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Brandt’s Fully Private Auction Protocol Revisited

Jannik Dreier∗ Jean-Guillaume Dumas† Pascal Lafourcade∗

Abstract

Auctions have a long history, having been recorded as early as 500 B.C. [17].

Nowadays, electronic auctions have been a great success and are increasingly used.

Many cryptographic protocols have been proposed to address the various secu-

rity requirements of these electronic transactions, in particular to ensure privacy.

Brandt [4] developed a protocol that computes the winner using homomorphic

operations on a distributed ElGamal encryption of the bids. He claimed that it en-

sures full privacy of the bidders, i.e. no information apart from the winner and the

winning price is leaked. We first show that this protocol – when using malleable

interactive zero-knowledge proofs – is vulnerable to attacks by dishonest bidders.

Such bidders can manipulate the publicly available data in a way that allows the

seller to deduce all participants’ bids. Additionally we discuss some issues with

verifiability as well as attacks on non-repudiation, fairness and the privacy of indi-

vidual bidders exploiting authentication problems.

1 Introduction

Auctions are a simple method to sell goods and services. Typically a seller offers a

good or a service, and the bidders make offers. Depending on the type of auction, the

offers might be sent using sealed envelopes which are opened simultaneously to de-

termine the winner (the “sealed-bid” auction), or an auctioneer could announce prices

decreasingly until one bidder is willing to pay the announced price (the “dutch auc-

tion”). Additionally there might be several rounds, or offers might be announced pub-

licly directly (the “English” or “shout-out” auction). The winner usually is the bidder

submitting the highest bid, but in some cases he might only have to pay the second

highest offer as a price (the “second-price”- or “Vickrey”-Auction). In general a bidder

wants to win the auction at the lowest possible price, and the seller wants to sell his

good at the highest possible price. For more information on different auction methods

see [17]. To address this huge variety of possible auction settings and to achieve dif-

ferent security and efficiency properties numerous protocols have been developed, e.g.

[4, 11, 19, 20, 21, 22, 23] and references therein.

One of the key requirements of electronic auction (e-Auction) protocols is privacy,

i.e. the bids of losing bidders remain private. Brandt proposed a first-price sealed-bid

auction protocol [4, 3, 2] and claimed that it is fully private, i.e. it leaks no information

apart from the winner, the winning bid, and what can be deduced from these two facts

(e.g. that the other bids were lower).
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Our Contributions. The protocol is based on an algorithm that computes the win-

ner using bids encoded as bit vectors. In this paper we show that the implementation

using the homomorphic property of a distributed Elgamal encryption proposed in the

original paper suffers from a weakness. In fact, we prove that any two different inputs

(i.e. different bids) result in different outcome values, which are only hidden using

random values. We show how a dishonest participant can remove this random noise,

if malleable interactive zero-knowledge proofs are used. The seller can then efficiently

compute the bids of all bidders, hence completely breaking privacy. We also discuss

two problems with verifiability, and how the lack of authentication enables attacks on

privacy even if the above attack is prevented via non-malleable non-interactive proofs.

Additionally we show attacks on non-repudiation and fairness, and propose solutions

to all discovered flaws in order to recover a fully resistant protocol.

Outline. In the next section, we recall the protocol of Brandt. Then, in the following

sections, we present our attacks in several steps. In Section 3, we first study the proto-

col using interactive zero-knowledge proofs and without noise. Then we show how a

dishonest participant can remove the noise, thus mount the attack on the protocol with

noise, and discuss countermeasures. Finally, in Section 4, we discuss verifiability and

in Section 5 we discuss attacks on fairness, non-repudiation and privacy exploiting the

lack of authentication.

2 The Protocol

The protocol of Brandt [4] was designed to ensure full privacy in a completely dis-

tributed way. It exploits the homomorphic properties of a distributed El-Gamal en-

cryption scheme [12] for a secure multi-party computation of the winner. Then it uses

zero-knowledge proofs of knowledge of discrete logarithms to ensure correctness of

the bids while preserving privacy. We first give a high level description of the protocol

and then present details on its main cryptographic primitives.

2.1 Informal Description

The participating n bidders and the seller communicate essentially using broadcast

messages. The latter can for example be implemented using a bulletin board, i.e. an

append-only memory accessible to everybody. The bids are encoded as k-bit-vectors

where each entry corresponds to a price. If the bidder a wants to bid the price ba, all

entries will be 1, except the entry ba which will be Y (a public constant). Each entry of

the vector is then encrypted separately using a n-out-of-n-encryption scheme set up by

all bidders. The bidders use multiplications of the encrypted values to compute values

vaj , exploiting the homomorphic property of the encryption scheme. Each one of this

values is 1 if the bidder a wins at price j, and is a random number otherwise. The

decryption of the final values takes place in a distributed way to ensure that nobody

can access intermediate values.

2.2 Mathematical Description (Brandt [4])

Let Gq be a multiplicative subgroup of order q, prime, and g a generator of the group.

We consider that i, h ∈ {1, . . . , n}, j, bida ∈ {1, . . . , k} (where bida is the bid chosen
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by the bidder with index a), Y ∈ Gq \ {1}. More precisely, the n bidders execute the

following five steps of the protocol [4]:

1. Key Generation

Each bidder a, whose bidding price is bida among {1, . . . , k} does the following:

• chooses a secret xa ∈ Z/qZ

• chooses randomly ma
ij and raj ∈ Z/qZ for each i and j.

• publishes ya = gxa and proves the knowledge of ya’s discrete logarithm.

• using the published yi then computes y =
∏n

i=1 yi.

2. Bid Encryption

Each bidder a

• sets baj =

{

Y if j = bida

1 otherwise

• publishes αaj = baj · y
raj and βaj = graj for each j.

• proves that for all j, logg(βaj) equals logy(αaj) or logy
(αaj

Y

)
, and that

logy

(∏k
j=1

αaj

Y

)

= logg

(
∏k

j=1 βaj

)

.

3. Outcome Computation

• Each bidder a computes and publishes for all i and j:

γa
ij =

((
∏n

h=1

∏k
d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

))ma
ij

δaij =
((
∏n

h=1

∏k
d=j+1 βhd

)

·
(
∏j−1

d=1 βid

)

·
(
∏i−1

h=1 βhj

))ma
ij

and proves its correctness.

4. Outcome Decryption

• Each bidder a sends φa
ij = (

∏n

h=1 δ
h
ij)

xa for each i and j to the seller and

proves its correctness. After having received all values, the seller publishes

φh
ij for all i, j, and h 6= i.

5. Winner determination

• Everybody can now compute vaj =
∏

n
i=1

γi
aj∏

n
i=1

φi
aj

for each j.

• If vaw = 1 for some w, then the bidder a wins the auction at price pw.

2.3 Malleable proofs of knowledge and discrete logarithms

In the original paper [4] the author suggests using zero-knowledge proofs of knowledge

to protect against active adversaries. The basic protocols he proposes are interactive

and malleable, but can be converted into non-interactive proofs using the Fiat-Shamir

heuristic [13], as advised by the author. We first recall the general idea of such proofs,

then we expose the man-in-the-middle attacks on the interactive version, which we will

use as part of our first attack.

Let PDL denote a proof of knowledge of a discrete logarithm. A first scheme for

PDL was developed in 1986 by Chaum et al. [6]. In the original auction paper [4]

Brandt proposes to use a non-interactive variant of PDL as developed by Schnorr [24],
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which are malleable. Unfortunately, interactive malleable PDL are subject to man-in-

the-middle attacks [16]. We first recall the classic Σ-protocol on a group with generator

g and order q [1, 5, 7]. Peggy and Victor know v and g, but only Peggy knows x, so

that v = gx. She can prove this fact, without revealing x, by executing the following

protocol:

1. Peggy chooses r at random and sends z = gr to Victor.

2. Victor chooses a challenge c at random and sends it to Peggy.

3. Peggy sends s = (r + c · x) mod q to Victor.

4. Victor checks that gs = z · vc.

2.3.1 Man-in-the-middle attacks on interactive PDL

Suppose Peggy possesses some secret discrete logarithm x. We present here the man-

in-the-middle attack of [16], where an attacker can pretend to have knowledge of any

affine combination of the secret x, even providing the associated proof of knowledge,

without breaking the discrete logarithm. To prove this possession to say Victor, the

attacker will start an interactive proof knowledge session with Peggy and another one

with Victor. The attacker will transform Peggy’s outputs and forward Victor’s chal-

lenges to her. The idea is to use the proof of possession of Peggy’s x, to prove posses-

sion of 1 − x to Victor. Indeed to prove for instance possession of just x to Victor, an

attacker would only have to forward Peggy’s messages to Victor and Victor’s messages

to Peggy. The idea of the attack is similar, except that one needs to modify the mes-

sages of Peggy. We show the example of 1−x in Figure 1 since it is used in Section 3.4

to mount our attack. Upon demand by Victor to prove knowledge of 1−x, Mallory, the

man-in-the-middle, simply starts a proof of knowledge of x with Peggy. Peggy chooses

a random exponent r and sends the commitment z = gr to Mallory. Mallory simply

inverts z and sends y = z−1 to Victor. Then Victor presents a challenge c that Mallory

simply forwards without modification to Peggy. Finally Peggy sends a response s that

Mallory combines with c, as u = c − s, to provide a correct answer to Victor. This is

summarized in Figure 1.
Peggy Mallory V ictor

Secret : x

Public : g, v = gx g, w = gv−1 g

z = gr
1 : z

// y = z−1
1′ : y

//

c
2 : c

oo c
2′ : c

oo

s = r + c · x
3 : s

// u = c− s
3′ : u

//

Check : gs
?

== z · vc gu
?

== y · wc

Figure 1: Man-in-the-middle PDL of 1− x, with x an unknown discrete logarithm.
Actually, the attack works in the generic settings of [5, 18] or of Σ-protocols [10].

We let f : Γ → Ω denote a one way homomorphic function between two commutative

groups (Γ,+) and (Ω,×). We use this generalization to prevent possible countermea-

sures of our first attack in Section 3.6.
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For an integral value α, α · x ∈ Γ (resp. yα ∈ Ω) denotes α applications of the

group law + (resp. ×). For a secret x ∈ Γ, and any (h, α, β) ∈ Γ × Z2, the attacker

can build a proof of possession of α ·h+β ·x. In the setting of the example of Figure 1,

we used f(x) = gx, h = 1, α = 1 and β = −1.

In the general case also, upon demand of proof by Victor, Mallory starts a proof

with Peggy. The secret of Peggy is x, and the associated witness v is v = f(x). Then

Mallory wants to prove that his witness w corresponds to any combination of x with

a logarithm h that he knows. With only public knowledge and his chosen (h, α, β) ∈
Γ× Z2, Mallory is able to compute w = f(h)α · vβ .

For the proof of knowledge, Mallory still modifies the commitment z = f(r) of

Peggy to y = zβ . Mallory forwards the challenge c of Victor without modification.

Finally Mallory transforms the response s of Peggy, still with only public knowledge

and his chosen (h, α, β) ∈ Γ×Z2, as u = c · (α ·h)+β ·s. We summarize this general

attack on Figure 2.
Peggy Mallory V ictor

Secret : x ∈ Γ (h, α, β) ∈ Γ× Z2

Public : v = f(x) w = f(h)α × vβ f

z = f(r)
1 : z

// y = zβ
1′ : y

//

c
2 : c

oo c
2′ : c

oo

s = r + c · x
3 : s

// u = c · (α · h) + β · s
3′ : u

//

Check : f(s)
?

== z × vc f(u)
?

== y × wc

Figure 2: Man-in-the-middle attacks proving knowledge of affine transforms of a secret

discrete logarithm in the generic setting.

Lemma 1. In the man-in-the-middle attack of Figure 2 of the interactive proof of

knowledge of a discrete logarithm, Victor is convinced by Mallory’s proof of knowl-

edge of α · h+ β · x.

Proof. Indeed,

u = c · (α · h) + β · s = c · (α · h) + β · (r + c · x) = β · r + c · (α · h+ β · x). (1)

Now, since z = f(r), y = zβ , v = f(x) and f(h)α × vβ = w, the latter Equation (1)

proves in turn that

f(u) = f(r)β × f(α · h+ β · x)c = zβ × (f(h)α × f(x)β)c = y × wc. (2)

Now Victor has to verify the commitment-challenge-response (y, c, u) of Mallory for

his witness w. Then Victor needs to checks whether f(u) corresponds to y×wc, which

is the case as shown by the latter Equation (2).

2.3.2 Generalizations to equality of discrete logarithms

We let EQDL denote a proof of equality of several discrete logarithms. Any PDL

can in general easily be transformed to an EQDL by applying it k times on the same

witness. It is often more efficient to combine the application in one as in [8, 9], or more

generally as composition of Σ-protocols, here with two logarithms and two generators

g1 and g2. Peggy wants to prove that she knows x such that v = gx1 and w = gx2 :
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1. Peggy chooses r at random and sends λ = gr1 and µ = gr2 to Victor.

2. Victor chooses a challenge c at random and sends it to Peggy.

3. Peggy computes s = (r + c · x) mod q and sends it to Victor.

4. Victor tests if gs1 = λ · vc and gs2 = µ · wc.

This protocol remains malleable, and the previous attacks are still valid since the re-

sponse remains of the form r + c · x.

2.3.3 Countermeasures

Direct countermeasures to the above attacks are to use non-interactive and/or non-

malleable proofs:

• An interactive protocol can be converted into a non-interactive one using the

Fiat-Shamir heuristic [13].

• Also the first PDL by [6] uses bit-flipping, and more generally non-malleable

protocols like [15] could be used.

We will show in the following that if the proofs proposed in the original paper are

not converted into non-interactive proofs, there is an attack on privacy. Note that even

if non-interactive non-malleable zero-knowledge proofs are used, a malicious attacker

in control of the network can nonetheless recover any bidder’s bid as the messages are

not authenticated, as we show in Section 5.

3 Attacking the fully private computations

The first attack we present uses some algebraic properties of the computations per-

formed during the protocol execution.

3.1 Analysis of the outcome computation

The idea is to analyze the computations done in Step 3 of the protocol. Consider the

following example with three bidders and three possible prices. Then the first bidder

computes

γ1
11 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (1) )m

1

11

γ1
12 = ( (α13· α23· α33) · (α11) · (1) )m

1

12

γ1
13 = ( (1) · (α11 · α12) · (1) )m

1

13

γ1
21 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11) )m

1

21

γ1
22 = ( (α13· α23· α33) · (α21) · (α12) )m

1

22

γ1
23 = ( (1) · (α21 · α22) · (α13) )m

1

23

γ1
31 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11 · α21) )m

1

31

γ1
32 = ( (α13· α23· α33) · (α31) · (α12 · α22) )m

1

32

γ1
33 = ( (1) · (α31 · α32) · (α13 · α23) )m

1

33

The second and third bidder do the same computations, but using different random

values ma
ij . Since each αij is either the encryption of 1 or Y , for example the value

γ1
22 will be an encryption of 1 only if
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• nobody submitted a higher bid (the first block) and

• bidder 2 did not bid a lower bid (the second block) and

• no bidder with a lower index submitted the same bid (the third block).

If we ignore the exponentiation by ma
ij , each γa

ij is the encryption of the product of

several bij’s. Each bij can be either 1 or Y , hence (γa
ij)

−ma
ij will be the encryption of

a value Y lij , where 0 ≤ lij ≤ n. The lower bound of lij is trivial, the upper bound

follows from the observation that each αij will be used at most once, and that each

bidder will encrypt Y at most once.

Assume for now that we know all lij . We show next that this is sufficient to ob-

tain all bids. Consider the function f which takes as input the following vector1: b =

logY

((
b11, . . . , b1k, b21, . . . , b2k, . . . , bn1, . . . , bnk

)T
)

,

and returns the values lij . The input vector is thus a vector of all bid-vectors, where 1
is replaced by 0 and Y by 1. Consider our above example with three bidders and three

possible prices, then we have:

b = logY

((
b11, b12, b13, b21, b22, b23, b31, b32, b33

)T
)

.

A particular instance where bidder 1 and 3 submit price 1, and bidder 2 submits price 2

would then look as: b =
(
1, 0, 0, 0, 1, 0, 1, 0, 0

)T
. Hence

only the factors α11, α22 and α31 are encryptions of Y , all other α’s are encryp-

tions of 1. By simply counting how often the factors α11, α22 and α31 show up

in each equation as described above, we can compute the following result: f(b) =
(
1, 1, 1, 2, 0, 1, 2, 1, 1

)T
. Note that since we chose the input

of f to be a bit-vector, we have to simply count the ones (which correspond to Y ’s) in

particular positions in b, where the positions are determined by the factors inside γa
ij .

Hence we can express f as a matrix, i.e. f(b) = M · b for the following matrix M :

f(b) = M · b =



















0 1 1 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1

0 0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 1 1 0



















·



















1
0
0

0
1

0

1
0
0



















=



















1
1
1

2
0

1

2
1
1



















To see how the matrix M is constructed, consider for example (γa
22)

−ma
22 = (α13 ·α23 ·

α33) · (α21) · (α12) which corresponds to the second row in the second vertical block:

• α12 and α13; hence the two ones at position 2 and 3 in the first horizontal block

• α21 and α23; hence the two ones at position 1 and 3 in the second horizontal

block

• α33; hence the one at position 3 in the third horizontal block

More generally, we can see that each 3× 3 block consists of potentially three parts:

1By abuse of notation we write logs
(

x1, . . . , xn

)

for
(

logs(x1), . . . , logs(xn)
)

.
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• An upper triangular matrix representing all bigger bids.

• On the diagonal we add a lower triangular matrix representing a lower bid by the

same bidder,

• In the lower left half we add an identity matrix representing a bid at the current

price by a bidder with a lower index.

This corresponds exactly to the structure of the products inside each γa
ij . It is also

equivalent to formula (1) in Section 4.1.1 of the original paper [4] without the random

vector R∗
k. In the following we prove that the function f is injective. We then dis-

cuss how this function can be efficiently inverted (i.e. how to compute the bids when

knowing all lij’s).

3.2 Linear algebra toolbox

Let Ik be the k × k identity matrix;

let Lk be a lower k × k triangular matrix with zeroes on the diagonal, ones in the

lower part and zeroes elsewhere; and let Uk be an upper k × k triangular matrix with

zeroes on the diagonal, ones in the upper part, and zeroes elsewhere:

Ik =









1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1









Lk =









0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0









Uk =









0 1 · · · 1

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 0









By abuse of notation we use I , L and U to denote respectively Ik, Lk and Uk. For

a k × k-matrix Mk we define (Mk)
r = M · · ·M (r times) and (Mk)

0 = Ik. Let

(e1, . . . , ek) be the canonical basis.

Lemma 2. Matrices Lk and Uk have the following properties, for 0 < j ≤ k and

r ≥ 0: (Uk)
r · ej =

∑j−r
s=1 es and (Lk)

r · ej =
∑k

s=j+r es.

Lemma 3. Matrices Lk and Uk are nilpotent, i.e. (Uk)
k = 0 and (Lk)

k = 0.

This follows immediately from Lemma 2 by computing (Uk)
k · Ik and (Lk)

k · Ik .

Lemma 4. If
∑k

i=1 xi = 1 then we have Lk · x = (1, . . . , 1)T − (Ik + Uk) · x.

Proof. First note that since
∑k

i=1 xi = 1,

Lk · x =









0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0









·






x1

...

xk




 =










0
x1

x1 + x2

...
∑k−1

i=1 xi










=








1−
∑k

i=1 xi

1−
∑k

i=2 xi

...

1− xk








On the other hand, if we let 1 = (1, . . . , 1)T , we have also:

1− (Ik + Uk) · x = 1−









1 1 · · · 1

0 1
. . .

...
...

. . .
. . . 1

0 · · · 0 1









·






x1

...

xk




 =








1−
∑k

i=1 xi

1−
∑k

i=2 xi

...

1− xk
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Lemma 5. eT1 · Uk−t−1 · z = zk−t−1 + eT1 · Uk−t · z

The proof follows immediately from the fact that eT1 ·Uk−x = (0, . . . , 0
︸ ︷︷ ︸

k−x

, 1, . . . , 1
︸ ︷︷ ︸

x

).

As a direct consequence we obtain the following corollary.

Corollary 1. eT1 · Uk−t · z = zk−t + eT1 · Uk−t+1 · z

Lemma 6. For z = ei − ej , we have that (Lk + Uk) · z = −z.

Proof. If i = j, then z = 0 and the results is true. Suppose w.l.o.g. that i > j (other-

wise we just prove the result for −z). Then Uk · (ei − ej) =
∑i−1

s=1 es −
∑j−1

s=1 es =
∑i−1

s=j es. Similarly Lk · (ei− ej) =
∑k

s=i+1 es−
∑k

s=j+1 es =
∑i

s=j+1 −es. There-

fore (Lk + Uk) · (ei − ej) =
∑i−1

s=j es −
∑i

s=j+1 es = ej − ei = −z.

3.3 How to recover the bids when knowing the lij’s

As discussed above, we can represent the function f as a matrix multiplication. Let M
be the following square matrix of size nk × nk:

M =










(U + L) U . . . . . . U
(U + I) (U + L) U . . . U

...
. . .

. . .
. . .

...

(U + I) . . . (U + I) (U + L) U
(U + I) . . . . . . (U + I) (U + L)










. Then f(b) = M · b.

The function takes as input a vector composed of n vectors, each of k bits. It returns

the nk values lij , 1 ≤ i ≤ n and 1 ≤ j ≤ k. As explained above, the structure of

the matrix is defined by the formula that computes γa
ij , which consists essentially of

three factors: first we multiply all αij which encode bigger bids (represented by the

matrix U ), then we multiply all αij which encode smaller bids by the same bidder

(represented by adding the matrix L on the diagonal), and finally we multiply by all

αij which encode the same bid by bidders with a smaller index (represented by adding

the matrix I on the lower triangle of M ). In our encoding there will be a “1” in the

vector for each Y in the protocol, hence f will count how many Y s are multiplied when

computing γa
ij . Using this representation we can prove the following theorem.

Theorem 1. f is injective on valid bid vectors, i.e. for two different correct bid vectors

u = [u1, . . . , uk]
T and v = [v1, . . . , vk]

T with u 6= v we have M · u 6= M · v.

Proof. Let u and v be two correct bid vectors such that u 6= v. We want to prove that

M ·u 6= M ·v. We make a proof by contradiction, hence we assume that M ·u = M ·v
or that M · (u− v) = 0. Because u and v are two correct bid vectors, each one of them

is an element of the canonical basis (e1, . . . , ek), i.e. u = ei and v = ej , as shown

in Section 3.1. We denote u − v by z, and consequently z = ei − ej . Knowing that

M ·z = 0, we prove by induction on a that for all a the following property P (a) holds:

P (a) : ∀l, 0 < l ≤ a, diag(Uk−l) · z = 0

where diag(Uk−x) is a nk×nk block diagonal matrix containing only diagonal blocks

of the same matrix Uk−x. The validity of P (k) proves in particular that diag(U0)·zl =
0, i.e. z = 0 which contradicts our hypothesis.
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• Case a = 1: we also prove this base case by induction, i.e. for all b ≥ 1 the

property Q(b) holds, where:

Q(b) : ∀m, 0 < m ≤ b, Uk−1 · zm = 0

which gives us that Uk−1 · z = 0.

– Base case b = 1: We start by looking at the multiplication of the first row

of M with z. We obtain: (L + U) · z1 + U · (z2 + . . .+ zk) = 0. We can

multiply each side by Uk−1, and use Lemma 6 to obtain: Uk−1 · [−z1 +
Uk · (z2 + . . .+ zk)] = 0. Since U is nilpotent, according to Lemma 3 the

latter gives −Uk−1 · z1 = 0. Hence we know Q(1) : Uk−1 · z1 = 0, i.e.

the last entry of z1 is 0.

– Inductive step b+ 1: assume Q(b). Consider now the multiplication of the

(b + 1)-th row of the matrix M :

(U+I) ·z1+ . . .+(U+I) ·zb+(L+U) ·zb+1+U ·(zb+2+ . . .+zk) = 0.
Then by multiplying by Uk−1 and using Lemma 6 we obtain:

Uk−1 · [(U +I) ·z1+ . . .+(U +I) ·zb−zb+1+U · (zb+2+ . . .+zk)] = 0.
Since U is nilpotent according to Lemma 3 we have Uk−1 · z1 + . . . +
Uk−1 · zb − Uk−1 · zb+1 = 0. Using the fact that for all m < b we have

Uk−1 · zm = 0, the latter gives −Uk−1 · zb+1 = 0.

• Inductive step a + 1: assume P (a). By induction on b ≥ 1 we will show that

Q′(b) holds, where

Q′(b) : ∀m, 0 < m ≤ b, Uk−(a+1) · zm = 0

which gives us that Uk−(a+1) · z = 0, i.e. P (a+ 1).

– Base case b = 1: Consider the multiplication of the first row withUk−(a+1):

Uk−(a+1) · [(L+U) · z1 +U · (z2 + . . .+ zk)] = 0 which can be rewritten

as −Uk−(a+1) · z1 +Uk−a · (z2 + . . .+ zk)] = 0. Using Uk−a · zl = 0 for

all l, we can conclude that −Uk−(a+1) · z1 = 0, i.e. Q′(1) holds.

– Inductive step b+1: assume Q′(b). Consider now the (b+1)-th row of the

matrix M :

(U+I) ·z1+ . . .+(U+I) ·zb+(L+U) ·zb+1+U ·(zb+2+ . . .+zk) = 0.
Then by multiplying by Uk−(a+1) and using Lemma 6 we obtain:

Uk−(a+1)·[(U+I)·z1+. . .+(U+I)·zb+−zb+1+U ·(zb+2+. . .+zk)] = 0.
Using Uk−a · zl = 0 for all l, we can conclude that Uk−(a+1) · z1 + . . .+
Uk−(a+1) · zb − Uk−(a+1) · zb+1 = 0. Now, for all m < b, we have

Uk−(a+1) ·zm = 0, so that −Uk−(a+1) ·zb+1 = 0; i.e. Q′(b+1) holds.

This theorem shows that if there is a constellation of bids that led to certain values

lij , this constellation is unique. Hence we are able to invert f on valid outputs. We will

now show that this can be efficiently done.

3.3.1 An efficient algorithm

Our aim is solve the following linear system: M · x = l. We will use the same steps

we used for the proof of injectivity to solve this system efficiently. First note that

M · x = l ⇒ diag(Uk−t−1) ·M · x = diag(Uk−t−1) · l.

10



Consider the r-th block of size k of the latter equality. We have xr = (xr,1, xr,2, . . . ,
xr,k). When multiplying by eT1 we obtain the first line of this block. The r-th block of

M · x is

(U + I)x1 + . . .+ (U + I)xr−1 + (L+ U)xr + Uxr+1 + . . .+ Uxk

= U(
∑k

i=1 xi) + (
∑r−1

i=1 xi) + Lxr

and the r-th block of l is lr. Hence:

eT1

[

Uk−t
(
∑k

i=1 xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

+ Uk−t−1Lxr

]
= eT1 U

k−t−1lr

Using Lemma 4, we can exchange L in the latter to get:

eT1

[

Uk−t
(
∑k

i=1 xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

+ Uk−t−1 (1− (In + Un)xr)
]

= eT1 U
k−t−1lr.

We then remark that eT1 U
k−t−1

1 = t+ 1, which gives:

eT1

[

Uk−t
(
∑k

i=1,i6=r xi

)

+ Uk−t−1
(
∑r−1

i=1 xi

)

− Uk−t−1xr

]

= eT1 U
k−t−1lr − (t+ 1).

Using Lemma 5, we have

eT1

[

Uk−t
((
∑k

i=1 xi

)

− 2xr

)

+ Uk−t−1
(
∑r−1

i=1 xi

)]

+ (t+ 1)− eT1 U
k−t−1lr

= xr,k−t−1 (3)

Using several times Corollary 1 we have:

• eT1 U
k−t
((
∑k

i=1 xi

)

− 2xr

)

= eT1 U
k−t+1

((
∑k

i=1 xi

)

− 2xr

)

+ eTk−t

((
∑k

i=1 xi

)

− 2xr

)

• eT1 U
k−t−1

(
∑r−1

i=1 xi

)

= eT1 U
k−t
(
∑r−1

i=1 xi

)

+ eTk−t−1

(
∑r−1

i=1 xi

)

• eT1 U
k−t−1lr = eT1 U

k−tlr + lr,k−t−1

By changing t to t− 1 in Equation (3) we get:

eT1

[

Uk−t+1
((
∑k

i=1 xi

)

− 2xr

)

+ Uk−t
(
∑r−1

i=1 xi

)]

+ t− eT1 U
k−tlr = xr,k−t.

Then regrouping the applications of Corollary 1 and the latter formula within Equa-

tion (3), we obtain:

xr,k−t+eTk−t

((
k∑

i=1

xi

)

− 2xr

)

+ek−t−1

(
r−1∑

i=1

xi

)

+1+lr,k−t−1 = xr,k−t−1 (4)

This gives us a formula to compute the values of xi,j , starting with the last element

of the first block x1,k. Then we can compute the last elements of all other blocks

x2,k, . . . , xn,k, and then the second to last elements x1,k−1, . . . , xn,k−1, etc.

3.3.2 Complexity Analysis.

To obtain all values, we have to apply the above formula for each t ≤ n and r ≤ k,

hence we have:

n∑

t=1

k∑

r=1

(k + r) = n

(

k2 +
k(k + 1)

2

)

=
3

2
nk2 +

1

2
nk ∈ O

(
nk2

)
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This is efficient enough to be computed on a standard PC for realistic values of n (the

number of bidders) and k (the number of possible bids). Those could be less than a

hundred bidders with a thousand different prices, thus requiring about the order of only

a hundred million arithmetic operations. It is anyway the order of magnitude of the

number of operations required of each user just to compute her encrypted bids.

3.4 Attack on the random noise: how to obtain the lij’s

In the previous section we showed that knowing the lij ’s allows us the efficiently break

the privacy of all bidders. Here is how to obtain the lij’s.

The seller will learn all vij =
(
Y lij

)(
∑

n
h=1

mh
ij) at the end of the protocol. Since

the mh
ij are randomly chosen, this will be a random value if lij 6= 0. However a

malicious bidder (“Mallory”, of index a) can cancel out the mh
ij as follows: in Step 3

of the protocol each bidder will compute his γa
ij and δaij . Mallory waits until all other

bidders have published their values (the protocol does not impose any synchronization

or special ordering) and then computes his values γω
ij and δωij as:

γω
ij =

((
∏n

h=1

∏k

d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

))

·
(
∏

k 6=ω γk
ij

)−1

δωij =
((
∏n

h=1

∏k

d=j+1 βhd

)

·
(
∏j−1

d=1 βid

)

·
(
∏i−1

h=1 βhj

))

·
(
∏

k 6=ω δkij

)−1

The first part is a correct encryption of Y lij , with mω
ij = 1 for all i and j. The second

part is the inverse of the product of all the other bidders γk
ij and δkij , and thus it will

eliminate the random exponents. Hence after decryption the seller obtains vij = Y lij ,

where lij < n for a small n. He can compute lij by simply (pre-)computing all possible

values Y r and testing for equality. This allows the seller to obtain the necessary values

and then to use the resolution algorithm to obtain each bidder’s bid. Note that although

we changed the intermediate values, the output still gives the correct result (i.e. winning

bid). Therefore, the attack might even be unnoticed by the other participants. Note also

that choosing a different Yi per bidder does not prevent the attack, since all the Yi need

to be public in order to prove the correctness of the bid in Step 2 of the protocol.

However the protocol requires Mallory to prove that γω
ij and δωij have the same

exponent. This is obviously the case, but Mallory does not know the exact value of

this exponent. Thus it is impossible for him to execute the proposed zero-knowledge

protocol directly.

In the original paper [4] the malleable interactive proof of [8], presented in Sec-

tion 2.3, is used to prove the correctness of γa
ij and δaij in Step 3 of the protocol.

If this proof is not converted into a non-interactive proof, then Mallory is able to

fake it as follows.

3.5 Proof of equality of the presented outcomes

Note that we can rewrite γω
ij and δωij as:

v = γω
ij =









n∏

h=1

k∏

d=j+1

αhd



 ·

(
j−1
∏

d=1

αid

)

·

(
i−1∏

h=1

αhj

)



︸ ︷︷ ︸

g1

1−(
∑

k 6=ω
mk

ij)
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w = δωij =









n∏

h=1

k∏

d=j+1

βhd



 ·

(
j−1
∏

d=1

βid

)

·

(
i−1∏

h=1

βhj

)



︸ ︷︷ ︸

g2

1−(
∑

k 6=ω
mk

ij)

When Mallory, the bidder m, is asked by Victor for a proof of correctness of his values,

he starts by asking all other bidders for proofs to initialize the man-in-the-middle attack

of Figure 1. Each of them answers with values λo = gzo1 and µo = gzo2 . Mallory can

then answer Victor with values λ =
∏

o λ
−1
o and µ =

∏

o µ
−1
o , where o ∈ ([1, n] \m).

Victor then sends a challenge c, which Mallory simply forwards to the other bidders.

They answer with ro = zo + c · mo
ij , and Mallory sends r = c −

∑

o ro to Victor,

who can check that gr1 = λ · vc and gr2 = µ · wc. If the other bidders did their proofs

correctly, then Mallory’s proof will appear valid to Victor:

λ · vc =
∏

o λ
−1
o ·

(

g
1−(

∑
o
mo

ij)
1

)c

=
∏

o g
−zo
1 · g

c−c(
∑

o
mo

ij)
1 = g

c−
∑

o(zo+cmo
ij)

1

µ · wc =
∏

o µ
−1
o ·

(

g
1−(

∑
o mo

ij)
2

)c

=
∏

o g
−zo
2 · g

c−c(
∑

o mo
ij)

2 = g
c−

∑
o(zo+cmo

ij)
2

Hence in the case of malleable interactive zero-knowledge proofs Mallory is able to

modify the values γω
ij and δωij as necessary, and even prove the correctness using the

bidders. Hence the modifications may stay undetected and the seller will be able to

break privacy.

3.6 The complete attack and countermeasures

Putting everything together, the attack works as follows:

1. The bidders set up the keys as described in the protocol.

2. They encrypt and publish their bids.

3. They compute γh
ij and δhij and publish them.

4. Mallory, who is a bidder himself, waits until all other bidders have published

their values. He then computes his values as defined above, and publishes them.

5. If he is asked for a proof, he can proceed as explained above in Section 3.5.

6. The bidders (including Mallory) jointly decrypt the values.

7. The seller obtains all Y lij ’s. He can then compute the lij’s by testing at most n
possibilities.

8. Once he has all values, he can invert the function f as explained above.

9. He obtains all bidders bids.

Again, note that for all honest bidders, this execution will look normal, so they might

not even notice that an attack took place.

To prevent this attack, one could perform the following actions:

• To counteract the removal of the noise of Section 3.4, the bidders could check

whether the product of the γa
i,j for all bidders a is equal to the product of the αhd

without any noise (exponent is 1). Unfortunately, the man-in-the-middle attack

generalizes to any exponent as shown in Figure 2. Therefore the attacker could

use a randomly chosen exponent only known to him.
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• As mentioned above, another countermeasure is the use of non-interactive, non-

malleable proofs of knowledge. In this case, we will show in Section 5 that it is

still possible to attack a targeted bidder’s privacy.

4 Attacking verifiability

Brandt claims that the protocol is verifiable as the parties have to provide zero-knowledge

proofs for their computations, however there are two problems.

4.1 Exceptional values

First, a winning bidder cannot verify if he actually won. To achieve privacy, the pro-

tocol hides all outputs of vaj except for the entry containing “1”2. This is done by

exponentiation with random values ma
ij inside all entries γa

ij and δaij , i.e. by computing

x
∑

a
ma

ij

ij where xij is the product of some αij as specified in the protocol. If xij is one,

xm
ij will still return one for any m, and in principle something different from one for

any other value of xij . Now, the random values ma
ij may add up to zero (mod q), hence

the returned value will be xm
ij = x0

ij = 1 and the bidder will conclude that he won,

although he actually lost (xij 6= 1). Hence simply verifying the proofs is not sufficient

to be convinced that the observed outcome is correct. For the same reason the seller

might observe two or more “1”-values, even though all proofs are correct. In such a

situation he is unable to decide which bidder actually won since he cannot determine

which “1”s correspond to a real bids, and hence which bid is the highest real bid. If two

“1”s correspond to real bids, he could even exploit such a situation to his advantage: he

can tell both bidders that they won and take money from both, although there is only

one good to sell – this is normally prohibited by the protocol’s tie-breaking mechanism.

If the bidders do not exchange additional data there is no way for them to discover that

something went wrong, since the seller is the only party having access to all values.

A solution to this problem could work as follows: when computing the γa
ij and δaij ,

the bidders can check if the product

xij =





n∏

h=1

k∏

d=j+1

αhd



 ·

(
j−1
∏

d=1

αid

)

·

(
i−1∏

h=1

αhj

)

is equal to one – if yes, they restart the protocol using different keys and random values.

If not, they continue, and check if
∏

a γ
a
ij = 1. If yes, they choose different random

values ma
ij and re-compute the γa

ij and δaij , otherwise they continue. Since the prob-

ability of the random values adding up to zero is low, this will rapidly lead to correct

values.

4.2 Different private keys

Second, the paper does not precisely specify the proofs that have to be provided in the

joint decryption phase. If the bidders only prove that they use the same private key

on all decryptions and not also that it is the one they used to generate their public

key, they may use a wrong one. This will lead to a wrong decryption where with

2Note that the protocol contains a mechanism to resolve ties, i.e. there should always be exactly one entry

equal to 1, even in the presence of ties.
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very high probability no value is “1”, as they will be random. Hence all bidders will

think that they lost, thus allowing a malicious bidder to block the whole auction, as

no winner is determined. Hence, if we assume that the verification test consists in

verifying the proofs, a bidder trying to verify that he lost using the proofs might perform

the verification successfully, although the result is incorrect and he actually won – since

he would have observed a “1” if the vector had been correctly decrypted.

This problem can be addressed by requiring the bidders to also prove that they used

the same private key as in the key generation phase.

5 Attacks using the lack of authentication

The protocol as described in the original paper does not include any authentication of

the messages. This means that an attacker in control of the network can impersonate

any party, which can be exploited in many ways. However, the authors supposed in

the original paper a “reliable broadcast channel, i.e. the adversary has no control of

communication” [4]. Yet even under this assumption dishonest participants can im-

personate other participants by submitting messages on their behalf. Additionally, this

assumption is difficult to achieve in asynchronous systems [14]. In the following we

consider an attacker in control of the network, however many attacks can also be exe-

cuted analogously by dishonest parties (which are considered in the original paper) in

the reliable broadcast setting.

5.1 Another attack on privacy

Our first attack on privacy only works in the case of malleable interactive proofs. If we

switch to non-interactive non-malleable proofs, Mallory cannot ask the other bidders

for proofs using a challenge of his choice.

However, even with non-interactive non-malleable zero-knowledge proofs, the pro-

tocol is still vulnerable to attacks on a targeted bidder’s privacy if an attacker can im-

personate any bidder of his choice as well as the seller, which is the case for an attacker

controlling the network due to the lack of authentication. In particular, if he wants to

know Alice’s bid he can proceed as follows:

1. Mallory impersonates all other bidders. He starts by creating keys on their behalf

and publishes the values yi and the corresponding proofs for all of them.

2. Alice also creates her secret keyshare and publishes ya together with a proof.

3. Alice and Mallory compute the public key y.

4. Alice encrypts her bid and publishes her αaj and βbj together with the proofs.

5. Mallory publishes αij = αaj and βij = βaj for all other bidders i and also

copies Alice’s proofs.

6. Alice and Mallory execute the computations described in the protocol and pub-

lish γa
ij and δaij .

7. They compute φa
ij and send it to the seller.

8. The seller publishes the φa
ij and computes the vaj .
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Since all submitted bids are equal, the seller (which might also be impersonated by

Mallory) will obtain Alice’s bid as the winning price, hence it is not private any more.

This attack essentially simulates a whole instance of the protocol to make Alice indi-

rectly reveal a bid that was intended for another, probably real auction. To counteract

this it is not sufficient for Alice to check that the other bids are different: Mallory

can produce different αij = αajy
x together with βij = βajg

x which are still correct

encryptions of Alice bids.

Note that the same attack also works if dishonest bidders collude with the seller:

they simply re-submit the targeted bidders bid as their own bid.

5.2 Attacking fairness, non-repudiation and verifiability

The lack of authentication obviously entails that a winning bidder can claim that he

did not submit his bid, hence violating non-repudiation (even in the case of reliable

broadcast). Additionally, this also enables an attack on fairness: an attacker in control

of the network can impersonate all bidders vis-à-vis the seller, submitting bids of his

choice on their behalf and hence completely controlling the winner and winning price.

This also causes another problem with verifiability: it is impossible to verify if the bids

were submitted by the registered bidders or by somebody else.

5.3 Countermeasures

The solution to these problems is simple: all the messages need to be authenticated, e.g.

using signatures or Message Authentication Codes (MACs) based on a trust anchor, for

example a Public Key Infrastructure (PKI).

6 Conclusion

In this paper we analyze the protocol of Brandt [4] from various angles. We show that

the underlying computations have a weakness which can be exploited by malicious bid-

ders to break privacy if malleable interactive zero-knowledge proofs are used. We also

identified two problems with verifiability and proposed solutions. Finally we showed

how the lack of authentication can be used to mount different attacks on privacy, ver-

ifiability as well as fairness and non-repudiation. Again we suggested a solution to

address the discovered flaws.

So sum up, the following countermeasures have to be implemented:

• Use of non-interactive or non-malleable zero-knowledge proofs.

• All messages have to be authenticated, e.g. using a Public-Key Infrastructure

(PKI) and signatures.

• In the outcome computation step: when computing the γa
ij and δaij , the bidders

can check if xij =
(
∏n

h=1

∏k
d=j+1 αhd

)

·
(
∏j−1

d=1 αid

)

·
(
∏i−1

h=1 αhj

)

is equal

to one – if yes, they restart the protocol using different keys and random values.

If not, they continue, and check if
∏

a γ
a
ij = 1. If yes, they choose different

random values ma
ij and re-compute the γa

ij and δaij , otherwise they continue.

• In the outcome decryption step: the bidders have to prove that the value xa they

used to decrypt is the same xa they used to generate their public key ya in the

first step.
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The attacks show that properties such as authentication can be necessary to achieve

other properties which might appear to be unrelated at first sight, like for instance

privacy. It also points out that there is a difference between computing the winner in

a fully private way, and ensuring privacy for the bidders: in the second attack we use

modified inputs to break privacy even though the computations themselves are secure.

Additionally our analysis highlights that the choice of interactive or non-interactive,

malleable or non-malleable proofs is an important decision in any protocol design.

As for possible generalizations of our attacks, of course the linear algebra part

of our first attack is specific to this protocol. Yet the man-in-the-middle attack on

malleable proofs as well as the need of authentication for privacy are applicable to any

protocol. Similarly, checking all exceptional cases and ensuring that the same keys are

used all along the process are also valid insights for other protocols.
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