by Kesten and Sidoravicius in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] and [START_REF] Kesten | A shape theorem for the spread of an infection[END_REF]. The case in which D R = D B > 0 will be referred to as the single-rate KS infection model, to emphasize the fact that red and blue particles share the same jump rate.

Such particle systems have received attention in the physical literature, as microscopic stochastic models which, in the limit of a large average number of particles per lattice site, yield reaction-diffusion equations describing the propagation of a front, the prototypical example being the Fisher-Kolmogorov-Petrovsky-Piscounov equation, see e.g. [START_REF] Mai | Front form and velocity in a one-dimensional autocatalytic A + B → 2A reaction[END_REF][START_REF] Mai | Front propagation and local ordering in onedimensional irreversible autocatalytic reactions[END_REF][START_REF] Mai | Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical picture at small particle concentrations[END_REF][START_REF] Kumar | Velocity of front propagation in the epidemic model A + B → 2A[END_REF]. We refer to [START_REF] Panja | Effects of fluctuations on propagating fronts[END_REF] for an extensive review of the subject from a theoretical physics perspective.

On the other hand, according to [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], this model was suggested within the mathematics community by Frank Spitzer around 1980, but rigorous mathematical results describing the behavior of the front have been difficult to obtain. Indeed, only in the special case where D R > 0, D B = 0, called the frog model ([16, 1]), and for the single rate KS infection case ( [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF][START_REF] Kesten | A shape theorem for the spread of an infection[END_REF]), has it been possible to prove that the front is ballistic and satisfies a law of large numbers. Furthermore, only in the frog model have the fluctuations of the front been described and a large deviations principle established [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF][START_REF] Bérard | Large deviations of the front in a onedimensional model of X + Y → 2X[END_REF]. Specifically, in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] it is shown that the front moves ballistically, in the sense that there exist two constants C 1 , C 2 such that a.s.

0 < C 2 ≤ lim inf t→+∞ t -1 r t ≤ lim sup t→+∞ t -1 r t ≤ C 1 < +∞. ( 1 
)
This result is strengthened in [START_REF] Kesten | A shape theorem for the spread of an infection[END_REF] where it is shown that there exists 0 < v * < +∞ such that a.s.,

lim t→+∞ t -1 r t = v * . (2) 
Analogous results hold on Z d for arbitrary d ≥ 1, with (2) being the onedimensional version of a general shape theorem proved in [START_REF] Kesten | A shape theorem for the spread of an infection[END_REF]. Here we are interested in the fluctuations of r t , and the first main result of this paper is the following.

Theorem 1. For the single-rate KS infection model, there exists a (nonrandom) number 0 < σ 2 * < +∞ such that, as ǫ goes to zero,

B ǫ t := ǫ 1/2 r ǫ -1 t -ǫ -1 v * t , t ≥ 0,
converges in law on the Skorohod space to a Brownian motion with variance σ 2 * .

Note that the method used to derive the above results also yields the convergence to an invariant distribution of the environment of particles as seen from the front.

For the general case in which D R is not necessarily equal to D B , an upper bound on the speed similar to the one in [START_REF] Alves | The shape theorem for the frog model[END_REF] is proved in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], but no corresponding lower bound is available. We now introduce a slight variation upon this model for which, when D R > D B , it is indeed possible to derive results similar to those that hold for the single-rate model. This variation consists in making the infectious power of red particles remanent, in the sense that a blue particle turns red not only when it is in contact with a red particle, but as soon as it is located at a site that has previously been occupied by a red particle. We call this model the remanent KS infection model. In this context, it is natural to define the position of the front at time t as the rightmost position ever occupied by a red particle up to time t. We can then prove the two following results.

Theorem 2. For the remanent KS infection model with 0 < D B ≤ D R , there exists 0 < v ⋆ < +∞ such that a.s.,

lim t→+∞ t -1 r t = v ⋆ .
Theorem 3. For the remanent KS infection model with 0 < D B ≤ D R , there exists a (non-random) number 0 < σ 2 ⋆ < +∞ such that, as ǫ goes to zero, B ǫ t := ǫ1/2 r ǫ -1 tǫ -1 v ⋆ t , t ≥ 0, converges in law on the Skorohod space to a Brownian motion with variance σ 2 ⋆ .

Our approach for proving Theorems 1, 2, 3 is based on the definition of a renewal structure, extending an idea introduced by Comets, Quastel and Ramírez in [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF] to study the frog model, where blue particles are motionless, while red particles perform random walks with a constant jump rate. Broadly speaking, the idea is to find random times κ n such that (i) the history of the front after time κ n does not depend (up to translation) on the future trajectories of particles located below r κn at time κ n and (ii) the distribution of particles located above r κn at time κ n is fixed (up to translation). We achieve (i) by recycling the idea, already used in [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF], to consider times after which the front remains forever above a (space-time) straight line, while particles lying below the front at these times remain forever below the straight-line. For the frog model, (ii) is then automatically satisfied, since the distribution of blue particles above the front 1 is fixed, due to the fact that blue particles do not move. In our context where both red and blue particles move, the situation is more complex, and new ideas are required. We achieve (ii) by extending the trajectories of our random walks infinitely far in the past, looking at times before which the front always lies below a straight line, while particles lying above the front at these times have remained above the straight line for their whole past history. A key role in the corresponding argument is played by the invariance properties of the Poisson distribution of particles, which allows the construction of the time-reversal of the random walk trajectories and the analysis of the distribution of the blue particles in terms of this time-reversal. Once the renewal structure is defined, it is necessary to obtain tail estimates for the random variables κ 1 , r κ 1 , and κ n+1κ n and r κ n+1r κn for n ≥ 1. To this end, we recycle some of the techniques used in [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF], especially the use of martingale methods to control the behavior of systems of independent random walks. In fact, some of the more involved steps in the proof given in [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF], that were needed to control the accumulation of particles below the front, are replaced in the present paper by a softer and (hopefully) more transparent argument. Let us point out one important technical difference between the frog model and the infection models considered here: ballistic lower bounds for the position of the front are easy to obtain in the case of the frog model, while they seem to be very difficult 2 for infection models where both red and blue particles move. In fact, the lower bound part3 of (1) is the main result of [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], and is obtained through a quite demanding multiple-scale renormalization argument. We do not provide an independent proof of ballisticity here, and instead have to rely on the estimate proved in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. Still, at least in the one-dimensional case, our approach provides an alternative way of deriving the law of large numbers (2) (proved in [START_REF] Kesten | A shape theorem for the spread of an infection[END_REF]) from the coarser ballisticity estimate obtained in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. Note also that the only missing ingredient to make our proofs of Theorems 2 and 3 work in the non-remanent case is a lower bound on the speed comparable to the one established in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] for the single-rate model (specifically, we would need the conclusion of Proposition 13 below).

A natural question concerns our specific choice for the Poisson initial distribution of particles. One can take advantage of the fact that the random variables (κ i+1κ i , r κ i+1r κ i ) i≥1 are independent from the initial configuration of particles at the right of the origin to show that our results are still valid if one starts with a Poisson distribution of particles conditioned upon a non-zero probability event concerning only the initial configuration of particles at the right of the origin. For instance, we can prescribe the initial numbers of particles below zero at any given finite number of sites. Still, it seems necessary to use the Poisson distribution of particles as a reference probability measure, so it is unclear how we could extend our results to, say, an arbitrary initial condition with suitable decay of the number of particles at infinity.

One should note that, strictly speaking, the initial distribution of particles we have described is not the same as the one considered by Kesten and Sidoravicius. Indeed, in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF][START_REF] Kesten | A shape theorem for the spread of an infection[END_REF], the initial condition is obtained by adding a deterministic finite and non-zero number of red particles placed arbitrarily, to a configuration formed by an i.i.d. Poisson number of particles at each site of Z. For the single-rate KS model on Z, it is irrelevant for the value of r t whether particles initially at the left of r 0 are red or blue, so the only difference lies in the added red particles. Using the previous remark on the possibility to condition the initial configuration by the numbers of particles at a finite set of sites, we see that our results in fact include the kind of initial configurations considered in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF][START_REF] Kesten | A shape theorem for the spread of an infection[END_REF].

One should also note that the results of [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF][START_REF] Kesten | A shape theorem for the spread of an infection[END_REF] are stated in terms of sup s∈[0,t] r s rather than r t (in the more general d-dimensional framework they consider). It clearly makes no difference for results on the scale of the law of large numbers, since particles move sub-ballistically. Although such an argument cannot be used for the central limit theorem, it turns out that, with our definitions of the renewal structure, r κn = sup s∈[0,κn] r s , so that the CLT holds for either r t or sup s∈[0,t] r s .

Finally, note that our results do not say anything on the case D R < D B . The only available results for a model of this kind are those of [START_REF] Kesten | A problem in one-dimensional diffusionlimited aggregation (DLA) and positive recurrence of Markov chains[END_REF], where a version of the infection model with 0 = D R < D B is considered, and it is shown that, for sufficiently small ρ, the asymptotic velocity of the front is zero, while it is conjectured that a positive asymptotic velocity is obtained for sufficiently large ρ.

The rest of the paper is organized as follows. In Section 2, we give a formal construction of the random process associated with the single-rate KS infection model, together with statements of its main structural properties, most of the proofs being deferred to Appendix A. Section 3 provides the definition of the renewal structure, and its key structural properties are stated and proved, save for the estimates on the tail, which form the content of Section 4. Finally, Section 5 briefly explains how to extend the previous results to the case of the remanent KS infection model with D R > D B .

Formal construction of the single-rate process

In this section, we describe the formal construction of the single-rate process in two steps. First, we construct, on appropriate spaces, the dynamics of systems of independent random walks, without any reference to a possible interaction between them. We establish important structural properties of the dynamics, such as the strong Markov property, or the invariance with respect to space-time shifts of the Poisson distribution on the space of trajectories. Then we define the infection process as a function of these random walks, together with the corresponding notion of red and blue particles. Most of the proofs are deferred to Appendix A.

2.1. Reference spaces. It is convenient to assign a label to each particle in the system, so that a particle can be uniquely identified by its label. More precisely, we assume that each particle is labelled by an element of the interval [0, 1], in such a way that no two particles share the same label. As a consequence, a configuration of particles at a given time can be represented by a family w = (w(x), x ∈ Z),

where, for all x, w(x) is a (possibly empty) subset of [0, 1], representing the labels of the particles located at site x. Given θ > 0, introduce the space S θ of all configurations of labelled particles w = (w(x), x ∈ Z) satisfying w(x) ∩ w(y) = ∅ whenever x = y, and x∈Z |w(x)|e -θ|x| < +∞. Throughout this paper, S θ is our reference space for particle configurations, where θ is assumed to be a given positive real number. The specific value of θ used in the proofs is made precise later, see (24), and the construction we now develop is valid for any θ > 0.

To define a distance on S θ , we first define a distance on the set of all finite subsets of elements of [0, 1]. Consider two such subsets a = {a 1 > . . . > a p }, and b = {b 1 > . . . > b q }. If p < q, define a i := 0 for p + 1 ≤ i ≤ q; if p > q, define b i := 0 for q + 1 ≤ i ≤ p. Then define the distance between a and b by

d(a, b) := |q -p| + max(p,q) i=1 |b i -a i |.
We now define a distance d θ on S θ by

d θ (w 1 , w 2 ) := x∈Z d(w 1 (x), w 2 (x))e -θ|x| .
Let us turn to the description of particle trajectories. A priori, the model consists only of particles moving after time zero. However, the definition of the regeneration structure involves the extension of their trajectories to negative time indices, so we start from the beginning with a space allowing the description of trajectories with a time-index in R. A pair (W, u), where W = (W t ) t∈R is a càdlàg function from R to Z with nearest-neighbor jumps (i.e. ±1), and u ∈ [0, 1], is called a (labelled) particle path, with u being the label of the particle whose path is described by W . In the sequel, we often call such a pair (W, u) a particle, instead of a particle path.

Given a finite or countable set ψ of particle paths with pairwise distinct labels, and a time coordinate t ∈ R, we define the configuration of labelled particles

X t (ψ) = (X t (ψ)(x)) x∈Z by X t (ψ)(x) := {u; W t = x, (u, W ) ∈ ψ}.
In words, X t (ψ)(x) is the set of labels of particle paths that are located at x at time t. Our reference space for the trajectories of the particles in the system is the set Ω formed by all the sets ψ of particle trajectories such that t → X t (ψ) is a càdlàg function from R to (S θ , d θ ), and such that no two particle paths jump at the same time. We endow Ω with the cylindrical σ-algebra F generated by all the maps ψ → X t (ψ) from Ω to S θ equipped with the Borel sets associated with the metric d θ . For all t ∈ R, we define F t := σ(X s , s ∈] -∞, t]). For all x ∈ Z and t ∈ R, the space-time shift π x,t on Ω is defined by the fact that π x,t (ψ) is the set of particle paths obtained from ψ by replacing each path ((W s ) s∈R , u) by ((W s-tx) s∈R , u). We also consider the space D of càdlàg maps from R to S θ , and similarly define D + as the space of càdlàg maps from [0, +∞[ to S θ . Both spaces are equipped with their respective cylindrical σ-algebras. Finally, we denote by Ψ the canonical map on Ω, i.e. Ψ(ψ) := ψ.

2.2.

Construction of P w . To each w ∈ S θ , we associate a probability measure P w on (Ω, F) describing the evolution of a system of independent particles starting in configuration w at time 0. This section is devoted to the construction of P w .

Fix w ∈ S θ , and, for all x, write w(x) as an ordered tuple

w(x) = {u(x, 1) > • • • > u(x, |w(x)|)},
and define

A := {(x, i); x ∈ Z, 1 ≤ i ≤ |w(x)|)}.
Consider an i.i.d. family of random walks Z = (Z(x, i), (x, i) ∈ A) where, for every (x, i) ∈ A, Z(x, i) = (Z t (x, i)) t∈R is a two-sided continuous-time random walk on Z, starting at x at time zero, and evolving in both positive and negative time directions, with symmetric nearest-neighbor steps, and constant jump rate equal to 2. We view Z(x, i) as a random variable taking values in the space of càdlàg paths from R to Z equipped with the cylindrical σ-algebra. For all t ∈ R, we define S t = (S t (x)) x∈Z by S t (x) := {u(y, j); Z t (y, j) = x, (y, j) ∈ A}.

Broadly speaking, the idea is to define P w as the distribution of the set of paths (Z(x, i), u(x, i)), where (x, i) ∈ A. However, we have to take care of the regularity properties of the map t → S t , so we work with truncated versions involving finite numbers of particles, taking the limit to recover the desired process. Given K ∈ N, define S K t = (S K t (x)) x∈Z by S K t (x) := {u(y, j); Z t (y, j) = x, (y, j) ∈ A, |y| ≤ K}. We also define

Q K t := (x,i)∈A, x≥K exp(-θZ t (x, i)), R K t := (x,i)∈A, x≤-K exp(θZ t (x, i)).
In the sequel, we use the notation P to denote the reference probability measure for Z, and E to denote the expectation with respect to P .

Proposition 1. For any t ≥ 0, with P -probability one,

lim K→+∞ sup s∈[-t,t] Q K t = 0, lim K→+∞ sup s∈[-t,t] R K t = 0.
By Proposition 1 there exists an event N such that P (N ) = 0 and such that, on N c , one has that, for all n ≥ 0, lim K→+∞ sup s∈[-n,n] Q K s = 0 and lim K→+∞ sup s∈[-n,n] R K s = 0. We also require that, on N , no two random walks perform a jump at the same time. From now on, we consider a modified version of the random walks Z(x, i), where the definition of Z(x, i) on the set N is given by Z t (x, i) := x for all t. With this modification, by definition of N , one has in particular that S t ∈ S θ for all t, using the fact that, for all x ∈ Z, exp(-θ|x|) = min(exp(θx), exp(-θx)).

Lemma 1. One has the following inequality

d θ (S t , S K t ) ≤ 2(Q K t + R K t ). Corollary 1. The set {(Z(x, i), u(x, i)); (x, i) ∈ A} is a random variable taking values in (Ω, F).
Proof. Note that, for every K, the map t → S K t from R to S θ is càdlàg, since it involves only a finite number of particle paths. From Lemma 1 and the definition of N , we see that, as K goes to infinity, S K converges uniformly to S on every bounded interval. As a consequence, S is càdlàg too, and we can in fact view S as a random variable taking values in D equipped with its cylindrical σ-algebra.

We can now safely define

P w := distribution of {(Z(x, i), u(x, i)); (x, i) ∈ A} on (Ω, F).
The expectation with respect to P w is denoted by E w .

2.3. Properties of P w . This section is devoted to various structural and regularity properties of P w . The main points are the strong Markov property of the family (P w , w ∈ S θ ), the definition of the Poisson initial distribution P ν and its invariance with respect to space-time shifts. Proposition 2. For any w 1 , w 2 ∈ S θ , there exists a coupling between a version of S starting from w 1 , denoted S (1) , and a version starting from w 2 , denoted S (2) , such that, for all t ≥ 0, and all λ > 0,

P sup s∈[0,t] d θ (S (1) s , S (2) s ) > λ ≤ 2λ -1 exp(2(cosh θ -1)t)d θ (w 1 , w 2 ).
Using Proposition 2, we can then prove the following stability property.

Proposition 3. Let m ≥ 1. If f 1 , . . . , f m : S θ → R are bounded and uniformly continuous, then, for any 0 ≤ t 1 ≤ . . . ≤ t m , the map from (S θ , d θ ) to R defined by w → E w (f 1 (X t 1 ) × • • • × f m (X tm )
) is bounded and uniformly continuous too.

Proposition 3 is one of the key tools used to establish the Markov properties of the family (P w , w ∈ S θ ), as stated in the following propositions.

Proposition 4. For any bounded measurable function

F : S θ → R, the map w → E w (F ) is measurable.
Proposition 5. The simple Markov property holds for our process: for all w ∈ S θ , all t ≥ 0, and bounded measurable function F on D + , one has that

E w (F ((X t+s ) s≥0 )|F t ) = E Xt (F ((X s ) s≥0 )) P w -a.s. (3) 
Proposition 6. The strong Markov property holds for our process: for every w ∈ S θ , every non-negative (F t ) t≥0 -stopping time T , and bounded measurable function F on D + , one has that, on {T < +∞},

E w (F ((X T +t ) t≥0 )|F T ) = E X T (F ((X t ) t≥0 )) P w -a.s. (4) 
Now consider an i.i.d. family N = (N x ) x∈Z of Poisson processes on [0, 1], with intensity ρ. With probability one, (N x ) x∈Z ∈ S θ , and we call ν the probability distribution on S θ induced by N . The probability measure P ν defined by P ν (•) := S θ P w (•)dν(w) is the reference measure we use to describe the dynamics starting from a Poisson initial distribution of particles.

Proposition 7. The probability distribution P ν on Ω is invariant with respect to the space-time shifts π x,t .

To prove the above proposition, we use the following lemma.

Lemma 2. For any t ≥ 0, under P ν , (X 0 , X t ) and (X t , X 0 ) have the same distribution.

Proof of Lemma 2. We use the notation p t (x, y) to denote the probability for a continuous-time simple symmetric random walk on Z, with total jump rate 2, started at x at time zero, to be at y at time t.

Fix t ≥ 0, and, for x, y ∈ Z and 0 ≤ a < b ≤ 1, define

N (x, y, a, b) := |X 0 (x) ∩ X t (y) ∩ [a, b]| .
In x, y ∈ Z and 0 ≤ a < b ≤ 1. This and the independence properties discussed above show that, for any finite family

(x i , y i , a i , b i ), 1 ≤ i ≤ m, the joint dis- tribution of the random variables N (x i , y i , a i , b i ) with 1 ≤ i ≤ m is identical to that of the random variables N (y i , x i , a i , b i ) with 1 ≤ i ≤ m.
In turn, this proves that (X 0 , X t ) and (X t , X 0 ) have the same distribution.

Proof of Proposition 7. Invariance with respect to space shifts is a direct consequence of the corresponding invariance of the distribution of (N x ) x∈Z and of the distribution of random walk paths. Invariance with respect to time shifts comes from Lemma 2, which proves the reversibility of the dynamics with respect to ν. See Proposition 5.3 Chap. II in [START_REF] Thomas | Interacting particle systems, volume 276 of Grundlehren der Mathematischen Wissenschaften[END_REF] for more details.

2.4. Infection dynamics. We now formally define the infection dynamics, through random variables defined on (Ω, F). First, let T 0 := 0, r 0 := sup{x ≤ 0; ∃(W, u) ∈ Ψ, W 0 = x} (with the convention inf ∅ = -∞) and define inductively the families of random variables (T ℓ ) ℓ≥0 and (r ℓ ) ℓ≥0 as follows.

Consider t > T ℓ . We say that t is upward if there exists (W, u) ∈ Ψ such that W t-= r ℓ and W t = r ℓ + 1. We say that t is downward if there exists (W, u) ∈ Ψ such that W t-= r ℓ , W t = r ℓ -1, and X t-(r ℓ ) = {(W, u)}. Then let T ℓ+1 := inf{t > T ℓ ; t is upward or downward}, with the convention that inf ∅ = +∞. By the fact that paths are càdlàg in S θ , one must have that T ℓ+1 > T ℓ when T ℓ < +∞. Provided that T ℓ+1 < +∞, one must also have that T ℓ+1 is indeed a upward or downward time 4 . In the upward case, we let r ℓ+1 := r ℓ +1. In the downward case, we let r ℓ+1 := r ℓ -1. Otherwise we let r ℓ+1 := †. Now r t is defined on each interval [T ℓ , T ℓ+1 [ by r t := r ℓ . We also define r ∞ = †. Note that we do not rule out possible explosions, meaning that T ∞ := sup ℓ T ℓ may be finite, in which case we let5 r t := † for t ≥ T ∞ . From the results in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], one has that, for all k ≥ 1, T k < +∞, and T ∞ = +∞, almost surely with respect to P ν .

In the sequel, we say that a time t > 0 is a jump time for the front if it is one of the times T 1 , T 2 , . . . at which the position of the front either increases or decreases by one unit.

For all 0 < t < T ∞ , we denote by B t the subfamily of particle paths corresponding to particles that are blue at time t, i.e.

B t := {(W, u) ∈ Ψ; ∀s ∈ [0, t[, W s > r s }.
Similarly, the subfamily of paths associated with particles that are red at time t is R t := {(W, u) ∈ Ψ; ∃s ∈ [0, t[, W s ≤ r s }. We extend the definition by setting B 0 := {(W, u) ∈ Ψ; W 0 ≥ 0} and R 0 := {(W, u) ∈ Ψ; W 0 < 0}. For t ≥ T ∞ , we set B t := ∅ and R t := Ψ.

One checks that, with these definitions, for all 0 < t < T ∞ , r t corresponds to the position of the rightmost red particle at time t.

In the sequel, we shall use the following σ-algebras. First, given t ≥ 0,

F R t is defined by 6 F R t := σ((W s , u); s ≤ t, (W, u) ∈ R t ).
Informally, F R t contains the information relative to the trajectories of particles that are red at time t, up to time t. If T is a non-negative random variable on (Ω, F), we also define7 

F R T := σ(T, r T ) ∨ σ((W s , u); s ≤ t, (W, u) ∈ R T ). Similarly, we let G R t := σ((W s , u); s ∈ R, (W, u) ∈ R t ). Informally, G R
t contains the information relative to the full trajectories of the particles that are red at time t. When T is a non-negative random variable, we also define

G R T := σ(T, r T ) ∨ σ((W s , u); s ∈ R, (W, u) ∈ R T ).
When working with these σ-algebras, we will have several occasions to apply the following lemma, that we quote now for future reference. 

A 1 ∈ σ(ζ 1 i , i ∈ I), there exists A 2 ∈ σ(ζ 2 i , i ∈ I) such that A 1 ∩ U = A 2 ∩ U .

Regeneration structure

We now define the regeneration structure that is used to prove the central limit theorem. Remember that is based on straight lines drawn on the spacetime plane. In the sequel, α is a strictly positive real number corresponding to the slope of these straight lines.

Consider an upward jump time t > 0. We say that t is a backward sub-α time if r t > αt and if, for all 0 ≤ s < t, one has r s < r t -α(t-s). We say that t is a backward super-α time if, for any (W, u) in B t , and for all s < t, one has W s ≥ r tα(ts). If t is both a backward sub-α and super-α time, we say that t is a backward α time. We say that t is a forward sub-α time if, for all (W, u) ∈ R t such that W t ≤ r t -1, one has that W s ≤ r t -1 + α(ts) for all s > t, and if the particle (W, u) making the front jump at time t remains at r t during the time-interval [t, t + α -1 ], and then satisfies the inequality W s ≤ r t -1 + α(ts) for all s ≥ t + α -1 . We say that t is a forward super-α time if, for all s > t, one has r s ≥ r t + ⌊α(st)⌋, and if, moreover, there exists (W, u) ∈ B t such that W s = r t for all s ∈ [t, t + α -1 ]. If t is both a forward sub-α and super-α time, we say that a t is a forward α time. Finally, if t is both a forward and backward α time, we say that t is an α-separation time. We extend the definition of a backward super-α time and of a forward super-α time by allowing t = 0 in the above definitions. Now let κ 0 := 0 and define inductively the sequence (κ i ) i≥0 by κ i+1 := inf{T j > κ i ; T j is an α-separation time}.

The following propositions show that the sequence (κ n ) n ≥1 indeed provides a renewal structure for the position of the front. Proposition 8. For all n ≥ 1, κ 1 , . . . , κ n and r κ 1 , . . . , r κn are measurable with respect to G R κn . Proposition 9. On {κ n < +∞}, the conditional distribution of (κ n+1κ n , r κ n+1r κn ) with respect to G R κn is the distribution8 of (κ 1 , r κ 1 )(B 0 ) with respect to P ν , conditioned on t = 0 being a backward and forward super-α time.

Proposition 10. For small enough α (depending on ρ), there exists θ > 0 such that E ν (κ 2 1 ) < +∞ and E ν (r 2 κ 1 ) < +∞. Corollary 2. With respect to P ν , the random variables

(κ i+1 -κ i , r κ i+1 -r κ i ) i≥0
are mutually independent; the random variables

(κ i+1 -κ i , r κ i+1 -r κ i ) i≥1 are identically distributed.
Given Corollary 2 and Proposition 10, it is more or less standard to derive Theorem 1, approximating r t by r κn t , where n t := sup{n ≥ 0; κ n ≤ t}. Note that, due to the definition of κ, one has r κn t ≤ r t ≤ r κ n t +1 , which eases the corresponding approximation argument. We do not give the details here (see e.g. [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF]). The rest of this section is devoted to the proof of Propositions 8, 9, and Corollary 2, the proof of Proposition 10 being the object of the next section.

Proof of Proposition 8. Consider n ≥ 1. First note that the measurability of κ n and r κn with respect to G R κn is a direct consequence of the definition of G R κn . Also, with our conventions, the result is obvious on {κ n = +∞}, so we work on {κ n < +∞} throughout the rest of the proof. Observe that, from the definition of the infection dynamics, particle paths (W, u) outside R κn have no influence on the front jumps between time 0 and κ n , so that the history of the front up to time κ n is exactly the same as the one that would be obtained if there were no other particle paths in the system besides those in R κn . As a consequence, the jump times T 1 < . . . < T ℓ = κ n that lie between time 0 and κ n , are measurable with respect to G R κn . Thus, to prove the proposition, it is enough to prove that, for every jump time T i such that 1 ≤ i ≤ ℓ -1, it is possible to tell whether T i is a backward/forward sub/super-α time, using only the information contained in G R κn .

We have already noted that the history of the front up to time κ n can be deduced from G R κn , so that the fact that T i is a backward sub-α time can indeed be told using G R κn . To find whether T i is a backward super-α time, we have to look at those particle paths (W, u) that belong to B T i . Since κ n is itself a backward super-α time, we know that, for any (W, u) ∈ B κn , W s ≥ r κn -α(κ n -s) for all s < κ n . Since κ n is also a backward sub-α time, one has that r T i ≤ r κnα(κ n -T i ). As a consequence, for all s < T i , one has that

W s ≥ r κn -α(κ n -s) ≥ r T i + α(κ n -T i ) -α(κ n -s) = r T i -α(T i -s).
As a consequence, to check whether T i is a backward super-α time, we only have to look at paths (W, u) that belong to B T i ∩ R κn . Whether these paths satisfy W s ≥ r T iα(T is) for all s < T i can be told from G R κn . Now the fact that T i is a forward sub-α time can be told from G R κn , since it involves the trajectories of paths in R T i ⊂ R κn only.

To conclude the proof, we claim that T i is a forward super-α time if and only if r s ≥ r T i + ⌊α(s -T i )⌋ for all s ∈]T i , κ n ] and there exists (W, u) ∈

B T i ∩ R κn such that W s = r T i on [T i , T i + α -1 ].
The first condition is clearly necessary, and, since T i < κ n , a particle path located at site r T i at time T i must belong to R κn , so the second condition is necessary too. It remains to show that these two conditions are also sufficient. For s > κ n , one has that r s ≥ r κn + ⌊α(sκ n )⌋, since κ n is a forward super-α time. On the other hand, our assumption on T i applied at time κ n -, combined with the fact that κ n is an upward jump time, shows that r κn ≥ r T i + ⌊α(κ n -T i )-⌋ + 1, and one then deduces that r s ≥ r T i + ⌊α(s -T i )⌋. Lemma 4. For n ≥ 1 and k ≥ 1, on {T k < +∞}, one can write the event

{κ n = T k } as {κ n = T k } = H k ∩ J k , where H k ∈ G R
T k and where

J k := {t = 0 is a backward and forward super-α time for π r k ,T k (B T k )} .
Proof. Throughout the proof we work on {T k < +∞}. Define H k as the event that, between time 0 and T k , there exist exactly n jump times t > 0 that satisfy the following properties:

(i) t is a backward sub-α time;

(ii) for any

(W, u) ∈ B t ∩ R T k , one has that W s ≥ r t -α(t -s) for all s < t; (iii) t is a forward sub-α time; (iv) for every time s ∈]t, T k ], r s ≥ r t + ⌊α(s -t)⌋; (v) there exists (W, u) ∈ B t ∩R T k such that W s = r t for all s ∈ [t, t+α -1 ],
and that T k is one of these jump times (note that (ii) and (iv) are void conditions for T k ).

We first check that H k ∈ G R T k . Indeed, observe that, from the definition, we know that particle paths (W, u) outside R T k have no influence on the front jumps between time 0 and T k , so that the history of the front up to time T k is exactly the same as the one that would be obtained if there were no other particle paths in the system besides those in R T k . As a consequence, the jump times T 1 , . . . , T k are measurable with respect to G R T k . Then, it is readily checked that, given such a jump time T i , the event that T i satisfies the five conditions (i)-(v) listed in the definition of H k , indeed belongs to G R T k since these only involve particle paths lying in R T k . We now check that

{κ n = T k } = H k ∩ J k .
Assume that H k ∩ J k holds, and let us show that κ n must be equal to T k .

We first observe that, by the fact that t = 0 is a forward super-α time for π r k ,T k (B T k ) and the fact that, by (iii), T k is a forward sub-α time, we have that, for all s ≥ T k , r s coincides with

r k + r s-T k (π r k ,T k (B T k )). Indeed, during the time-interval [t, t + α -1 ]
, we know that no particle in R T k goes strictly above r t , while one of these particles remains at r t . On the other hand, at least one particle in B T k also remains at r t . As a result, both r s and r k +r s-T k (π r k ,T k (B T k )) must lie above r t on the interval [t, t+α -1 ], and these two fronts must in fact coincide. For s ≥ t + α -1 , no particle in R T k can ever touch the front, so that indeed r s coincides with

r k + r s-T k (π r k ,T k (B T k )).
Using the definition of J k and the preceding discussion, we deduce that T k is a forward super-α time. Also, the fact that t = 0 is a backward super-

α time for π r k ,T k (B T k ) shows that T k is a backward super-α time. Finally, (i) shows that T k is a backward sub-α time. We conclude that T k is an α-separation time. Now consider 1 ≤ i ≤ k -1. We claim that, provided that T k is an α-separation time, T i is an α-separation time if and only if T i satisfies (i)-(v).
Observe first that the "only if" part of the claim is immediate from the definition. Now assume that T k is an α-separation time, that T i satisfies (i)-(v), and let us show that T i is an α-separation time.

To show that T i is a backward super-α time, we have to check that, for all particle paths (W, u) in B T i , one has that W s ≥ r T iα(T is) for all s < T i . This property for (W, u)

∈ B T i ∩ R T k is precisely (ii). Consider (W, u) ∈ B T i ∩ B T k . Since T k is a backward super-α time, we have that, for all s < T i , W s ≥ r T k -α(T k -s). Since T k is a backward sub-α time, we also have that r T i ≤ r T k -α(T k -T i ). We deduce that, for all s < T i , W s ≥ r T k -α(T k -s) ≥ r T i + α(T k -T i ) -α(T k -s) = r T i -α(T i -s).
To show that T i is a forward super-α time, since we already have (v), we only have to check that, for all s > T i , one has r s ≥ r

T i + ⌊α(s -T i )⌋. By (iv), this inequality is satisfied when s ∈]T i , T k ]. If s > κ n , the fact that T k is a forward super-α time yields r s ≥ r T k + ⌊α(s -T k )⌋. Also, (iv) applied at time T k -combined with the fact that T k is an upward jump time shows that r T k ≥ r T i + ⌊α(T k -T i )-⌋ + 1, and one deduces that r s ≥ r T i + ⌊α(s -T i )⌋.
It is now clear that, on H k ∩ J k , there are exactly n α-separation times between time 0 and T k , with T k being one of them. In other words, κ n = T k . Conversely, if κ n = T k , T k is an α-separation time, J k holds, and κ 1 , . . . , κ n are exactly those jump times between time 0 and T k that satisfy (i)-(v), with T k being one of them.

Lemma 5. For n ≥ 1 and k ≥ 1, on {T k < +∞}, one has that, on {κ n = T k }, (κ n+1 -κ n , r κ n+1 -r κn ) = (κ 1 , r κ 1 )(π r k ,T k (B T k )).
Proof. First note that, as in the proof of Lemma 4, since T k is a forward α time (sub-and super-), the history of the front posterior to T k is just the history of the front for π r k ,T k (B T k ), up to shifting time indices by T k and space by r k . Now consider an upward jump time t posterior to T k = κ n . By the fact that T k is a backward sub-α time, we have that r s < r T kα(T ks) for all s < T k , while, since T k is forward super-α time and t is an upward jump time,

r t ≥ r T k + ⌊α(t -T k )-⌋ + 1 ≥ r T k + α(t -T k ).
We deduce that, for all s < T k , one has r s < r tα(ts). By the fact that T k is a backward sub-α time, we also have r k > αT k . As a consequence, checking that t is a backward sub-α time turns out to be equivalent to checking that r s < r tα(ts) for all T k ≤ s < t. This implies that it is equivalent for t to be a backward sub-α time and for t -T k to be a backward sub-α time for π r k ,T k (B T k ). Then note that the condition for t to be a backward super-α time is equivalent to the corresponding condition for t -T k with respect to π r k ,T k (B T k ), since, using the fact that B t ⊂ B T k , exactly the same set of particle paths is involved in both cases, and since the condition W s ≥ r tα(ts) for all s < t is clearly invariant with respect to shifting space by r k and time by T k . Now consider the condition for t to be a forward sub-α time. Since T k is a forward sub-α time, a particle path in R T k can never violate the condition for t to be a forward sub-α time. To see why, assume first that

W T k ≤ r T k -1.
By definition, we have that, for s ≥ t, W s ≤ r T k -1 + α(s -T k ) since T k is a forward sub-α time. Moreover, since T k is also a forward super-α time and t is a jump time, one has that r t ≥ r T k + α(t -T k ), and we thus have that

W s ≤ r t -1 + α(s -t). If W T k = r T k , we have the same condition for s ≥ T k + α -1 , so we are also done if t ≥ T k + α -1 . Finally, if t < T k + α -1 , we have W t = r T k ≤ r t -1. For t ≤ s ≤ T k + α -1 , we have that W s = r T k ≤ r t -1 + α(t -s), while, for s ≥ T k + α -1
, we deduce that W s ≤ r t -1 + α(st) as above. We deduce that t is a forward sub-α time if and only if the corresponding condition is satisfied for any (W, u) ∈ R t ∩ B T k and s > t, and this is equivalent to t -T k being a forward sub-α time for π r k ,T k (B T k ). Finally, the fact that the history of the front posterior to T k coincides with the history of the front for π r k ,T k (B T k ), up to shifting time and space, shows that t is a super-α time if and

only if t -t k is a super-α time for π r k ,T k (B T k ).
Given a càdlàg path q = (q s ) t≤s≤0 with values in Z and taking nearestneighbor steps, such that q 0 = 0 and q 0-= -1, and containing a finite number of jumps, given x ∈ Z and given a bounded measurable function F : Ω → R, we define ξ(F, q, x) by

ξ(F, q, x) := E ν (F (B 0 )|G(q, x)), where G(q, x) := {∀(W, u) ∈ B 0 , W t > x, ∀t ≤ s < 0, W s > q s }. (5) 
(Note that the definition makes sense since, as is easily checked, P ν (G(q, x)) > 0 for all q.) Proposition 11. Let F : Ω → R denote a bounded measurable map. Then, for all k ≥ 1, on the event that T k is upward,

E ν (F (π r k ,T k (B T k ))|G R T k ) = ξ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k ) a.s. Corollary 3. Let F : Ω → R denote a bounded measurable map. Let G := {t = 0 is a backward super-α time}. ( 6 
)
Then, for all k ≥ 1, on the event that T k is a backward sub-α time, one has that

E ν ((F 1 G )(π r k ,T k (B T k ))|G R T k ) = ζ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k ) a.s., where ζ(F, q, x) := E ν (F (B 0 )1 G )χ(q, x), χ(q, x) := 1 P ν (G(q, x)) .
Proof. In view of Proposition 11, we have to prove that, on the event that T k is a backward sub-α time,

ξ(F 1 G , (r s+T k -r k ) -T k ≤s≤0 , r k ) = ζ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k ) a.s.
To prove this identity, consider a path q = (q s ) t≤s≤0 such that q 0 = 0 and q s < αs for all t ≤ s < 0, and x such that x < αt. Observe that by definition,

1 G (B 0 ) = 1 G , and 1 G (B 0 ) ≤ 1 G(q,x) . As a consequence, ξ(F 1 G , q, x) = E ν (F (B 0 )1 G (B 0 )|G(q, x)) = E ν (F (B 0 )1 G (B 0 )) P ν (G(q, x)) = ζ(F, q, x). Proof of Proposition 9. Consider C ∈ G R κn such that C ⊂ {κ n < +∞}, and a bounded measurable function f : R × (Z ∪ { †}) → R. Let Θ n := f (κ n+1 -κ n , r κ n+1 -r κn ). We now write E ν (Θ n 1 C ) = k≥1 E ν (Θ n 1(κ n = T k )1 C ). (7) 
By Lemma 3 there exists

D k ∈ G R T k such that C ∩ {κ n = T k } = D k ∩ {κ n = T k }. Now, from Lemma 4, one can write, on {T k < +∞}, {κ n = T k } = H k ∩ J k , where H k ∈ G R T k and J k := {t = 0 is a backward and forward super-α time for π r k ,T k (B T k )} . Moreover, by Lemma 5, on {T k < +∞} ∩ {κ n = T k }, one has that (κ n+1 -κ n , r κ n+1 -r κn ) = (κ 1 , r κ 1 )(π r k ,T k (B T k )).
We deduce that

E ν (Θ n 1(κ n = T k )1 C ) = E ν ((F 1 K 1 G )(π r k ,T k (B T k ))1 D k 1 H k ),
where

F := f (κ 1 , r κ 1 ), K := {t = 0 is a forward super-α time},
and where G is defined in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. Using Corollary 3, we deduce that

E ν (Θ n 1(κ n = T k )1 C ) = E ν (ζ(F 1 K , (r s+T k -r k ) -T k ≤s≤0 , -r k )1 D k 1 H k ), (8) 
whence, using [START_REF] Kesten | A problem in one-dimensional diffusionlimited aggregation (DLA) and positive recurrence of Markov chains[END_REF] and the definition of ζ, the identity

E ν (Θ n 1 C ) = E ν (F (B 0 )1 K (B 0 )1 G ) k≥1 E ν (χ((r s+T k -r k ) -T k ≤s≤0 , -r k )1 D k 1 H k ).
Using this identity for f ≡ 1 yields that

P ν (C) = P ν ( Ǧ) k≥1 E ν (χ((r s+T k -r k ) -T k ≤s≤0 , -r k )1 D k 1 H k ),
where Ǧ := { t = 0 is a forward and backward super-α time for B 0 }.

Lemma 13 states that P ν ( Ǧ) > 0. Returning to a general f , we deduce that

E ν (Θ n 1 C ) = E ν (F (B 0 )1 Ǧ) P ν ( Ǧ) P ν (C),
whence the fact that, on {κ n < +∞},

E ν (f (κ n+1 -κ n , r κ n+1 -rκ n )|G R T k ) = E ν (f (κ 1 , r κ 1 )(B 0 )| Ǧ) P ν -a.s.
Before we prove Proposition 11, we need to introduce the following definitions. Consider a càdlàg path q = (q s ) t≤s≤0 with values in Z and taking nearest-neighbor steps, containing a finite number of jumps, and such that q 0 = 0. Define t 0 := inf{s ∈ [t, 0]; q ≡ 0 on [s, 0]}. Assume in addition that t 0 > t and that q t 0 -= -1. Given a bounded measurable function

F : Ω → R, we define ξ ′ (F, q, x) := E ν (F (B 0 )|G ′ (q, x)),
where G ′ (q, x) is the event that, for all (W, u) ∈ B 0 , one has W t > x and, for all s ∈ [t, t 0 [, W s > q s , and that, moreover, during the time-interval ]t 0 , 0], no particle in B 0 hits or leaves 0. Let also χ ′ (q, x) := 1 Pν (G ′ (q,x)) , noting that, with our assumptions on q, we always have P ν (G ′ (q, x)) > 0. We extend the definition for paths that do not satisfy these assumptions by setting ξ ′ (F, q, x) := 0.

Given real numbers a ≤ b, let B 0 (a, b) denote the subset of B 0 formed by excluding the particles at site zero whose labels lie within the interval ]a, b].

We define ξ ′ (F, a, b, q, x), G ′ (a, b, q, x) and χ ′ (a, b, q, x) just as ξ ′ (F, q, x), G ′ (q, x) and χ ′ (q, x), but with B 0 replaced by B 0 (a, b).

Proof of Proposition 11. We prove the result for F of the form F = f 1 (X t 1 )× • • • × f p (X tp ), where t 1 < . . . < t p , and f 1 , . . . , f p are bounded and uniformly continuous. The result for a general bounded measurable F follows by a monotone class argument. For x ∈ R and h ∈ {1, 2, . . . , }, introduce the notation [x] h = 2 -h (⌈2 h x⌉), and let T (ℓ) k := [T k ] ℓ . Also, define U k to be the label of the particle that makes the front jump at time T k , and let

U (m) k := [U k ] m .
Remember that the history of the front up to time T k is measurable with respect to G R T k . We want to prove that, for any event C ∈ G R T k such that C ⊂ {T k is upward}, one has the following identity:

E ν (F (π r k ,T k (B T k ))1 C ) = E ν (ξ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k )1 C ) . (9)
Introduce the notation

Θ ℓ := F (π r k ,T (ℓ) k (B T k )).
Our first remark is that, due to the càdlàg character of the paths, the fact that T (ℓ) k ≥ T k for all ℓ and lim ℓ→+∞ T (ℓ) k = T k imply, using dominated convergence and the specific form of F , that

lim ℓ→+∞ E ν (Θ ℓ 1 C ) = E ν (F (π r k ,T k (B T k ))1 C ). (10) 
We now introduce the events A ℓ and V m . First, A ℓ is defined by the fact that, during the time interval ]T k , T

k ], no particle hits or leaves r k . Then, V m is defined by the fact that B T k contains no particle whose label u is such that

[u] m = U (m) k
and that also has W T k = r k . By dominated convergence, one has that

lim ℓ→+∞ P ν (A ℓ ) = 1 and lim m→+∞ P ν (V m ) = 1. (11) 
Moreover, since |F | is bounded by say M , one has that

|E ν (Θ ℓ 1 C ) -E ν (Θ ℓ 1 C 1 A ℓ 1 Vm )| ≤ M (P ν (A c ℓ ) + P ν (V c m )). (12) 
We now prove the following identity

E ν (Θ ℓ 1 C 1 A ℓ 1 Vm ) = E ν (Λ ℓ,m 1 C 1 A ℓ 1 Vm ), (13) 
with

Λ ℓ,m := ξ ′ (F, a m , b m , (r s+T (ℓ) k -r k ) -T (ℓ) k ≤s≤0 ), a m := U (m) k -2 -m , b m := U (m) k . Introduce the event J(d, e, y) := {T (ℓ) k = d, U (m) k = e, r k = y}.
Clearly, to prove [START_REF] Mai | Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical picture at small particle concentrations[END_REF], it is enough to prove that, for every d, e, y, one has

E ν (Θ ℓ 1 C 1 A ℓ 1 Vm 1 J(d,e,y) ) = E ν (Λ ℓ,m 1 C 1 A ℓ 1 Vm 1 J(d,e,y) ). (14) 
We now fix d, e, y, and work on J(d, e, y). Introduce the set ∆ formed by those particle paths (W, u) such that

W d ≥ y and [u] m = e if W d = y. Define H + d,e,y := σ((W s , u); s ∈ R, (W, u) ∈ ∆), H - d,e,y := σ((W s , u); s ∈ R, (W, u) / ∈ ∆).
Consider the front (r ′ s ) s≥0 generated by the particles in ∆ c up to time d. Define the event E -that the k-th jump of this front is an upward jump to y at a time t ′ such that [t ′ ] ℓ = d, that the particle making the front jump at time t ′ has a label u satisfying [u] m = e, remains at y during the timeinterval [t ′ , d], and that no other particle in ∆ c is located at y during the interval [t ′ , d]. Define also the event E + that the particles (W, u) in ∆ do not hit or leave y during the time-interval [t ′ , d], and satisfy W s > r ′ s for all s ∈ [0, t ′ [, and W 0 > 0. We claim that

A ℓ ∩ V m ∩ J(d, e, y) ∩ {T k is upward} = E -∩ E + . ( 15 
)
Let us assume that A ℓ ∩ V m ∩ J(d, e, y) ∩ {T k is upward} holds. We first observe that ∆ and B T k coincide. Indeed, by definition, at time T k , the blue particles are exactly those (W, u) satisfying W T k ≥ r k = y and u = U k . Thanks to A ℓ , no particle in B T k can move from y to y -1 during the timeinterval ]T k , d], so that, at time d, all particles in B T k must have a position ≥ y. Moreover, thanks to V m , the only particles (W, u) in B T k whose label is such that [u] m = e, have to satisfy W T k ≥ y + 1, and, by A ℓ , these particles are not allowed to hit y during ]T k , d]. We conclude that no particle

(W, u) in B T k such that W d = y can have [u] m = e. We have shown that B T k ⊂ ∆.
Conversely, thanks to A ℓ , no particle in R T k except the one that made the front climb at y at time T k , can have a location ≥ y at time d. Thanks to A ℓ again, this specific particle (whose label is U k ) has to remain at y during ]T k , d]. This proves that B c T k ⊂ ∆ c . So we have proved that B T k = ∆. We now prove that, for all s ∈ [0, d], r ′ s = r s . Since ∆ = B T k , we know that, up to time T k , (r s ) coincides with the front generated by particles in ∆ c , which is exactly the definition of (r ′ s ). Then, thanks to A ℓ , both fronts must remain at y from time T k to time d since no particle is allowed to either hit or leave y during ]T k , d]. In particular t ′ = T k . We now prove that E + holds. The condition on particles not hitting or leaving y is a direct consequence of A ℓ (and on the fact that r k = y since J(d, e, y) holds). Since (r s ) and (r ′ s ) coincide on [0, T k ] = [0, t ′ ], and since B T k and ∆ coincide, the fact that any

(W, u) ∈ ∆ is such that W s > r ′ s for all s ∈ [0, t ′ [ is just a consequence of the fact that, by definition, any (W, u) ∈ B T k is such that W s > r s for all s ∈ [0, T k [. The same remark holds for the condition W 0 > 0. Similarly, E - is a restatement in terms of r ′ , t ′ , ∆ c of properties holding for r, t, R T k .
Conversely, let us assume that E -∩ E + holds. Our first claim is that r s = r ′ s for all s ∈ [0, t ′ ]. To see this, let us show that a particle in ∆ always lies strictly above (r s ) s for s ∈ [0, t ′ [. Assume that this is not the case, and define s 0 as the first time at which a particle in ∆ lies below the front (r s ) s . Due to the last condition defining E + , one has R 0+ ⊂ ∆ c , so that necessarily s 0 > 0. By definition, we have s 0 < t ′ and W s 0 ≤ r s 0 for some (W, u) ∈ ∆. Prior to s 0 , particles in ∆ always lie strictly above (r s ) s , so that r s = r ′ s for all s ≤ s 0 . Now the fact that W s 0 ≤ r s 0 implies that also W s 0 ≤ r ′ s 0 , which is in contradiction with E + . We deduce that particles in ∆ always lies strictly above (r s ) s for s ∈ [0, t ′ [, so that one must have r s = r ′ s for all s ∈ [0, t ′ ]. In particular, we deduce using

E -that t ′ = T k , U (m) k = e, T (ℓ) k = d, r k = y,
and the fact that T k is upward. It remains to show that A ℓ and V m hold. We start with A ℓ . Thanks to E + , during [t ′ , d], particles in ∆ cannot hit or leave y from above. Now, by E -, all the particles in ∆ c save the one making the front climb at time t ′ , have a location ≤ y -1 at time t ′ , and do not hit

y during [t ′ , d].
Again by E -, the particle making the front climb at time t ′ remains at y during [t ′ , d]. This proves that A ℓ holds. Since T k is an upward time, B T k coincides with the set of particles whose location at time T k is ≥ y, minus the particle that makes the front climb at T k . On E -∩ E + , this coincides with ∆, and the definition of ∆ precisely shows that V m must then hold.

We retain from this discussion not only that [START_REF] Panja | Effects of fluctuations on propagating fronts[END_REF] holds, but also that, on E -∩ E + , one has that r s and r ′ s coincide for all s ∈ [0, d], and that B T k and ∆ coincide. As a consequence, by Lemma 3, on E -∩ E + , we can find an event D = D(d, e, y) ∈ H - d,e,y that coincides with C. As a consequence, we have

E ν (Θ ℓ 1 C 1 A ℓ 1 Vm 1 J(d,e,y) ) = E ν (F (π y,d (∆))1 D 1 E + 1 E -). (16) 
Now observe that, with respect to P ν , H + d,e,y and H - d,e,y are independent. To see this, use the invariance of P ν with respect to the shift π y,d , and observe that, for d = 0 and y = 0, the property is a direct consequence of the independence properties of the initial distribution of particle paths. Thus, conditioning by H - d,e,y , and using the invariance of P ν with respect to the shift π y,d , we obtain that

E ν (F (π y,d (∆))1 D 1 E + 1 E -) = E ν (γ((r ′ s+d -y) -d≤s≤0 , -y)1 D 1 E -), (17) 
where γ(q) := ξ ′ (F, e -1/2 m , e, q, -y) χ ′ (e -1/2 m , e, q, -y) .

To conclude the proof of (13), we repeat the above argument, starting with Λ ℓ,m instead of Θ ℓ . Using the fact that, on E -∩ E + , one has that r s and r ′ s coincide for all s ∈ [0, d], we obtain that

E ν (Λ ℓ,m 1 C 1 A ℓ 1 Vm 1 J(d,e,y) ) = E ν (γ((r ′ s+d -y) -d≤s≤0 , -y)1 D 1 E -). ( 18 
)
Combining ( 16), ( 17) and ( 18) yields ( 14) for any d, e, y, from which we deduce the validity of [START_REF] Mai | Front propagation in one-dimensional autocatalytic reactions: The breakdown of the classical picture at small particle concentrations[END_REF]. Now note that, as for [START_REF] Mai | Front propagation and local ordering in onedimensional irreversible autocatalytic reactions[END_REF], we have that

|E ν (Λ ℓ,m 1 C ) -E ν (Λ ℓ,m 1 C 1 A ℓ 1 Vm )| ≤ M (P ν (A c ℓ ) + P ν (V c m )). (19) 
Our next claim is that, for fixed ℓ,

lim m→+∞ E ν (Λ ℓ,m 1 C ) = E ν (Γ ℓ 1 C ), (20) 
with

Γ ℓ := ξ ′ (F, (r s+T (ℓ) k -r k ) -T (ℓ) k ≤s≤0 , -r k ).
To see this, note that, for fixed q and F , one has that, for all c, lim a,b→c ξ ′ (F, a, b, q, x) = ξ ′ (F, q, x).

(21) Indeed, given c, one has that, P ν -a.s., B 0 = B 0 (a, b) for all a, b close enough to c, so ( 21) is a consequence of the dominated convergence theorem. Now one has that P ν -a.s., lim m→+∞ a m = lim m→+∞ b m = U k , so that (20) is a consequence of (21) and the dominated convergence theorem. We now claim that

lim ℓ→+∞ E ν (Γ ℓ 1 C ) = E ν (ξ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k )1 C ) . ( 22 
)
To see this, consider a path q = (q s ) t≤s≤0 satisfying the requirements listed in the definition of ξ ′ , and remember the definition of t 0 . For t 0 ≤ w ≤ 0, define q (w) as the path defined for tw ≤ s ≤ 0 by q (w) s := q s+w . One then has that lim

w→t 0 ξ ′ (F, q (w) , x) = ξ(F, q (t 0 ) , x). (23) 
To prove (23), we note that, P ν -a.s., for all w sufficiently close to t 0 , 1 G ′ (q (w) ,x) = 1 G(q (t 0 ) ,x) . This would be immediate if B 0 consisted in a finite number of particle paths. Using the a.s. uniform convergence of approximations of the dynamics involving a finite number of particles over finite time intervals, this is indeed a.s. true with respect to P ν , and (23) follows by dominated convergence. To prove (22), note that, P ν -a.s., for sufficiently large ℓ, the path (r s+T (ℓ)

k -r -k) -T (ℓ) k ≤s≤0
satisfies the assumptions of (23), so that (22) follows by dominated convergence.

Combining [START_REF] Thomas | Interacting particle systems, volume 276 of Grundlehren der Mathematischen Wissenschaften[END_REF], ( 11), ( 12), ( 13), ( 19), (20) and ( 22), we see that, choosing ℓ large enough, then m large enough, we can make the difference

|E ν (F (π r k ,T k (B T k ))1 C ) -E ν (ξ(F, (r s+T k -r k ) -T k ≤s≤0 , -r k )1 C ) |
as small as we want. This proves (9).

Estimates on the renewal structure

This section is devoted to the proof of Proposition 10. To control the tail of the regeneration time κ 1 , we use a sequence of stopping times which can be viewed as successive attempts to produce an α-separation time. [Extend the discussion]

We first introduce the following refinement of the notion of backward subα time: given 0 ≤ s < t, we say that t is an (s, α)-crossing time if there exists k ∈ {1, 2, . . .} such that r v < r s + k + α(vs) for all v ∈ [s, t[ and r t ≥ r s + k + α(ts). Note that if s is a backward sub-α time and if t is an (s, α)-crossing time, then t is also a backward sub-α time.

We now define by induction the sequence of stopping times on which our estimates on the renewal structure are based. Besides α, the definition involves two integer parameters C ≥ 1 and L ≥ 1. Let D 0 := 0 and Υ 0 := ∅. For n ≥ 1, assume that the random variables D n-1 , Υ n-1 have already been defined, and let S ′ n be the infimum of the t > D n-1 such that • t is a backward sub-α time;

• Υ n-1 ⊂ R t ; • B t contains at least C particles (W, u) such that W t = r t .
Then define S n as the infimum of the t > S ′ n such that • t is a backward sub-α time; • ]S ′ n , t[ contains a number of (S ′ n , α)-crossing times at least equal to L;

• B t contains at least C particles (W, u) such that W t = r t .
We use the notation (W * n , u * n ) for the particle that makes the front jump at time S n , and define the subset

R * Sn := R Sn \ {(W * n , u * n )}.
If S n is a backward super-α time, then Υ n := ∅ and D n is defined as the infimum of the t > S n such that a least one of the following five conditions holds:

(1)

r t < r Sn + ⌊α(t -S n )⌋ (2) t ≤ S n + α -1 and there is no (W, u) ∈ B Sn such that W Sn = r Sn and W remains at r Sn during [S n , S n + t], (3) W t > r Sn -1 + α(t -S n ) for some (W, u) ∈ R *
Sn , (4) t ≤ S n + α -1 and W * n t = r Sn , (5) t > S n + α -1 and W * n t > r Sn -1 + α(t -S n ), Note that (1) and (2) detect the potential failure of S n to be a forward superα time, while (3)-( 4)-( 5) detect the potential failure of S n to be a forward sub-α time.

On the other hand, if S n is not a backward super-α time, consider the set of particle paths (W, u) ∈ B Sn such that there exists t < S n for which W t < r Snα(S nt). Among this set, consider the pair (W (n) , u (n) ) such that (W Sn , u) is the smallest with respect to the lexicographical order 9 , and define

Υ n := {(W (n) , u (n) )} and D n := S n .
The rest of this section is devoted to proving estimates on the random variables we have just introduced. The main result from [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] that is needed to obtain these estimates is the following. Proposition 12. There exists a constant C 2 (ρ) > 0 such that, for all K > 0, there exists a constant c 1 , depending on ρ and K, such that, for every t > 0,

P ν (r t ≤ C 2 (ρ)t) ≤ c 1 t -K .
Note that, strictly speaking, Proposition 12 does not appear in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], where a slightly different kind of initial condition is considered. It is however a direct consequence of the results in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. See Appendix B for a proof.

In the following proofs, an additional parameter β is used. Here are the assumptions on the various parameters that we assume to hold throughout the sequel:

0 < α < β < (1/3)C 2 (ρ/4) 2(cosh(θ) -1) < αθ (24) 
Such a choice of parameters is always possible by choosing first α and β, then θ close enough to zero, using the fact that cosh(θ) = 1 + o(θ) when θ goes to zero. In addition to (24), we shall have to assume that C is large enough, and also that L is large enough (depending on C ). These assumptions on C and/or L will always be made explicit in the sequel. We now explain our convention for constants: what we call constants in the rest of this section may depend on ρ, α, β, θ, but, unless otherwise mentioned, not on C or L. As a rule, we use c 1 , c 2 , . . . to denote constants whose range of validity extends throughout the section, and are used in the statement of Propositions or Lemmas. On the other hand, we use d 1 , d 2 , . . . to denote constants that are purely local to proofs. 

Thanks to the assumption (24), we have that µ > 0.

Lemma 6. Let (ζ s ) s≥0 be a continuous-time simple symmetric random walk on Z with total jump rate 2 starting at x ≤ 0, with respect to a probability measure P x . Then for all t ≥ 0

P x (∃s ≥ t; ζ s ≥ αs) ≤ e θx e -µt .
Proof. For all s ≥ 0, let M s := e θζs-2(cosh(θ)-1)s , and T := inf{s ≥ t; ζ s ≥ αs}. Then (M s ) s≥0 is a càdlàg martingale, and T is a stopping time, so that, for all finite K > 0, one has

E x (M T ∧K ) = E x (M 0 ) = e θx . ( 26 
)
Now we have that lim inf K→+∞ M T ∧K ≥ M T 1(T < +∞), so that, by Fatou's lemma and (26),

E x (M T 1(T < +∞)) ≤ e θx . ( 27 
)
Now, by definition of T , one has that, on {T < +∞},

M T ≥ e θαT -2(cosh(θ)-1)T = e µT ≥ e µt , (28) 
where the last inequality comes from the fact that µ > 0 and T ≥ t. The result now follows from combining (27) and (28).

Let us now define the map φ θ on S θ by

φ θ (w) := x≤0 u∈w(x)
e θx .

Lemma 7. For all K > 0, there exists g(K) > 0 such that, for all w ∈ S θ such that φ θ (w) ≤ K, the following bound holds:

P w (∀(W, u) such that W 0 ≤ 0, ∀t > 0, one has W t < αt) ≥ g(K).
Proof. We re-use the notations used in the statement of Lemma 6. Let us choose θ ′ > θ such that µ ′ := αθ ′ -2(cosh(θ ′ ) -1) > 0 (this is possible since µ > 0), and observe that Lemma 6 holds with θ ′ , µ ′ instead of θ, µ. We deduce that, for all x < 0, we have

p(x) ≤ e θ ′ x , (29) 
where p(x) := P x (∃s > 0; ζ s ≥ αs) .

Moreover, we must have p(0) < 1, for otherwise we could prove that

P 0 lim sup t→+∞ ζ t /t ≥ α = 1,
which would contradict the law of large numbers. Since all the random walks in our model evolve independently, we can rewrite the probability we want to bound from below as

x≤0 (1 -p(x)) |w(x)| .
Now the inequality φ θ (w) ≤ K implies that, for all x ≤ 0, one has that

|w(x)| ≤ e -θx K. ( 30 
)
As a consequence, we have the bound

x≤0 (1 -p(x)) |w(x)| ≥   x≤0 (1 -p(x)) e -θx K   .
In view of (29) and of the fact that θ ′ > θ, we have that x≤0 e -θx e θ ′ x < +∞, so the r.h.s. of the above inequality is > 0, and depends only on K.

Lemma 8. For all w ∈ S θ , and all t ≥ 0, the following bound holds:

P w (∃(W, u) ∃s ≥ t, W 0 ≤ 0, W s ≥ αs) ≤ φ θ (w)e -µt .
Proof. Consequence of Lemma 6 and of the union bound. Proposition 13. There exist constants c 2 , c 3 > 0, with c 2 depending on C , such that, for every t > 0,

P ν C ,+ (r t ≤ βt) ≤ c 2 t -c 3 •C .
To prove Proposition 13, we need to introduce additional definitions and results. First, we define a modified version of the infection dynamics. In the modified version, the front is at zero at time zero and, after time zero, the dynamics is defined as the original one, with the difference that the front is never allowed to go below level zero (i.e. a jump that would make the front go below zero for the original dynamics has no effect on the front in the modified dynamics). We call (r s ) s≥0 the trajectory of the corresponding front.

Lemma 9. Given ψ 1 , ψ 2 ∈ Ω, the fact that ψ 1 ⊂ ψ 2 implies that rt (ψ 1 ) ≤ rt (ψ 2 ) for all t such that rt (ψ 1 ) and rt (ψ 2 ) are distinct from †.

Proof. Observe that, by definition, r0 (ψ 1 ) ≤ r0 (ψ 2 ). Moreover, due to our assumption on Ω, the two fronts cannot jump simultaneously unless they are at the same location prior to the jump. Since only nearest-neighbor steps can be performed, we see that the trajectories of our fronts must meet before crossing each other. As a consequence, to establish the conclusion of the lemma, it is enough to prove that, whenever the fronts are at the same location, the next step performed by any of the fronts, say at time t, is such that rt (ψ 1 ) ≤ rt (ψ 2 ). Assume that at time s one has rs (ψ 1 ) = rs (ψ 2 ), and let t denote the next time at which any of the fronts jumps. Since ψ 1 ⊂ ψ 2 , we see that if t is upward for ψ 1 , it is also upward for ψ 2 . On the other hand, if t is downward for ψ 2 , by the fact that ψ 1 ⊂ ψ 2 , it must also be downward for ψ 1 .

Lemma 10. One has that r t ≤ rt for all t such that both random variables are distinct from †.

Proof. Arguing as in the proof of Lemma 9, all we have to prove is that, whenever the fronts are at the same location, the next step performed by any of the fronts, say at time t, is such that r t ≤ rt . Assume that at time s one has rs (ψ 1 ) = rs (ψ 2 ), and consider the next time t at which any of the fronts jumps. By definition of the modified dynamics, both fronts must be at a location ≥ 0. Moreover, if t is upward for r, it must also be upward for r. On the other hand, if t is downward for r (in which case both fronts are at a location ≥ 1 at time s), it is also downward for r.

We now define a map T : Ω → Ω. Consider a pair (W, u). If W 0 ≥ 0, then we let W × := W . On the other hand, if W 0 < 0, consider τ := inf{s > 0; W s = 0}, and let

W × s := -W s on ] -∞, τ [ and W × s := W s on [τ, +∞[. Now we let T (ψ) := {(W × , u); (W, u) ∈ ψ}.
Lemma 11. One has that rt ≤ rt • T for all t such that both random variables are distinct from †.

Proof. First note that both fronts are at zero at time zero. Moreover, they cannot jump at the same time unless they are at the same location prior to the jump. Indeed, by definition of Ω, two distinct random walks cannot jump at the same time, and, moreover, since fronts for the modified dynamics always lie above zero, W × and W can cause a jump simultaneously only from a location ≥ 0, in which case W × coincides with W . As a consequence, as in the proof of Lemma 9, it is enough to prove that, if rs = rs • T , and if t denotes the first time after s at which any of the fronts jumps, one has rt ≤ rt • T . Assume that t is upward for r. Then by definition the corresponding random walk W is such that W s ≥ 0, so that W × coincides with W on [s, +∞[, and so t is also upward for r • T . On the other hand, if t is downward for r • T , then the common location of the fronts has to be ≥ 1, and there must be at least one (W, u) ∈ Ψ such that W s = W × s = rs . In fact, there cannot be more than one such (W, u), since otherwise t could not be downward for r • T . As a consequence, there is only one such (W, u), and t must also be downward for r.

Lemma 12. There exist constants c 4 , c 5 > 0, with c 4 depending on C , such that, for every t > 0,

P ν C ,+ inf s∈[(2/3)t,t] r s ≤ 0 ≤ c 4 t -c 5 •C .
Proof of Lemma 12. Define t 0 := t/3. Then fix a real number 0 < v < 2/3, and define y t 0 := ⌊v(t 0 log t 0 ) 1/2 ⌋ and ε(t

0 ) := t -v 2 /4 0 v(log t 0 ) 1/2
. Let (ζ s ) s≥0 denote a continuous-time simple symmetric random walk with total jump rate 2 starting at site x, with respect to a probability measure P x . By a standard local limit theorem 10 , we have that, as t goes to infinity,

P 0 (ζ t 0 ≤ -y t 0 ) ∼ d 1 ε(t 0 ), (31) 
10 See e.g. [START_REF] Feller | An introduction to probability theory and its applications[END_REF] XVI.6 for the case of a discrete-time random walk. The continuous-time follows easily, by controlling the fluctuations of the number of steps performed by the walk.

where d 1 is a positive constant. Using the reflection principle, we deduce that there exists a strictly positive constant d 2 such that, for large t,

P 0 inf s∈[0,t 0 ] ζ s ≤ -y t 0 ≤ d 2 ε(t 0 ).
Now let Z s denote the supremum of the positions at time s of the particle paths that are located at the origin at time zero, and let C 1 denote the event that Z s > -y t 0 for all s ∈ [0, t 0 ]. Since the number of these particle paths is at least C , we deduce that

P ν C ,+ (C c 1 ) ≤ d C 2 ε(t 0 ) C . ( 32 
)
Now let z t 0 := ⌊ε(t 0 ) -3 ⌋, and consider the number N of particle paths whose location at time zero lies in the interval [0, z t 0 ]. Let C 2 denote the event that N is at least equal to ρz t 0 /2. By standard large deviations bounds for Poisson random variables (see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]), we have that, for all large t,

P ν C ,+ (C c 2 ) ≤ exp(-d 3 z t 0 ), (33) 
for some strictly positive constant d 3 . Now define N ′ to be the number of particle paths that: (a) start at an initial position in [0, z t 0 ]; (b) hit -y t 0 during the time-interval [0, t 0 ]; (c) hit 0 after having hit -y t 0 and before time 2t 0 . For a particle starting in [0, z t 0 ], the probability to hit -y t 0 during [0, t 0 ] is larger than or equal to q t 0 := P zt 0 inf s∈[0,t 0 ] ζ s ≤ -y t 0 . Moreover, using the symmetry of the walk, we see that, starting from -y t 0 , the probability for the walk to hit 0 before time t 0 is larger than or equal to q t 0 . As a consequence, given N, the distribution of N ′ stochastically dominates a binomial distribution with parameters N and q 2 t 0 . Moreover, as t goes to infinity, z t 0 = o(t 1/2 0 ) and y t 0 z t 0 = o(t 0 ) due to the fact that v 2 < 2/3, so that (31) is also valid for P zt 0 (ζ t 0 ≤ -y t 0 ), from which we deduce that, for large t,

q t 0 ≥ d 4 ε(t 0 ),
where d 4 is a strictly positive constant. Define C 3 to be the event that N ′ ≥ Nq 2 t 0 /2. Using standard (see e.g. [START_REF] Mcdiarmid | Concentration. In Probabilistic methods for algorithmic discrete mathematics[END_REF]) large deviations bounds for binomial random variables, we deduce from the preceding discussion that for all large enough t,

P ν C ,+ (C 2 ∩ C c 3 ) ≤ exp(-d 5 ε(t 0 ) -1 ), (34) 
for some strictly positive constant d 5 . Now consider the intervals of the form [2t 0 + k, 2t 0 + k + 1], for 0 ≤ k ≤ ⌊t 0 ⌋. Then consider a random walk satisfying conditions (a) to (c) above, stopped at the first time it hits the origin after having hitted -y t 0 ; by definition, this time is ≤ 2t 0 . By symmetry, the probability that this walk is above 0 at time 2t 0 + k is ≥ 1/2, and the probability that it then remains above 0 during the whole interval [2t 0 + k, 2t 0 + k + 1] is larger than some strictly positive constant d 6 . As a consequence, for each of the intervals we consider, the probability that none of the random walks that satisfy (a) to (c) lies above zero for the duration of the interval, is, conditional upon N ′ , bounded above by (1d 6 ) N ′ . Now define C 4 as the event that, for every s ∈ [2t, 3t], there exists at least one random walk satisfying (a) to (c) whose position at time s is ≥ 0. Using the union bound over all the intervals, whose total number is ≤ t 0 + 1, we obtain that for all large enough t,

P ν C ,+ (C 2 ∩ C 3 ∩ C c 4 ) ≤ (t 0 + 1) exp -d 7 ε(t 0 ) -1 . (35) 
We now observe that, on

C 1 ∩ C 2 ∩ C 3 ∩ C 4 , one must have r s ≥ 0 for all s ∈ [2t 0 , 3t 0 ] = [(2/3)t, t]
. Indeed, we know that the front always lies above the maximum position of the particles initially at zero. By C 1 , the front lies above -y t 0 during the interval [0, t 0 ]. As a consequence, any particle path satisfying (a) and (b) must hit the front before time t 0 . For that reason, on C 4 , the front lies above 0 during the interval [2t 0 , 3t 0 ]. Now using (32), (33), (34), (35), we have that, for large enough t, the probability of the complement of

C 1 ∩ C 2 ∩ C 3 ∩ C 4 is bounded above by d C 2 ε(t 0 ) C + exp(-d 3 z t 0 ) + exp(-d 5 ε(t 0 ) -1 ) + (t 0 + 1) exp -d 7 ε(t 0 ) -1
, and the first term dominates the others when t 0 is large.

Proof of Proposition 13. Denote t 1 := (2/3)t. Now, for s ∈ [t 1 , t], define r

s := rs-t 1 • π 0,t 1 , and let C := {r s ≥ 0 for all s ∈ [t 1 , t]}. Our first claim is that: on the event C, one has that r (36) Indeed, on C, one has that r

(1)

t 1 ≤ r t 1 since by definition r (1) 
t 1 = 0. We argue as in the proofs of Lemmas 10, and assume that s 0 ∈ [t 1 , t] is such that r (1) s 0 = r s 0 . Since, on C, the jumps that affect both fronts between time s 0 and time t are exactly the same, one must have that r (1) s = r s for all s ∈ [s 0 , t]. This proves the claim.

We now define three distributions on S θ , in addition to ν + and ν C ,+ which were defined at the beginning of Section 4.2. Let (N

x ) x∈Z denote an independent family of Poisson processes on [0, 1], where, for all x ∈ Z, the rate of N [START_REF] Alves | The shape theorem for the frog model[END_REF] x is equal to ρp t 1 (x, N), with p t 1 (x, N) := y∈N p t 1 (x, y). Define also (N

x ) x∈Z to be an independent family of Poisson processes on [0, 1], where the rate of N

(2)

x is ρ/2 for x ≥ 1, ρ/4 for x = 0, and 0 for x < 0. Denote ν 1 and ν 2 the distributions induced by (N

x ) x∈Z and (N

x ) x∈Z on S θ . Finally, define ν 3 exactly as ν, with the difference that the constant value of the rate is equal to ρ/4 instead of ρ.

We now claim that r t 0 (P ν 3 ) ≺ r

t (P ν C ,+ ), (37) where ≺ denotes stochastic domination between probability measures on R. We also use stochastic domination on S θ equipped with the order relation induced by inclusion between sets, i.e. w 1 w 2 when w 1 (x) ⊂ w 2 (x) for all x ∈ Z.

To begin with, one checks that ν + is stochastically dominated by ν C ,+ . As a consequence, the distribution of X t 1 with respect to P ν C ,+ stochastically dominates ν 1 . Using Lemma 9, we deduce that r (1)

t (P ν + ) ≺ r (1) t (P ν C ,+ ). (38) 
Then, observe that ν 1 is the distribution of X t 1 with respect to P ν + , so that rt 0 (P ν 1 ) = r

(1)

t (P ν + ). (39) 
Then, ν 2 is stochastically dominated by ν 1 , since, for all x ≥ 0, we have p t 1 (x, N) ≥ 1/2. By Lemma 9, we deduce that rt 0 (P ν 2 ) ≺ rt 0 (P ν 1 ).

We also have that the image of the probability measure P ν 3 by the map T is P ν 2 , so that, by Lemma 11,

rt 0 (P ν 3 ) ≺ rt 0 (P ν 2 ). (41) 
Using Lemma 10, we finally deduce that

r t 0 (P ν 3 ) ≺ rt 0 (P ν 3 ). (42) 
Putting together (38), ( 39), ( 40), ( 41), (42), we see that (37) is proved.

We are now ready to prove the conclusion of the proposition. By (36), we have that, on C, r

t ≤ r t , so that

P ν C ,+ (r t ≤ βt) ≤ P ν C ,+ (r (1) t ≤ βt) + P ν C ,+ (C c ).
Thanks to Lemma 12,

P ν C ,+ (C c ) ≤ a 1 t -a 2 •C .
On the other hand, by (37), the distribution of r (1) t with respect to P ν C ,+ stochastically dominates that of r t 0 with respect to P ν 3 . Using Proposition 12 with K := C , and the fact that β is chosen such that β < (1/3)C 2 (ρ/4), we have that

P ν C ,+ (r (1) t ≤ βt) ≤ P ν 3 (r t 0 ≤ βt) ≤ P ν 3 (r t 0 ≤ C 2 (ρ/4)t 0 ) ≤ c 1 t -C 0 .
We now derive some consequences of Proposition 13 (remember that the event G is defined in ( 6)).

Lemma 13. For all large enough C ,

P ν C ,+ (G ∩ {t = 0 is a forward super α-time for B 0 }) > 0.
We shall use the following lemma to prove the above result. Lemma 14. Given ψ 1 , ψ 2 ∈ Ω, the fact that ψ 1 ⊂ ψ 2 implies that r t (ψ 1 ) ≤ r t (ψ 2 ) for all t such that r t (ψ 1 ) and r t (ψ 2 ) are distinct from †.

Proof. The proof is completely similar to the proof of Lemma 9.

Proof of Lemma 13. Let us first note that P ν C ,+ (G) > 0, using Lemma 7 and the symmetry of the distribution of our random walks.

For n ≥ 1, define A n,1 := {r n ≥ βn} and let A n,2 denote the event that the particle at the front at time n with the smallest label remains above level α(n + 1) during the time-interval [n, n + 1]. For k ≥ 1, introduce A (k) := {r t ≥ αt for all t ≥ k}, and note that n≥k

(A n,1 ∩ A n,2 ) ⊂ A (k) .
By Proposition 13, one has that

P ν C ,+ (A c n,1 ) ≤ c 2 n -c 3 •C .
Then, using e.g. a variance bound for the random walk, one has that, for large enough n,

P ν C ,+ (A n,1 ∩ A c n,2 ) ≤ d 1 n -2
, for some constant d 1 > 0. As a consequence, we have that, for all large enough C , there exists k ≥ 1 such that n≥k

P ν C ,+ (A c n,1 ∪A c n,2 ) < P ν C ,+ (G). We thus have that P ν C ,+ G ∩ n≥k (A n,1 ∩ A n,2 ) > 0, whence the fact that P ν C ,+ (G ∩ A (k) ) > 0.
Let U 0 denote the largest label of a particle path (W, u) such that W 0 = 0 (if there is no such particle path, we set U 0 := 0). We deduce from the fact that P ν C ,+ (G ∩ A (k) ) > 0 the existence of a u 0 < 1 such that

P ν C ,+ G ∩ A (k) ∩ {U 0 ≤ u 0 } > 0. ( 43 
)
Now let Ψ 0 denote the subset of Ψ obtained by removing all particle paths (W, u) such that W 0 = 0 and u > u 0 . We deduce from (43) that

P ν + G(Ψ 0 ) ∩ A (k) (Ψ 0 ) ∩ {|X 0 (Ψ 0 )| ≥ C } > 0,
with the convention that, for D ∈ F, D(Ψ 0 ) denotes the event that 1 D (Ψ 0 ) = 1. Now introduce the event A ′ that • there exists a particle path (W, u) such that u > u 0 and W s = 0 for s ∈ [0, α -1 ], and another particle path (W, u) such that u > u 0 , W s ≥ ⌊αs⌋ for all s ∈ [0, k]; • every particle path (W, u) such that W 0 = 0 and u > u 0 satisfies W s > αs for s < 0. One clearly has that P ν + (A ′ ) > 0, and that the two events A ′ and G(Ψ 0 ) ∩ A (k) (Ψ 0 ) ∩ {|X 0 (Ψ 0 )| ≥ C } are independent with respect to P ν + , and (using Lemma 14), that A (k) (Ψ 0 ) ∩ A ′ implies that 0 is a forward super α-time for B 0 .

Lemma 15. There exist strictly positive constants c 6 , c 7 , with c 6 depending on C , such that

P ν C ,+ (∃s ≥ t; r s ≤ αs) ≤ c 6 t -c 7 C .
Proof. We re-use the notations of the proof of Lemma 13. One has the following inclusion for k = ⌊t⌋:

{∃s ≥ t; r s ≤ αs} ⊂ (A (k) ) c ⊂ n≥k (A c n,1 ∪ A c n,2 ).
By the union bound, we deduce that

P ν C ,+ (∃s ≥ t; r s ≤ αs) ≤ n≥⌊t⌋ P ν C ,+ (A c n,1 ) + P ν C ,+ (A n,1 ∩ A c n,2 ) . ( 44 
)
By Proposition 13, one has that

P ν C ,+ (A c n,1 ) ≤ c 2 n -c 3 •C .
On the other hand, using e.g. a moment bound of order ⌈c 3 • C ⌉ for the random walk, one has that, for large enough n,

P ν C ,+ (A n,1 ∩ A c n,2 ) ≤ d 1 n -c 3 •C , for some constant d 1 > 0.
The result now follows from (44).

So far, we have considered estimates bounding the speed of propagation of the front from below. We now consider bounds from above. We use the following result from [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. Proposition 14. There exist a constant C 1 (ρ) > 0 and a constant c 8 , depending on ρ and C , such that, for every t > 0,

P ν C ,+ (r t ≥ C 1 (ρ)t) ≤ c 8 exp(-t).
As for Proposition 13, Proposition 14 does not appear as such in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], due to the different choice of initial conditions. It is a rather direct consequence of Theorem 1 in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF]. See Appendix B for a precise derivation.

We now derive two useful consequences of Proposition 14.

Lemma 16. Let C ′ 1 (ρ) := C 1 (ρ) + 1.
There exist strictly positive constants c 9 , c 10 , with c 9 depending on C , such that, for every t > 0,

P ν C ,+ (∃s ≥ t; r s ≥ C ′ 1 (ρ)s) ≤ c 9 exp(-c 10 
t). Proof. Let A 1 denote the event that there exists s ≥ t for which r s ≥ C ′ 1 (ρ)s, then let A 2 denote the event that, for the first such s, the particle located at the front with the lowest label remains above level C 1 (ρ)(s + 1) during the time-interval [s, s + 1]. We have that, on A 1 ∩ A 2 , r ⌈s⌉ ≥ C 1 (ρ)⌈s⌉. As a consequence, using the union bound over all the possible values of ⌈s⌉, and Proposition 14,

P ν C ,+ (A 1 ∩ A 2 ) ≤ +∞ k=⌈t⌉ c 8 exp(-k).
On the other hand, using an exponential moment bound for the maximal displacement of a random walk during a time-interval of length 1, we see that

P ν C ,+ (A 1 ∩ A c 2 ) ≤ d 1 exp(-d 2 t), for strictly positive constants d 1 , d 2 .
Lemma 17. There exist strictly positive constants c 11 , c 12 , with c 11 depending on C , such that, for every t > 0,

P ν C ,+ (∃s ≤ t; r s ≥ C ′ 1 (ρ)t) ≤ c 11 exp(-c 12 t).
Proof. Let A ′ 1 denote the event that there exists s ≤ t for which r s ≥ C ′ 1 (ρ)t, then let A ′ 2 denote the event that, for the first such s, the particle located at the front with the lowest label remains above level C 1 (ρ)t during the timeinterval [s, t]. We have that, on

A ′ 1 ∩ A ′ 2 , r t ≥ C 1 (ρ)t.
As a consequence, using Proposition 14, -t). On the other hand, using a standard large deviations bound for the maximal displacement of a random walk during a time-interval of length t, we see that

P ν C ,+ (A ′ 1 ∩ A ′ 2 ) ≤ c 8 exp(
P ν C ,+ (A ′ 1 ∩ A ′ 2 c ) ≤ d 1 exp(-d 2 t),
for strictly positive constants d 1 , d 2 .

Finally, the following lemma shows how ballisticity results such as Proposition 13 can be used to bound from below the number of α-crossing times.

Lemma 18. Consider t > 0, and assume that r t ≥ r 0 + βt. Then there exist at least

⌊ (β-α)t 2 ⌋ distinct (0, α)-crossing times in [0, t]. Proof. Let d := ⌊ (β-α)t 2 ⌋.
Observe that, for all x ∈ {1, . . . , d}, one has that 2x + αt ≤ βt. The fact that r t ≥ r 0 + βt implies that, for each such x, there exists a smallest s ∈]0, t] such that r s ≥ r 0 + 2x + αs. Denote by s x the corresponding s. By definition s x is a (0, α)-crossing time. Our next claim is that s x < s y whenever x < y. Indeed, one must have r sx-< r 0 + 2x + αs x by definition, and, since the maximum possible increment for the front at each step is +1, one has r sx ≤ r 0 + 2x + αs x + 1 < r 0 + 2(x + 1) + αs x . Since in addition r s < r 0 + 2x + αs < r 0 + 2(x + 1) + αs for all s ∈ [0, s x [, we must have s x+1 > s x . 4.3. Conditional distribution of π r Sn ,Sn (B Sn ). We now describe the conditional distribution of π r Sn ,Sn (B Sn ) given G R Sn . For t ≥ 0, let Ξ t denote the indicator function of the event that the number of particle paths in B t that are at site r t at time t is ≥ C . Consider q = (q 1 , q 2 ), where q 1 is a finite list of the form

q 1 = {(t 1 , x 1 , u 1 ), . . . , (t ℓ , x ℓ , u ℓ )}, with t 1 < • • • < t ℓ < 0, x 1 , . . . , x ℓ ∈ Z -= {0, -1, -2, . . .}, u 1 , . . . , u ℓ ∈ [0, 1],
while q 2 is a finite list of the form q 2 = {s 1 , . . . , s m }, with s 1 < • • • < s m < 0. Consider a càdlàg path q = (q s ) t≤s≤0 with values in Z and taking nearest-neighbor steps, such that q 0 = 0, q 0-= -1, and containing a finite number of jumps, and such that t < min(s 1 , t 1 ), and x i ≥ q t i for all 1 ≤ i ≤ ℓ. Now define G(q, q) as the event that

• for all 1 ≤ i ≤ ℓ, for all (W, u) ∈ B 0 such that (W t i , u) is less than (x i , u i ) with respect to the lexicographical order, one has W s ≥ q t iα(t is) for all s < t i ; • for all 1 ≤ i ≤ m, for all (W, u) ∈ B 0 , one has W s ≥ q s iα(s is) for all s < s i . Finally, let G(q, q, x) := G(q, q) ∩ G(q, x), where G(q, x) has been defined in [START_REF] Feller | An introduction to probability theory and its applications[END_REF], and, for any bounded measurable map

F : Ω → R, define η(F, q, q, x) := E ν (F (B 0 )|G(q, q, x) ∩ {Ξ 0 = 1}). ( 45 
)
Proposition 15. For any bounded measurable map F : Ω → R, and all n ≥ 1, one has that, on {S n < +∞},

E ν (F (π r Sn ,Sn (B Sn ))|G R Sn ) = η(F, Q (n) , (r s+Sn -r Sn ) -Sn≤s≤0 , -r Sn ) a.s., where Q (n) is a G R Sn -measurable random variable. Proof of Proposition 15. Let Q (n) 1 := {(S j -S n , W (j)
S jr Sn , u (j) )}, where j runs over those indices in 1 ≤ j ≤ n -1 such that S j is not a backward super-α time. (The notation (W (j) , u (j) ) is defined at the beginning of Section 4.) Let also

Q (n) 2 := {S j -S n ; 1 ≤ j ≤ n -1, S j
is a backward super-α time}, and define

Q (n) := (Q (n) 1 , Q (n) 2 ). Let us check that Q (n) is indeed measurable with respect to G R Sn .
We have already seen that the history of the front from time 0 to time S n is indeed measurable with respect to G R Sn . Given v > 0, let us say that t is a backward super-α time relative to R v if, for any (W, u) ∈ B t ∩ R v , and all s < t, one has W s ≥ r tα(ts). Now we have that, given 1 ≤ j ≤ n -1, it is equivalent for S j to be a backward super-α time and to be a backward super-α time relative to R Sn . Indeed, if S j fails to be a backward superα time, by definition one must have that (W (j) , u (j) ) ∈ R S ′ j+1 ⊂ R Sn , so that it is possible to check whether S j is a backward super-α time just by checking that every particle path (W, u) in B S j ∩ R Sn is such that W s ≥ r S jα(S js) for all s < S j . Moreover, when S j fails to be a backward super-α time, (W (j) , u (j) ) is precisely the smallest particle path in B S j ∩ R Sn (with respect to the lexicographical order) such that there exists s < S j for which W s < r S jα(S js).

Consider C ∈ G R Sn , and write

E ν (F (π r Sn ,Sn (B Sn ))1 C ) = k≥1 E ν (Θ k 1 C 1(S n = T k )), (46) 
where

Θ k := F (π r k ,T k (B T k )).
Now introduce a new set of random variables, depending on R T k , and defined inductively as follows. We start with D0 := 0 and Υ0 := ∅. Then, for all n ≥ 1, S′ n is defined from Dn-1 and Υn-1 exactly as S ′ n is defined from D n-1 and Υ n-1 . Similarly, Sn is defined from S′ n exactly as S n is defined from S ′ n . Then if S n is a backward super-α time relative to R T k , let Υn := ∅, and let Dn be defined from Sn exactly as D n is defined from S n . If S n is not a backward super-α time relative to R T k , let ( W (n) , ũ(n) ) denote the particle path such that (W Sn , u) is the smallest with respect to the lexicographical order among those paths in B Sn ∩ R T k such that there exists s < Sn for which W s < r Snα( Sns). Then let Υn := {( W (n) , ũ(n) )}, Dn := Sn . Finally, Q(n) is defined from S, W , ũ just as Q (n) is defined from S, W, u. We now return to (46). First, by Lemma 3, we can find C ′ ∈ G R T k such that C and C ′ coincide on {S n = T k }. On the other hand, we have that

{S n = T k } = { Sn = T k } ∩ H k , ( 47 
)
where H k is the event that, for all 1 ≤ j ≤ n -1,

• if Sj fails to be a backward super-α time relative to R T k , for all

(W, u) ∈ B T k such that (W Sj , u) is less than ( W (j) 

Sj

, ũ(j) ) with respect to the lexicographical order, one has W s ≥ r Sjα( Sjs) for all

s < Sj ; • if Sj is indeed a backward super-α time relative to R T k for all (W, u) ∈ B T k , one has W s ≥ r Sj -α( Sj -s) for all s < Sj .
To check (47), one checks that, on {S n = T k } as well as on { Sn = T k } ∩ H k , all the random variables D, Υ, S′ , S up to Sn coincide with D, Υ, S ′ , S up to S n . Indeed, on {S n = T k }, it is equivalent for S j to be a backward super-α time or a backward super-α time relative to R T k , and (W (j) , u (j) ) belongs to R T k when S j is not a backward super-α time. Similarly, on { Sn = T k } ∩ H k , it is equivalent for Sj to be a backward super-α time or a backward superα time relative to R T k , and ( W (j) , ũ(j) ) belongs to R T k when Sj is not a backward super-α time.

Now observe that we can write

{ Sn = T k } = D k ∩ {Ξ T k = 1},
where D k is the event that: S′ n < T k , Sn ≥ T k , T k is a backward sub-α time, and ] S′ n , T k [ contains a number of ( S′ n , α)-crossing times at least equal to L. Thus for all k ≥ 1,

E ν (Θ k 1 C 1(S n = T k )) = E ν (Θ k 1 C ′ 1 D k 1(Ξ T k = 1)1 H k ).
Introduce the notation f k := (r s+T kr k ) -T k ≤s≤0 . We observe that

1 H k = 1 G( Q(n) ,f k ) (π r k ,T k (B T k )), so that E ν (Θ k 1 C 1(S n = T k )) = E ν ((F 1 G( Q(n) ,f k ) 1(Ξ 0 = 1))(π r k ,T k (B T k ))1 C ′ 1 D k ).
One checks that D k is measurable with respect to G R T k , and that, on

D k , Q(n) is measurable with respect to G R T k .
As a consequence, using 11 Proposition 11, we have that

E ν (Θ k 1 C 1(S n = T k )) = E ν (ξ(F 1 G( Q(n) ,f k ,-r k ) 1(Ξ 0 = 1), f k )1 C ′ 1 D k ). Introduce λ(q, q, x) := P ν (G(q, q, x) ∩ {Ξ 0 = 1}) P ν (G(q, x)) .
By definition, we have that ξ(F 1 G(q,q) 1(Ξ 0 = 1), q, x) = η(F, q, q, x)λ(q, q, x), so that

E ν (Θ k 1 C 1(S n = T k )) = E ν (η(F, Q(n) , f k , -r k )λ( Q(n) , f k , -r k )Λ k 1 C ′ 1 D k ).
(48) On the other hand, repeating the previous argument with

Λ k := η(F, Q (n) , f k , -r k ) instead of Θ k (remember that η is defined in (45)), using the fact that Q(n) = Q (n) on {S n = T k }, we also find that E ν (Λ k 1 C 1(S n = T k )) = E ν (η(F, Q(n) , f k , -r k )λ( Q(n) , f k , -r k )Λ k 1 C ′ 1 D k ).
(49) In view of (46), the combination of ( 48) and (49) yields the conclusion of the proposition. Corollary 4. For any non-negative bounded measurable map F : Ω → R, the following bound holds for all n ≥ 1, on {S n < +∞},

E ν (F (π r Sn ,Sn (B Sn ))|G R Sn ) ≤ c 13 E ν C ,+ (F ) a.s.
, where c 13 is a positive constant depending on C . Proof. Observe that, for all (q, q, x) such that q s < αs for all s ∈ [t, 0[ and x < αt, the fact that 0 is a backward super α-time and Ξ 0 = 1 implies that G(q, q, x) holds. We thus have that, for non-negative F ,

η(F, q, q, x) ≤ E ν (F (B 0 )1 Ξ 0 =1 ) P ν (G ∩ {Ξ 0 = 1}) ≤ c 13 E ν C ,+ (F ), with 
c 13 := P ν (Ξ 0 = 1) P ν (G ∩ {Ξ 0 = 1}) ,
using Lemma 7 to establish that P ν (G ∩ {Ξ 0 = 1}) > 0. The conclusion now follows from Proposition 15, using the fact that S n is a backward sub-α time.

4.4. Tail bounds. We are now ready to prove the tail bounds that are necessary to control the regeneration times. Let us first observe that, thanks to Proposition 13 and to the fact that α < β, we know that, for n ≥ 0, when D n < +∞, one almost surely has that S n+1 < +∞.

One key quantity we shall work with is the random variable M n , defined for all n ≥ 1, on the event {S n < +∞}, by

M n := (W,u)∈R * Sn e -θ(r Sn -W Sn ) , (50) 
where R * Sn is defined at the beginning of Section 4. For n ≥ 1, let N n denote the number of (S n , α)-crossings contained in the time-interval [S n , S ′ n+1 ]. Lemma 19. One has the following bound: for all n ≥ 1, for all K > 0, on {S n < +∞},

P ν (N n ≥ K, D n < +∞|F R Sn ) ≤ e θ
M n e -c 14 K + c 15 K -c 16 C a.s., where c 14 , c 15 , c 16 are strictly positive constants, with c 15 depending on C . Proof. Let S ′′ n+1 denote the infimum of the t > D n such that • t is a backward sub-α time;

• Υ n ⊂ R t . Let N (1) n and N (2)
n denote respectively the numbers of (S n , α)-crossings contained in the time-interval [S n , S ′′ n+1 [ and in the time-interval

[S ′′ n+1 , S ′ n+1 ], so that N n = N (1) n + N (2) n .
(51) Our first claim is that there exists a constant d 1 < 1, depending on C , such that, for all ℓ ≥ 1,

P ν (N (2) n ≥ ℓ, D n < +∞|G R Sn ) ≤ d ℓ 1 a.s. (52) 
Assume that D n < +∞, and denote by τ 1 , τ 2 , . . . the successive backward sub-α times posterior to S ′′ n+1 (with τ 1 := S ′′ n+1 ), and let J := inf{j ≥ 1; Ξ τ j = 1} (remember that Ξ t = 1 means that there are at least C particles located at site r t in B t ). By definition, we have S ′ n+1 = τ J . Since S n is a backward sub-α time, any (S n , α)-crossing in [S ′′ n+1 , S ′ n+1 ] is a backward sub-α time, so we have N (2) n ≤ J.

(53) Now using an argument similar to the proof of Proposition 15, we have that, for all i ≥ 1, on {D n < +∞}, the distribution of π rτ i ,τ i (B τ i ) conditional upon G R τ i is that of B 0 conditioned upon an event containing G (remember that G is defined in ( 6)), so that, on {D n < +∞}, one has the bound

P ν (Ξ τ i = 1|G R τ i ) ≥ P ν ({Ξ 0 = 1} ∩ G) a.s. Since for all i ≥ 2, the random variables Ξ τ 1 , . . . , Ξ τ i-1 are measurable with respect to G R τ i , we deduce that, on {D n < +∞}, P ν (J ≥ ℓ|G R S ′′ n+1 ) ≤ (1 -P ν ({Ξ 0 = 1} ∩ G)) ℓ a.s. (54) 
Combining ( 53) and (54), we deduce (52), using also the fact that

12 G R Sn ⊂ G R S ′′ n+1 since S n ≤ S ′′ n+1 and S n is G R S ′′ n+1 -measurable.

Now consider the event N

(1) n > ℓ. Start with the case where S n is not a backward super-α time, and call H n the corresponding event. We first bound the probability that W (n) Sn > r Sn + ℓ/2. From Lemma 6, a random walk starting at x ≥ 0 at time zero has a probability bounded above by e -θx to ever cross at a negative time the half-line of slope α starting at (0, 0). Using Corollary 4 and the union bound over all the particle paths in B Sn , we deduce that

P ν (H n , W (n) Sn > r Sn + ℓ/2|G R Sn ) ≤ c 13 x>ℓ/2
e -θx ρ,

We deduce that

P ν (H n , W (n) 
Sn > r Sn + ℓ/2|G R Sn ) ≤ d 2 e -d 3 ℓ , (55) 
where d 2 and d 3 are strictly positive constants, with d 2 , d 3 depending on C . On the other hand, assume that W

Sn ≤ r Sn + ℓ/2. Assume also that N

n > ℓ, and let t denote the time of the ℓ-th (S n , α)-crossing posterior to S n . By definition of N (1)

n , we must have that (W (n) , u (n) ) / ∈ R t , whence W (n) t ≥ r t ≥ r Sn + ℓ + α(t -S n ). Since W (n) Sn ≤ r Sn + ℓ/2, this implies that W (n) t ≥ W (n) Sn + ℓ/2 + α(t -S n ).
Using again Corollary 4, Lemma 6 and the union bound, we deduce that P ν (N (1) n > ℓ, H n , W

Sn ≤ r Sn +ℓ/2|G R Sn ) ≤ c 13   e -θℓ/2 ρ C + 1≤x≤ℓ/2 e -θℓ/2 ρ   , (n) 
where ρ C denotes the expected value of a Poisson random variable of parameter ρ conditioned upon being ≥ C (we have to use ρ C since, under ν C ,+ , the number of particles at the origin has a Poisson distribution conditioned by taking a value ≥ C ). We deduce that there exists a strictly positive constant d 4 depending on C and a strictly positive constant d 5 such that

P ν (N (1) n > ℓ, H n , W (n) 
Sn ≤ r Sn + ℓ/2|G R Sn ) ≤ d 4 e -d 5 ℓ . (56) 
Now consider the case where S n is a backward super-α time. In this case, Υ = ∅ and, by definition of S ′′ n+1 , N

n is also the number of (S n , α)-crossings contained in the time-interval

[S n , D n ]. Introduce t 0 := ℓ/C ′ 1 (ρ) (remember that C ′ 1 (ρ)
is defined in Proposition 18), assuming that ℓ is large enough so that t 0 > α -1 , and consider the cases D n -S n > t 0 and D n -S n ≤ t 0 separately. Assume first that D n -S n ≤ t 0 , and let t denote the time of the ℓ-th (S n , α)-crossing posterior to S n .The fact that N

(1) n > ℓ implies that t < D n , while r t ≥ r Sn + ℓ. Moreover, since t < D n , r t is in fact equal to r Sn + r t-Sn (π r Sn ,Sn (B Sn )) since, by definition, particles in R Sn cannot influence the front between time S n and time D n (see the proof of Lemma 4). As a consequence, r t-Sn (π r Sn ,Sn (B Sn )) ≥ ℓ, while t -S n ≤ t 0 . Using Corollary 4 and Lemma 17, we deduce that

P ν (N (1) n ≥ ℓ, H c n , D n -S n ≤ t 0 |G R Sn ) ≤ c 11 e -c 12 t 0 . (57) 
On the other hand, using again the fact that particles in R Sn cannot influence the front prior between time S n and time D n , we see that, if D n -S n > t 0 , at least one of the three following events must occur, according to which of the five conditions defining D n corresponds to the smallest time (note that our assumption that t 0 > α -1 rules out (2) and (4)): for some t ≥ S n + t 0 , r t (π r Sn ,Sn (B Sn )) < ⌊α(t -S n )⌋, or there exists a particle path (W, u) ∈ R Sn such that W Sn ≤ r Sn -1 and a t ≥ t 0 such that W Sn+t ≥ r Sn -1 + α(t -S n ), or there exists a t ≥ t 0 such that W * n t > r Sn -1 + αt, while W * n Sn+α -1 = r Sn . Using Corollary 4, Lemma 15, Lemma 8, and Lemma 6, and the strong Markov property13 at time S n and S n + α -1 , we deduce by the union bound that

P ν (N (1) n ≥ ℓ, H c n , t 0 < D n -S n < +∞|F R Sn ) ≤ c 13 c 6 t 0 -c 7 C + e θ M n e -µt 0 +e -µ(t 0 -α -1 ) .( 58 
)
Putting toghether (51), ( 52), ( 55), ( 56), ( 57) and (58), we deduce the conclusion of the lemma.

Corollary 5. One has the following bound: for all n ≥ 1, for all t > 0, on {S n < +∞},

P ν (S ′ n+1 -S n ≥ t , D n < +∞|F R Sn ) ≤ e θ M n e -c 17 t + c 18 t -c 19 C a.s.
, where c 17 , c 18 , c 19 are strictly positive constants, with c 18 depending on C . Proof. Assume that S ′ n+1 -S n ≥ t. If r Sn+t ≥ r Sn + βt, we deduce by Lemma 18 that there exist at least ⌊ (β-α)t 2 ⌋ distinct (S n , α)-crossing times in [S n , S n + t], whence the fact that N n ≥ ⌊ (β-α)t 2 ⌋. On the other hand, using Lemma 14, Proposition 13 and Corollary 4, we see that

P ν (r Sn+t -r Sn ≤ βt , D n < +∞|F R Sn ) ≤ c 13 c 2 t -c 3 •C a.s.
The conclusion now follows from Lemma 19. Corollary 6. One has the following bound: for all n ≥ 1, for all t > 0, on {S n < +∞}, Proof. Assume that S ′ n+1 ≤ S n + t and that r S ′ n+1 ≤ r Sn + K for some t, K > 0. We can then bound L n by counting the total number of particle paths (W, u) in B Sn for which there exists s ∈ [S n , S n + t] such that W s ∈ [r Sn , r Sn + K]. This number includes all the particle paths (W, u) in B Sn such that W Sn ∈ [r Sn , r Sn + K], plus the particle paths in B Sn such that W Sn ≥ r Sn +K +1 that hit level r Sn +K during the time-interval [S n , S n +t]. Assume that we start with P ν C ,+ , and let K 1 denote the number of particle paths (W, u) in B 0 such that W 0 ∈ [0, K], while K 2 denotes the number of particle paths in B 0 such that W 0 ≥ r 0 + K + 1 that hit level K during the time-interval [0, t]. By standard properties of the Poisson distribution, we see that K 2 is a Poisson random variable with distribution ρg, where

P ν (r S ′ n+1 -r Sn ≥ K , D n < +∞|F R Sn ) ≤ M n e -c 20 K + c 21 K -c 22 C a.
g := x≥K+1 P x ( inf s∈[0,t] ζ s ≤ K).
Using the reflection principle, we see that g ≤ g ′ , where

g ′ = 2 x≥K+1 P x (ζ t ≤ K).

Now using translation invariance, we can rewrite

g ′ = 2 x≥1 P x (ζ t ≤ 0) = 2 x≥1 P 0 (x + ζ t ≤ 0) = 2E 0 (-ζ t 1(ζ t ≤ -1)).
Using Schwarz's inequality, we deduce that g ′ ≤ 2 √ 2t. On the other hand, K 1 is the sum of Ξ 0 , whose distribution is that of a Poisson random variable of parameter ρ conditioned to be ≥ C , and of a Poisson random variable of parameter ρK, these two variables being independent, and independent from K 2 . Using Corollary 4, we deduce that, for some strictly positive constant d 1 depending on C , P ν (L (1) n ≥ ℓ, S ′ n+1 ≤ S n + t, r

S ′ n+1 ≤ r Sn + K|G R Sn ) ≤ d 1 a t,K (ℓ), (59) 
where a t,K (ℓ) denotes the probability for a Poisson random variable with parameter ρ(K + 1 + 2 √ 2t) to be ≥ ℓ. Now consider two strictly positive constants b 1 , b 2 with ρb 1 < 1. Note that, for K := b 1 ℓ and t := b 2 ℓ, one has, by standard large deviations bounds for Poisson random variables (see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]), that for all ℓ ≥ 1,

a t,K (ℓ) ≤ d 2 e -d 3 ℓ , ( 60 
)
where d 2 , d 3 are strictly positive constants. Combining Corollary 5 and Corollary 6, we deduce that, on {S n < +∞}, 60) and (61), we deduce the result.

P ν C ,+ (V n (ℓ) c , D n < +∞|F R Sn ) ≤ e θ M n e -d 4 ℓ + d 5 ℓ -d 6 C a.s., (61) 
In the sequel, we use the random variable N 

P ν (I ≥ ℓ, D n < +∞|G R S ′ n+1 ) ≤ d 1 ℓ a.s., (62) 
where d 1 < 1 is a constant depending on C . Combining the resulting bound on the tail of N

(3) n

with Proposition 13 and the analog of Corollary 4 for S ′ n+1 as in the proof of Corollary 5, we deduce the result.

Corollary 7. One has the following bound: for all n ≥ 1, for all K > 0, on {S n < +∞},

P ν (r S n+1 -r S ′ n+1 ≥ K , D n < +∞|F R S ′ n+1 ) ≤ c 27 K -c 28 C a.s.,
where c 27 , c 28 are strictly positive constants with c 27 depending on C and L.

Proof. By definition of α-crossing times, we have

r S n+1 ≤ r S ′ n+1 + α(S n+1 -S ′ n+1 ) + N (3) n ,
then use Lemma 21 and the bound on the tail of N

n derived in its proof.

Define L

n to be the number of particle paths in B S ′ n+1 ∩ R S n+1 . Lemma 22. For all n ≥ 1, and all large enough C , one has the following bound: on {S n < +∞}, E ν (L (2) n 1(D n < +∞)|F R Sn ) ≤ c 29 a.s., where c 29 is a strictly positive constant depending on C and L.

Proof. Use the same argument as in the proof of Lemma 20, with Lemma 21 and Corollary 7 replacing Corollaries 5 and 6 respectively.

Lemma 23. Consider w ∈ S θ such that there is at least one particle at site 0. Let T be an (F t ) t≥0 stopping time such that T is a backward super-α time and ]0, T [ contains a number of (0, α)-crossing times at least equal to m ≥ 0. Then one has the following bound:

E w   (W,u)∈R 0+ e -θ(r T -W T ) 1(T < +∞)   ≤ e -θm φ θ (w).
Proof. Consider (W, u) ∈ R 0+ , and, for all s ≥ 0, let M s := e θWs-2(cosh(θ)-1)s . Then (M s ) s≥0 is a càdlàg martingale. Since T is a stopping time, we have, for all finite K > 0, that

E w (M T ∧K ) = E w (M 0 ) = e θW 0 . (63) 
Now we have that lim inf K→+∞ M T ∧K ≥ M T 1(T < +∞), so that, by Fatou's lemma and (63),

E w (M T 1(T < +∞)) ≤ e θW 0 . (64) 
Now, from our assumptions on T and the fact that r 0 = 0, one has that, on {T < +∞}, r T ≥ αT + m. Using the fact that, by (24), 2(cosh(θ) -1) ≤ αθ, we deduce that

2(cosh(θ) -1)T ≤ 2(cosh(θ) -1) r T -m α ≤ θ(r T -m).
Writing

-θr T + θW T = -θr T + 2(cosh(θ) -1)T -2(cosh(θ) -1)T + θW T ,
we finally deduce that, on {T < +∞}, -θr T + θW T ≤ -θm -2(cosh(θ) -1)T + θW T .

In view of (64), we deduce that E w (e -θ(r T -W T ) 1(T < +∞)) ≤ e -θm E w (M T 1(T < +∞)) ≤ e -θm e θW 0 .

The result now follows from summing the above inequality over all (W, u) ∈ R 0+ .

Lemma 24. For all n ≥ 1, and all large enough C , one has the following bound:

E ν (M n+1 1(D n < +∞)|F R Sn ) ≤ c 30 e -θL M n + c 31
, where c 30 is a strictly positive constant depending on C , and c 31 is a strictly positive constant depending on C and L.

Proof. Define

M ′ n+1 := (W,u)∈R * S ′ n+1 exp -θ(r S ′ n+1 -W S ′ n+1 ) ,
where R * S ′ n+1 is defined as the set R S ′ n+1 from which we remove the particle path that makes the front climb at time S ′ n+1 . By definition we have that M ′ n+1 ≤ A (1) + A (2) , with

A (1) := (W,u)∈R Sn exp -θ(r S ′ n+1 -W S ′ n+1 )
and

A (2) := (W,u)∈B Sn ∩R S ′ n+1 exp -θ(r S ′ n+1 -W S ′ n+1 ) .
First, using the fact that for each (W, u) ∈ R S ′ n+1 , one has W S ′ n+1 ≤ r S ′ n+1 , we have the bound A (2) ≤ L (1) n .

(65) Now using Lemma 23, we deduce that

E ν (A (1) 1(D n < +∞)|F R Sn ) ≤ M n + 1, (66) 
where the +1 term comes from the fact that the definition of M n involves the particles in R * Sn , not R Sn , so we have to add the contribution to A (1) of the particle path (W * n , u * n ) , which we bound by 1. Now we have that M n+1 ≤ B (1) + B (2) , with

B (1) := (W,u)∈R S ′ n+1 exp -θ(r S n+1 -W S n+1 ) and B (2) := (W,u)∈B S ′ n+1 ∩R S n+1 exp -θ(r S n+1 -W S n+1 ) .
As in (65), we have the bound

B (2) ≤ L (2) n . (67) 
On the other hand, using Lemma 23, we deduce that

E ν (B (1) 1(D n < +∞)|F R S ′ n+1 ) ≤ e -θL M ′ n+1 + 1. (68) 
Combining ( 65), (66), ( 67), (68), and using the fact that F R Sn ⊂ F R S ′

n+1

, we deduce that, on {S n < +∞}, (2) n 1(D n < +∞)|F R Sn ). The conclusion now follows from Lemmas 20 and 22.

E ν (M n+1 1(D n < +∞)|F R Sn ) ≤ e -θL M n + e -θL + 1 + e -θL E ν (L (1) n 1(D n < +∞)|F R Sn ) + E ν (L
So far, we have proved results dealing with the behavior of the system during the time-interval [S n , S n+1 ], for n ≥ 1. The case of the interval [0, S 1 ] is a little bit different since it starts at time D 0 = 0, where not all the properties of times S n , n ≥ 1 are met. However, the distribution of (R 0 , B 0 ) is exactly known, and, in this case, Proposition 12 directly yields the estimates that we obtained by a combination of Proposition 13 and Corollary 4 in the case [S n , S n+1 ]. In particular, we have the following results.

Let N 0 denote the number of (0, α)-crossings contained in the timeinterval [0, S ′ 1 ] and associated to an integer k such that r 0 + k ≥ 1. Lemma 25. One has the following bound: for all n ≥ 1, for all K > 0,

P ν (N 0 ≥ K) ≤ c 32 K -c 33 C .
where c 15 , c 33 are strictly positive constants, with c 32 depending on C .

Proof. We always have Υ = ∅, so that S ′ 1 is the smallest positive t such that t is a backward super-α time and Ξ t = 1. As a consequence, we only have to adapt the first part of the argument in the proof of Lemma 19, i.e. the one dealing with N Lemma 27. One has the following bound: for all t > 0, ,

P ν (S 1 -S ′ 1 ≥ t) ≤ c 39 t -c 40 C a.s.
, where c 39 , c 40 are strictly positive constants, with c 39 depending on C and L.

Proof. Similar to the proof of Lemma 21.

Corollary 10. One has the following bound: for all K > 0, Lemma 29. For all large enough C , one has the following bound:

P ν (r S 1 ≥ K) ≤ c 41 K -c 42 C a.
E ν (M 1 ) ≤ c 44 ,
where c 44 is a strictly positive constant depending on C and L.

Proof. Similar to the proof of Lemma 24.

Proposition 16. For all large enough C , and all large enough L (depending on C ), there exists c 45 < +∞, depending on C and L, such that, for all n ≥ 1,

E ν (M n |D n-1 < +∞) ≤ c 45 .
Proof. For n = 1, the result is Lemma 29. Consider n ≥ 1, and write

E ν (M n+1 |D n < +∞) = E ν (M n+1 1(D n < +∞)|D n-1 < +∞) P ν (D n < +∞|D n-1 < +∞) . (69) 
Now observe that, by definition, S K is an α-separation time. As a consequence, we have that κ 1 ≤ S K . Writing S K := S 1 + K-1 k=1 (S k+1 -S k ), we deduce that for all t and n ≥ 1,

P ν (κ 1 ≥ t) ≤ P ν (K > n) + P ν (S 1 ≥ t/n) + n-1 k=1 P ν (S k+1 -S k ≥ t/n, D k < +∞). (72) 
Let t ′ := t/n. Using Corollary 8 and Lemma 27 and, we deduce that

P ν (S 1 ≥ t/n) ≤ c 34 (t ′ /2) -c 35 C + c 39 (t ′ /2) -c 40 C . (73) 
On the other hand, one has that

P ν (S k+1 -S k ≥ t/n, D k < +∞) ≤ P ν (S k+1 -S k ≥ t/n, D k < +∞|D k-1 < +∞),
and, using Corollary 5, Lemma 21 and Proposition 16, we deduce that

P ν (S k+1 -S k ≥ t/n, D k < +∞) ≤ c 45 e -c 17 (t ′ /2) + c 18 (t ′ /2) -c 19 C + c 25 (t ′ /2) -c 26 C . (74) 
Choosing e.g. n := ⌈t 1/2 ⌉, and using (71), ( 73) and (74) to bound the terms in (72), we deduce that

P ν (κ 1 ≥ t) ≤ d 4 t -d 5 C +1/2 , (75) 
where d 4 and d 5 are strictly positive constants, with d 4 depending on C and L. Choosing C large enough, this proves the fact that κ 1 has a finite second moment. Now write

P ν (r κ 1 ≥ ℓ) ≤ P ν (κ 1 > t) + P ν sup s∈[0,t]
r s ≥ ℓ .

Choosing t := ℓ/C ′ 1 (ρ), and using Lemma 17 and (75), we deduce that

P ν (r κ 1 ≥ ℓ) ≤ d 6 ℓ -d 5 C +1/2 , (76) 
where d 6 is a strictly positive constant depending on C and L. Choosing C large enough, this proves the fact that r κ 1 has a finite second moment.

Extension to the case D R > D B

We now rigorously define the infection dynamics of the remanent infection model for D R > D B , assuming without loss of generality that D B = 2. To emphasize the similarities, we use as much as possible the same notations that were already used for the single-rate KS infection model.

We use a construction of the dynamics with D R > D B = 2 that uses random walk trajectories (W, u) with constant jump rate 2, for which our reference probability space for paths (W, u) is (Ω, F, P w ). As long as a particle is blue, it follows the corresponding trajectory in the usual way, while, as soon as it is turned into a red particle, it starts following the trajectory with a speed multiplied by a factor D R /2. As a result, the actual path (W, u) followed by a particle is related to the path (W, u) ∈ Ω by a time-change, which we describe below.

Let us first define the trajectory of the front. Since, by definition, the front can only perform upward jumps, it makes sense to start with r 0 := 0, which leads to the simplification that r k := k for all k ≥ 0. We start with T 0 := 0, r 0 := 0, and define inductively the sequence (T k ) k≥0 together with the value of (r t ) t∈[0,T k ] . Consider t > T ℓ . We say that t is upward if there exists (W, u) ∈ Ψ such that W s ≤ r s for some s ∈ [0, t[ and such that W v-= ℓ and W v = ℓ + 1, where

v := τ + D R 2 (t -τ ), τ := inf{s ∈ [0, t[; W s ≤ r s }. (77) 
Then let T ℓ+1 := inf{t > T ℓ ; t is upward}, and r t := ℓ on [T ℓ , T ℓ+1 [. The sets R t and B t of red and blue particles at time t are then defined exactly as in the single-rate KS infection model, namely

B t := {(W, u) ∈ Ψ; ∀s ∈ [0, t[, W s > r s }, R t := {(W, u) ∈ Ψ; ∃s ∈ [0, t[, W s ≤ r s }.
We now properly define (W, u) as a time-changed version of (W, u). Using the notations defined in (77), we let W t := W t for t ∈ [0, τ ] and W t := W v for t > τ .

We now make the following key remark.

Lemma 30. For all k ≥ 1, the set B T k coincides with the set of (W, u) ∈ Ψ such that W T k ≥ k, minus the particle that makes the front climb at time T k .

Note that the above result is an immediate consequence of the definition when D R = D B , but not in the present case, due to the time-change.

Proof. One inclusion is immediate: a particle path (W, u) in B T k evolves using the jump rate D B = 2 up to at least time T k , so that W T k indeed corresponds to the position W T k of the corresponding particle at time T k , and must by definition be ≥ k. On the other hand, assume that a (W, u) ∈ R T k is such that W T k ≥ k, and hits (or lies below, to include particles in R 0+ ) the front for the first time at a time τ < T k . Introduce the time t

:= τ + (T k -τ ) 2 D R . Since D R > D B = 2
, we have t < T k , and by definition one has W t = W T k ≥ k, whence the existence of a red particle above k at a time < T k , which contradicts the definition of T k .

One now defines the renewal structure exactly as for the single-rate KS infection model, but with the time-changed trajectories W replacing the trajectories W. Similarly, we can define

F R t := σ((W s , u); s ≤ t, (W, u) ∈ R t ), F R T := σ(T, r T ) ∨ σ((W s , u); s ≤ t, (W, u) ∈ R T ), G R t := σ((W s , u); s ∈ R, (W, u) ∈ R t ), G R T := σ(T, r T ) ∨ σ((W s , u); s ∈ R, (W, u) ∈ R T
). Note that it does not matter whether we define the σ-algebras G R t using the original or time-changed trajectories, since in both cases the history of the front up to time t is measurable, due to the fact that the σ-algebra includes the full trajectories (and not just the trajectories up to time t). The same remark is valid for G R T , where T is a non-negative random time. With the help of Lemma 30, and of the fact that, for any (W, u) ∈ B T k , one has W s = W s for all s ≤ T k , it is then possible to re-prove Propositions 8 and 9 in exactly the same way as for the single-rate KS infection model.

The key advantage of introducing remanence in the model is that, when D R > D B = 2, a comparison holds with the single rate model with jump rate equal to 2.

Lemma 31. Let (1) r t denote the front of the single-rate KS model with rate 2, and (2) r t denote the front of the remanent KS model. If D R > D B = 2, one has that (1) r t ≤ (2) r t for any t such that (1) r t and (2) r t are distinct from †.

The above Lemma, combined with Proposition 13, yields the key ballisticity estimate needed to reprove the estimates of Section 4 for the remanent KS infection model. The two additional results we need are the following: a version of the strong Markov property restricted to R T , and an upper bound on the speed exactly similar to Proposition 14. Specifically: Proposition 17. The strong Markov property holds for our process: for all w ∈ S θ , all non-negative (F R t ) t≥0 -stopping time T , and bounded measurable function F on D + , one has that, on {T < +∞},

E w (F (X(R T ))|F R T ) = E X T (R T ) (F (X)) P w -a.s., (78) 
where we use the notation X := (X t ) t≥0 .

Proposition 18. For the remanent KS infection model, there exist a constant C ⋆ 1 (ρ) > 0 and a constant c 46 , depending on ρ and C , such that, for every t > 0,

P ν C ,+ (r t ≥ C ⋆ 1 (ρ)t) ≤ c 46 exp(-t).
It is then possible to reprove all the estimates of Section 4, the only difference being that, at some places, estimates for a random walk with constant jump rate 2 have to be replaced by estimates for a random walk whose jump rate may change from D B = 2 to D R > 2 at some time-point. These estimates are obtained by a simple comparison with a random walk with constant jump rate equal to D R . One then obtains Proposition 10, leading to the proof of the law of large numbers (Theorem 2), and the central limit theorem (Theorem 3). Now let γ := 2(cosh θ -1), and observe that (C x,i,s exp(-γs)) s≥0 is a càdlàg martingale. As a consequence, so is (H K,k (s) exp(-γs)) s≥0 for all k ≥ 0, and we have the following inequality, valid for all λ > 0:

P sup s∈[0,t] H K,k (s) exp(-γs) > λ ≤ λ -1 E (H K,k (0)) . (79) 
Since E (H K,k (0)) = (x,i)∈A; -K-k≤x≤-K exp(θx), we deduce, replacing λ by λe -γt in (79), that

P sup s∈[0,t] H K,k (s) > λ ≤ λ -1 exp(γt) (x,i)∈A, -K-k≤x≤-K exp(θx). ( 80 
)
Now observe that, for every s, the sequence (H K,k (s)) k≥0 is non-decreasing since we are summing non-negative terms. As a consequence,

P sup s∈[0,t] R K s > λ = P +∞ k=0 sup s∈[0,t] H K,k (s) > λ ,
and this last probability is the probability of the union of a non-decreasing sequence of events, so it is equal to

lim k→+∞ P sup s∈[0,t] H K,k (s) > λ .
As a consequence, by (80),

P sup s∈[0,t] R K s > λ ≤ λ -1 exp(γt) (x,i)∈A; x≤-K exp(θx). (81) 
As a first consequence, this proves that, with probability one, R K s is finite for all s. Now observe that, for every s, the sequence ( (x,i)∈A; x≤-K C x,i,s ) K≥0 is non-increasing, since we are summing non-negative terms. As a consequence, lim K→+∞ sup s∈[0,t] R K s exists, and P lim K→+∞ sup s∈[0,t] R K s > λ equals P K≥0 sup s∈[0,t] R K s > λ , which is the probability of the intersection of a non-increasing sequence of events, and so is equal to the limit lim K→+∞ P (sup s∈[0,t] R K s > λ). From Inequality (81) and the assumption that w ∈ S θ , we see that this last expression equals zero. The same argument applies to sup s∈[-t,0] R K s .

Lemma 32. For all p ≥ 1, given a = {a Proof of Lemma 33. Up to exchanging (α, γ) and (β, δ), we may assume in addition that α ≥ β. The inequality we want to prove then amounts to

A := β -δ + |β -γ| -|δ -γ| ≥ 0
Now consider the three cases:

• if γ ≥ β ≥ δ, then A = 0; • if β ≥ γ ≥ δ, then A = 2(β -γ) ≥ 0; • if β ≥ δ ≥ γ, then A = 2(β -δ) ≥ 0.
Proof of Lemma 32. Consider a permutation σ ∈ S p distinct from the identity permutation, and let i := min{1 ≤ ℓ ≤ p; σ(ℓ) = ℓ}. Define f (σ) := t•σ, where t is the transposition that exchanges i and σ(i). By construction, one has that f (σ)(ℓ) = ℓ for all 1 ≤ ℓ ≤ i. We claim that 

Assume for the moment that (82) is proved. Then, starting from any σ ∈ S p distinct from the identity permutation, we can consider σ 0 := σ, σ 1 := f (σ 0 ), σ 2 := f (σ 1 ), etc., iterating until we obtain a σ k equal to the identity permutation. Then, for 0 ≤ j ≤ k, let δ j := p ℓ=1 |b σ j (ℓ) -a ℓ |. By (82), we see that the sequence (δ j ) 0≤j≤k is non-increasing, so that δ k ≤ δ 0 . This entails the conclusion of the lemma. We now prove (82). Since f (σ)(ℓ) = σ(ℓ) except for ℓ = i and ℓ = σ -1 (i), all we have to check is that

|b σ(i) -a σ -1 (i) | + |b i -a i | ≤ |b i -a σ -1 (i) | + |b σ(i) -a i |.
By definition of i, we must have that σ(i) and σ -1 (i) do not belong to {1, . . . , i -1}. As a consequence, one has that a i ≥ a σ -1 (i) and b i ≥ b σ(i) . The result is then a consequence of Lemma 33.

Proof of Lemma 1. Let A K := {(x, i) ∈ A; |x| ≤ K}. By definition, for all t and x, |S K t (x)| = (y,j)∈A K 1(Z t (y, j) = x) and |S t (x)| = (y,j)∈A 1(Z t (y, j) = x). As a consequence,

|S t (x)| -|S K t (x)| =
(y,j)∈A\A K 1(Z t (y, j) = x).

We deduce that

x∈Z ||S t (x)| -|S K t (x)||e -θ|x| ≤ Q K t + R K t .
Now one has S K t (x) := {u(y, j); Z t (y, j) = x, (y, j) ∈ A K } and S t (x) := {u(y, j); Z t (y, j) = x, (y, j) ∈ A}. Using Lemma 32, we see that d(S t (x), S K t (x)) ≤ (y,j)∈A\A K 1(Z t (y, j) = x), by considering the permutation pairing together particle labels associated with the same (y, j), and bounding above the remaining distance terms by 1. As above, we deduce that x∈Z d(S t (x), S K t (x))e -θ|x| ≤ Q

K t + R K t .
Proof of Proposition 2. For ℓ = 1, 2, let A ℓ := {(x, i); x ∈ Z, 1 ≤ i ≤ |w ℓ (x)|)}. We write S ℓ (x) = {u (ℓ) (x, 1) ≥ • • • ≥ u (ℓ) (x, |w ℓ (x)|)}. Then consider an i.i.d. family of random walks (Z t (x, i), (x, i) ∈ A 1 ∪ A 2 ) as above, and, for ℓ = 1, 2, let S (ℓ) t (x) := {u(y, j); Z t (y, j) = x, (y, j) ∈ A ℓ }. Then modify S (1) and S (2) on an event of probability zero N 0 , as was done for S. It is clear from the definition that S (1) and S (2) are versions of S starting respectively from w 1 and w 2 . Denote by B the symmetric difference of A 1 and A 2 , i.e. B := (A 1 \ A 2 ) ∪ (A 2 \ A 1 ), and C := A 1 ∩ A 2 . Now introduce |u (2) (x, i)u (1) (x, i)| exp(-θZ t (x, i))

+ (x,i)∈C, x<0
|u (2) (x, i)u (1) (x, i)| exp(θZ t (x, i)).

We claim that one has the inequality

d(S (1) 
t (x), S

t (x)) ≤ 2D t + F t . (2) 
Indeed, by definition, for all t and x, |S 

t (x)) ≤ (y,j)∈C |u (2) (y, j)u (1) (y, j)|1(Z t (y, j) = x) + (y,j)∈B 1(Z t (y, j) = x).

Indeed, this inequality is a consequence of Lemma 32, using a permutation that pairs the particle labels associated with the same (y, j), while bounding above the remaining distance terms by 1. Summing over the values of x, we obtain that

x∈Z d(S (1) 
t (x), S

t (x))e -θ|x| ≤ F t + D t .

Combining ( 85) with (84), we deduce the validity of (83). Now observe that, as in the proof of Proposition 1, (exp(-γs)(F s +D s )) s≥0 is the non-decreasing limit of càdlàg martingales involving only a finite number of particles. We deduce that

P sup s∈[0,t] F s + D s > λ ≤ λ -1 exp(γt)(F 0 + D 0 ).
Using the fact that F 0 + D 0 ≤ d θ (w 1 , w 2 ) and (83), we deduce the conclusion of the proposition.

Proof of Proposition 3. The statement concerning boundedness is immediate, so we focus on the uniform continuity. Consider w 1 , w 2 ∈ S θ and the coupling defined in Proposition 2. Let M be such that |f i | ≤ M for all 1 ≤ i ≤ m, and consider ǫ > 0, and let δ > 0 be such that, for all 1 ≤ i ≤ m, |f i (g 1 )f i (g 2 )| ≤ ǫ whenever d θ (g 1 , g 2 ) ≤ δ. Then let

G := max 1≤i≤m d θ (S (1) 
t i , S (2) 
t i ) > δ .

By Proposition 2, we have that

P (G) ≤ 2δ -1 exp(γt m )d θ (w 1 , w 2 ).
By coupling, we then have that

E(f 1 (S (1) 
t 1 ) × • • • × f m (S (1) 
tm )) -E(f 1 (S

(2)

t 1 ) × • • • × f m (S (2) 
tm )) is bounded above by M m P (G) + mǫM m-1 P (G c ), whence the fact that

|E w 1 (f 1 (X t 1 ) × • • • × f m (X tm )) -E w 2 (f 1 (X t 1 ) × • • • × f m (X tm ))|
is bounded above by M m 2δ -1 exp(γt m )d θ (w 1 , w 2 ) + mǫM m-1 .

Proof of Proposition 4. For functions of the form F = f 1 (X t 1 )ו • •×f m (X tm ), where m ≥ 1, f 1 , . . . , f m are uniformly bounded continuous functions from S θ to R, and t 1 ≤ • • • ≤ t m , the result is a consequence of Proposition 3. The conclusion for a general F follows by a monotone class argument, using the fact that 14 , on a metric space, the Borel σ-algebra is generated by bounded uniformly continuous functions.

The following is a reformulation of the approximation of the process by truncated versions that we state for future reference in the proofs. Define X K t as X t , but taking into account only those particle paths whose location at time zero lies within [-K, K].

Corollary 11. For w ∈ S θ , then, P w -almost surely, as K goes to infinity, X K t converges uniformly to X t on every bounded interval. Proof of Proposition 5. We first prove the result for functions of the form F = f 1 (X t 1 )ו • •×f m (X tm ), where m ≥ 1, f 1 , . . . , f m are bounded uniformly continuous functions from S θ to R, and 0 ≤ t 1 ≤ • • • ≤ t m . Note that (X K t ) t≥0 is easily seen to be a (F t ) t≥0 -Markov process. As a consequence, E w (F ((X K t+s ) s≥0 )|F t ) = E X K t (F ((X s ) s≥0 )) P wa.s.

Now, using Corollary 11 and the specific form of F , one has that, as K goes to infinity, F ((X K t+s ) s≥0 ) converges to F ((X t+s ) s≥0 ) a.s. By dominated convergence, we deduce that the l.h.s. of (86) converges a.s. to E w (F ((X t+s ) s≥0 )|F t ). Moreover, Proposition 3 shows that the r.h.s. converges a.s. to E Xt (F ((X s ) s≥0 )). The conclusion for a general F follows by a monotone class argument.

Proof of Proposition 6. For all k ≥ 1, let T (k) := 2 -k (⌈2 k T ⌉). By construction, each T (k) is a stopping time satisfying T (k) ≥ T , and one has that lim k→+∞ T (k) = T . Since T (k) takes its values in a countable set, the validity of (4) for T (k) stems from the simple Markov property, summing over all the possible values of T (k) . Let F be of the form F = f 1 (X t 1 )ו • •×f m (X tm ), where m ≥ 1, f 1 , . . . , f m are bounded uniformly continuous functions from S θ to R, and 0 ≤ t 1 ≤ • • • ≤ t m . Introduce the map G defined on S θ by G(w) := E w F ((X t ) t≥0 ). Since (4) holds for T (k) , we have that, on {T < +∞}, E w (F ((X T (k) +t ) t≥0 )|F T (k) ) = E X T (k) (F ((X t ) t≥0 )) = G(X T (k) ) P wa.s. 14 Because, for instance, one can write the indicator function of a closed set as the non-increasing limit of a sequence of bounded uniformly continuous functions.

Taking the conditional expectation in the above identity, and using the fact that F T ⊂ F T (k) since T ≤ T (k) , we obtain that E w (F ((X T (k) +t ) t≥0 )|F T ) = E w (G(X T (k) )|F T ) P wa.s.

(87)

We now take the limit k → +∞ on both sides of the identity, working on {T < +∞}. Since we work on a space of càdlàg trajectories, lim k→+∞ X T (k) = X T . Since G is continuous by Proposition 3, one has that lim k→+∞ G(X T (k) ) = G(X T ). As a consequence, the r.h.s. of (87) converges, as k goes to infinity, to E(G(X T )|F T ), which is a.s. equal to G(X T ) since X T is F T -measurable (using again the fact that trajectories are càdlàg). On the other hand, by continuity of the f i , one has that F ((X T (k) +t ) t≥0 ) converges to F ((X T +t ) t≥0 ) a.s. We deduce that (4) holds when F has the specific form we have assumed.

The conclusion for a general F follows by a monotone class argument.

Proof of Proposition 7 (complement). We give a more detailed argument of how we deduce invariance with respect to time-shifts. The conclusion of the proposition is equivalent to the fact that, for any t 1 < • • • < t m , and for any t ≥ 0, the distribution of (X t+t 1 , . . . , X t+tm ) is the same as the distribution of (X t 1 , . . . , X tm ). The computation used in the proof of Proposition 5.3 in [START_REF] Thomas | Interacting particle systems, volume 276 of Grundlehren der Mathematischen Wissenschaften[END_REF] shows that, given 0 = t 1 < • • • < t m , and bounded measurable maps f 1 , . . . , f m : S θ → R, one has the identity

E ν (f 1 (X t 1 ) × • • • × f m (X tm )) = E ν (f 1 (X tm-t 1 ) × • • • × f m (X tm-tm )).
Now by definition of the dynamics for negative times, one has that

E ν (f 1 (X tm-t 1 ) × • • • × f m (X tm-tm )) = E ν (f 1 (X t 1 -tm ) × • • • × f m (X tm-tm )).
(We can neglect the fact that, since the paths (W s ) s are assumed to be càdlàg, the paths (W -s ) s≥0 are in fact càglàd, since we consider a finite number of time indices t 1 , . . . , t m , which are a.s. not jump times of any of the random walk paths (W, u) ∈ Ψ.) We deduce that, for any s 1 < • • • < s m = 0, we have that

E ν (f 1 (X s 1 ) × • • • × f m (X sm )) = E ν (f 1 (X s 1 -s 1 ) × • • • × f m (X sm-s 1 )). ( 88 
)
Now consider t 1 < • • • < t m with t ℓ = 0 for some 1 < ℓ < m (starting from arbitrary t 1 < • • • < t m , one may always add indices i and functions f i ≡ 1 so that this is the case). Conditioning by F 0 , we obtain that

E ν (f 1 (X t 1 ) × • • • × f m (X tm )) = E ν (f 1 (X t 1 ) × • • • × f ℓ (X t ℓ )G(X t ℓ )),
where G(w)

:= E w (f ℓ+1 (X t ℓ+1 ) × • • • × f m (X tm )).
From (88), we deduce that

E ν (f 1 (X t 1 ) × • • • × f m (X tm )) = E ν (f 1 (X t 1 -t 1 ) × • • • × f ℓ (X t ℓ -t 1 )G(X t ℓ -t 1 )),
whence, from the definition of G and the Markov property,

E ν (f 1 (X t 1 ) × • • • × f m (X tm )) = E ν (f 1 (X t 1 -t 1 ) × • • • × f m (X tm-t 1 )
).

Lemma

  

4. 1 .

 1 Hitting of a straight line by random walks. We introduce the notation µ := αθ -2(cosh θ -1).

4. 2 .

 2 Ballisticity estimates. Remember that the initial distribution of particles ν on S θ is defined through an i.i.d. family N = (N x ) x∈Z of Poisson processes on [0, 1], with intensity ρ. Now consider the configuration N + obtained from N by removing all the particles at the left of the origin, i.e. N +x := N x if x ≥ 0, N + x := 0 if x < 0. Then define ν + as the distribution of N + = (N +x ) x∈Z on S θ . Define also ν C ,+ as the distribution of N + conditioned upon |N + 0 | ≥ C . Our first task is to extend the ballisticity estimate given in Proposition 12 to the case where the initial distribution is ν C ,+ instead of ν.

( 1 )

 1 s ≤ r s for all s ∈ [t 1 , t].

  s., where c 20 , c 21 , c 22 are strictly positive constants, with c 21 depending on C . Proof. By definition of α-crossing times, we have r S ′ n+1 ≤ r Sn + α(S ′ n+1 -S n ) + N n + 1. The result follows from combining Corollary 6 and Lemma 19. Define L (1) n to be the number of particle paths in B Sn ∩ R S ′ n+1 . Lemma 20. For all n ≥ 1, and all large enough C , one has the following bound: E ν (L (1) n 1(D n < +∞)|F R Sn ) ≤ c 23 + c 24 M n , where c 23 and c 24 are strictly positive constants depending on C .

  withV n (ℓ) := {S ′ n+1 ≤ S n + b 2 ℓ} ∩ {r S ′ n+1 ≤ r Sn + b 1 ℓ}, and where d 4 , d 5 , d 6 are strictly positive constants, d 5 depending on C . Combining (59), (

( 3 )

 3 n defined as the total number of (S ′ n+1 , α)-crossing times contained in the time-interval [S ′ n+1 , S n+1 ]. Lemma 21. One has the following bound: for all n ≥ 1, for all t > 0, on {S n < +∞},P ν (S n+1 -S ′ n+1 ≥ t , D n < +∞|F R S ′ n+1 ) ≤ c 25 t -c 26 C a.s., where c 25 , c 26 are strictly positive constants, with c 25 depending on C and L. Proof. Define S ′′′ n+1 as the infimum of the t > S ′ n+1 such that t is a backward sub-α time and ]S ′ n+1 , t[ contains at least L (S ′ n+1 , α)-crossing times, and let τ ′ 1 , τ ′ 2 , . . . denote the successive backward sub-α times posterior to S ′′′ n+1 (with τ ′ 1 := S ′′′ n+1 ), and let I := inf{i ≥ 1, Ξ τ ′ i = 1}. We have by definition that N (3) n ≤ L + I. Arguing exactly as in the proof of Lemma 19, we can prove a bound of the form

Corollary 8 .Corollary 9 .0 1 .

 891 One has the following bound: for all t > 0,P ν (S ′ 1 ≥ t) ≤ c 34 t -c 35 C a.s., where c 34 , c 35 are strictly positive constants, with c 34 depending on C .Proof. Similar to the proof of Corollary 5, using Lemma 25 and Proposition 12 with C = 0 instead of invoking Proposition 13 then Corollary 4, and taking care of the fact that we may have r 0 < 0. One has the following bound: for all t > 0,P ν (r S ′ 1 ≥ K) ≤ c 36 K -c 37 C a.s., where c 36 , c 37 are strictly positive constants, with c 36 depending on C .Proof. Similar to the proof of Corollary 6, using the inequality r S ′ 1 ≤ αS ′ to be the number of particle paths in B 0 ∩ R S ′ Lemma 26. For all n ≥ 1, and all large enough C , one has the following bound:E ν (L(1) 0 ) ≤ c 38 , where c 38 is a strictly positive constant depending on C . Proof. Similar to the proof of Lemma 20.

  s., where c 41 , c 42 are strictly positive constants with c 41 depending on C and L.Proof. Similar to the proof of Corollary 7.Define L(2) 0 to be the number of particle paths in B S ′ 1 ∩ R S 1 . Lemma 28. For all n ≥ 1, and all large enough C , one has the following bound:E ν (L(2)0 ) ≤ c 43 , where c 43 is a strictly positive constant depending on C and L.Proof. Similar to the proof of Lemma 22.

1 ≥

 1 . . . ≥ a p }, and b = {b 1 ≥ . . . ≥ b p }, one has that p ℓ=1 |b ℓa ℓ | = min p ℓ=1 |b σ(ℓ)a ℓ |; σ ∈ S p . Lemma 33. If α, β, γ, δ are real numbers satisfying α ≥ γ and β ≥ δ, then |α -β| + |γ -δ| ≤ |α -δ| + |β -γ|.

  σ)(ℓ)a ℓ | ≤ p ℓ=1 |b σ(ℓ)a ℓ |.

D

  t := (x,i)∈B, x≥0 exp(-θZ t (x, i)) + (x,i)∈B, x<0 exp(θZ t (x, i)),andF t := (x,i)∈C, x≥0

t

  (x)| = (y,j)∈A ℓ 1(Z t (y, j) = x). j)∈A 2 \A 1 1(Z t (y, j) = x)-(y,j)∈A 1 \A 2 1(Z t (y, j) = x),

t

  (x)| e -θ|x| ≤ D t . (84)Now let us prove that, for all t and x,

Strictly speaking, this is true only when the front hits a position above its past record.

By contrast, ballistic upper bounds are relatively easy to obtain.

More precisely, a quantitative version of it.

Note that, in the definition of Ω, we have ruled out the possibility of two distinct particle paths performing a jump at exactly the same time, so that T ℓ+1 is either upward or downward, but cannot be both.

Whenever we compare rt with a real number, we implicitly mean that rt = †. For instance, the event rt > a should be read as the event that rt = † and rt > a.

Formally, F R t is generated by all the random variables of the form#(Rt ∩ {(W, u); Ws = k, u ∈ [a, b]}),where k ∈ Z, 0 ≤ a < b ≤ 1, and s ≤ t.

Formally, F R T is generated by all the random variables of the form1(s ≤ T ) × #(RT ∩ {(W, u); Ws = k, u ∈ [a, b]}),where k ∈ Z, 0 ≤ a < b ≤ 1, and s ∈ R.

This is a slight abuse of terminology, since, strictly speaking, B0 is only Pν -a.s. equal to a random variable from (Ω, F) to itself, see Lemma 34.

Remember that (x1, u1) is smaller than (x2, u2) with respect to the lexicographical order if x1 < x2, or x1 = x2 and u1 < u2.

In fact, we are using a slight extension of Proposition 11, in which the map F is allowed to depend on G R T k . This extension is readily derived from the case where F is deterministic.

Note that this property is not obvious. It is a consequence that it is enough to look at trajectories in RS n to check the backward super-α time property for Sj where j ≤ n-1. See the proof of Proposition 15.

The Markov property of the dynamics holds with respect to the filtration (Ft) t≥0 , not (F R t ) t≥0 . Here we use the fact that F R Sn ⊂ FS n , and also that F R Sn ⊂ G R Sn .

 [START_REF] Comets | Fluctuations of the front in a one dimensional model of X + Y → 2X[END_REF]Partially supported by ANR project MEMEMO2. 2 Partially supported by Fondo Nacional de Desarrollo Científico y Tecnológico grant 1100298.

1 Partially supported by ECOS-Conicyt grant CO9EO5.

1

Using Lemma 24 and the fact that the event D n-1 < +∞ is measurable with respect to F R Sn , we deduce that E ν (M n+1 1(D n < +∞)|D n-1 < +∞) ≤ c 30 e -θL E ν (M n |D n-1 < +∞) + c 31 .

On the other hand, observe that there exists a strictly positive constant d 1 such that P ν (D n < +∞|D n-1 < +∞) ≥ d 1 , (70) considering e.g. the probability for the particle that makes the front climb at time S n to cross at a time > S n the half-line of slope α starting at (S n , r Sn ). Combining (69) and (70), we deduce that

1 c 30 e -θL < 1, we deduce, using also Lemma 29, that the sequence

We are now ready to prove our main estimate on the regeneration structure, namely, Proposition 10.

Proof of Proposition 10. In this proof we assume that C and L are large enough so that all the previous results hold.

Define K := inf{n ≥ 1; D n = +∞}. Our first claim is that, for some strictly positive constant d 1 depending on C and L, for all k ≥ 1,

From Lemma 13, we have that

Consider n ≥ 1. Using Proposition 15 and the fact that

we deduce that, on {D n-1 < +∞}, one has that P ν (S n is a forward and backward super α-time for B Sn |G R Sn ) ≥ d 2 a.s. On the other hand, the event that S n is a forward sub α-time is measurable with respect to G R Sn . Call d 3 the probability for a random walk starting at zero to remain at zero during the time-interval [0, α -1 ] and then to satisfy W s ≤ αs -1 for all s ≥ α -1 , which is > 0 by Lemma 6. Using Lemma 7, we deduce that, for arbitrary K > 0, on {D n-1 < +∞},

), we see that (71) is proved.

Appendix A: proofs of results in Section 2

Proof of Proposition 1. We do the proof for R K t , the argument for Q K t being completely similar. For all (x, i) ∈ A and t ≥ 0, let C x,i,t := exp(θZ t (x, i)). For k ≥ 0, let also

Appendix B: adaptation of ballisticity results from [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] The results in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] showing the ballistic behavior of the front are established for the following kind of initial condition: i.i.d. Poisson numbers of blue particles at each site, plus a deterministic finite and non-zero number of red particles placed arbitrarily. Also, the results are for sup s∈[0,t] r s than for r t . Since our framework is slightly different, we explain here how these results can be adapted to prove Propositions 12 and 14.

We denote by ν the distribution obtained by adding to the Poisson process of particles defining ν a single particle at the origin 15 .

Proof of Proposition 12. The conclusion of the Proposition is established in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF] (Theorem 2) for the random variable sup s∈[0,t] r s under P ν . Considering the particle that first hits level C 2 (ρ)t in the case where sup s∈[0,t] r s > C 2 (ρ)t and its maximum possible deviation over the interval [s, t] as in the proof of Lemma 17, we see that, up to choosing a strictly smaller value for C 2 (ρ), the conclusion of the Proposition holds for r t with respect to P ν . Now observe that, with respect to ν, conditional on r 0 = -k, the sets of particle labels at sites x ≥ 1 and x ≤ -k -1 form i.i.d. Poisson processes on [0, 1] with rate ρ, while there are 0 particles at sites x = -k + 1, . . . , 0, and a Poisson process conditioned on having at least one element at site x = -k. On the other hand, with respect to ν conditioned on the fact that there is only one particle at zero (which must then be the added particle), and that there are no particles at sites 1, 2, . . . , k, the sets of labelled particles at sites x ≥ k + 1 and x ≤ -1 are i.i.d. Poisson processes, while there are 0 particles at sites x = 1, . . . , k. Denoting by L k the event that there is a single particle at the origin and no particles at sites 1, 2, . . . , k, we deduce, using Lemma 14, that the distribution of r tr 0 with respect to P ν conditioned on r 0 = -k stochastically dominates the distribution of r t with respect to P ν conditioned on L k . Similarly, when k 1 ≤ k 2 , the distribution of r t with respect to P ν conditioned on L k 1 stochastically dominates that of r t with respect to P ν conditioned on L k 2 . We thus have, for all k ≥ 1, that

Now we have that P ν (r 0 < -k) = e -ρk , and P ν (L k ) = e -ρ(k+1) . On the other hand, by Theorem 2 of [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF], we have that, for all K > 0 there exists a constant d 1 > 0 (depending on K) such that, for all t > 0, P ν (r t ≤ C 2 (ρ)t) ≤ d 1 t -K . 15 Labels play no real role in the sequel. Still, for the sake of compatibility with the statement of Lemma 14, which involves comparison of sets of labels, not just of particle numbers, one may choose the label of this added particle as an exponential random variable with parameter ρ conditioned upon being ≤ 1, which corresponds to the smallest label in a Poisson process with rate ρ on [0, 1] conditioned upon containing at least one point.

Letting k := ⌈A log t⌉ for some A > 0, we deduce from (89) that

Since we can choose A > 0 and K > 0 at our convenience, the conclusion follows, up to choosing a strictly smaller value for C 2 (ρ).

Proof of Proposition 14. Observe that ν dominates ν + , so that, by Lemma 14, the distribution of r t with respect to P ν dominates the distribution of r t with respect to P ν + . The conclusion of the Proposition is then a consequence of Theorem 1 in [START_REF] Kesten | The spread of a rumor or infection in a moving population[END_REF].

Appendix C: miscellaneous lemmas

Proof of Lemma 3. One has that A 1 must be of the form

, where (i j ) j∈N is a family of elements of I, and where B 1 belongs to the product σ-algebra j∈N S j . The results follows from letting

Lemma 34. Let T denote a non-negative random variable on (Ω, F). Then for all t ≥ 0, B T is P w -a.s. equal to a random variable from (Ω, F) to (Ω, F).

Proof. The fact that the labels of particles in B T are distinct, and that no two particle paths jump at the same time is a consequence of B T being a subset of Ψ. If r T = †, then B T is an empty set. If r T < +∞, Corollary 11 shows that B T is a.s. equal to B 0 up to a finite number of trajectories, and that a.s. t → X t (B T ) is in D. Then one checks that the addition or removal of a finite number of trajectories in ψ does not affect the fact that t → X t (ψ) is in D. As for measurability, just note that the random variables of the form

where k ∈ Z, 0 ≤ a < b ≤ 1, and s ∈ R, are F-measurable.

Lemma 35. If s is a backward sub-α time and if t is an (s, α)-crossing time, then t is also a backward sub-α time.

Proof. Assume that s is a backward sub-α time and t is an (s, α)-crossing time. For v ∈ [s, t[, one has that r v < k + α(vs). Combined with the fact that r t ≥ k +α(t-s), this leads to r v < r t -α(t-s)+α(v -s) = r t -α(t-v).

For v ∈ [0, s[, we have that r v ≤ r sα(sv) ≤ r tα(ts)α(sv) = r tα(ts).
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