
HAL Id: hal-00745247
https://hal.science/hal-00745247v1

Submitted on 25 Oct 2012 (v1), last revised 14 May 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attacking Privacy in a Fully Private Auction Protocol
Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade

To cite this version:
Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade. Attacking Privacy in a Fully Private
Auction Protocol. 2012. �hal-00745247v1�

https://hal.science/hal-00745247v1
https://hal.archives-ouvertes.fr

Attacking Privacy in a Fully Private Auction
Protocol

Jannik Dreier∗‡ Jean-Guillaume Dumas†‡ Pascal Lafourcade∗‡

October 25, 2012

Abstract

Auctions have a long history, having been recorded as early as 500 B.C. With
the rise of Internet, electronic auctions have been a great success and are increas-
ingly used. Many cryptographic protocols have been proposed to address the var-
ious security requirements of these electronic transactions, in particular to ensure
privacy. In 2006 Brandt [1] developed a protocol that computes the winner us-
ing homomorphic operations on a distributed ElGamal encryption of the bids. He
claimed that it ensures full privacy of the bidders, i.e. that no information apart
from the winner and the winning price is leaked. We show that this protocol –
when using interactive zero-knowledge proofs – is vulnerable to attacks by dis-
honest bidders. Such bidders can manipulate the publicly available data in a way
that allows the seller to deduce all participants’ bids. Additionally, even if non-
interactive zero-knowledge proofs are used, we show that the protocol is vulnera-
ble to a different attack, which allows to recover one targeted bidder’s bid.

1 Introduction
Auctions are a simple method to sell goods and services. Typically a seller offers a
good or a service, and the bidders make offers. Depending on the type of auction, the
offers might be sent using sealed envelopes which are opened simultaneously to de-
termine the winner (the “sealed-bid” auction), or an auctioneer could announce prices
decreasingly until one bidder is willing to pay the announced price (the “dutch auc-
tion”). Additionally there might be several rounds, or offers might be announced pub-
licly directly (the “English” or “shout-out” auction). The winner usually is the bidder
submitting the highest bid, but in some cases he might only have to pay the second
highest offer as a price (the “second-price”- or “Vickrey”-Auction). In general a bidder
wants to win the auction at the lowest possible price, and the seller wants to sell his
good at the highest possible price. For more information on different auction methods
∗Université de Grenoble. Laboratoire Verimag, umr CNRS 5104, Centre quation - 2, avenue de Vignate

F38610 Gières, France
†Université de Grenoble. Laboratoire J. Kuntzmann, umr CNRS 5224, 51, rue des Mathématiques,

BP 53X, F38041 Grenoble, France
‡{Jannik.Dreier,Jean-Guillaume.Dumas,Pascal.Lafourcade}@imag.fr

1

mailto:Jannik.Dreier@imag.fr,Jean-Guillaume.Dumas@imag.fr,Pascal.Lafourcade@imag.fr

see [8]. To address this huge variety of possible auction settings and to achieve dif-
ferent security and efficiency properties numerous protocols have been developed, e.g.
[1, 10, 3, 9, 12, 11, 7, 4, 14, 13, 16, 15, 20, 19, 17, 18].

One of the key requirements of electronic auction (e-Auction) protocols is privacy,
i.e. that the bids of losing bidders remain private. In 2006 Brandt [1] proposed a first-
price sealed-bid auction protocol and claimed that it is fully private, i.e. that it leaks
no information apart from the winner, the winning bid, and what can be deduced from
these two facts (for example that the other bids were inferior).

Our Contributions. The protocol is based on an algorithm that computes the winner
using bids encoded as bit vectors. In this paper we show that the implementation using
the homomorphic property of a distributed Elgamal encryption proposed in the orig-
inal paper suffers from a weakness that can in some cases be exploited by dishonest
participants. In fact, we prove that any two different inputs (i.e. different bids) result in
different outcome values, which are only hidden using random values. We show how
a dishonest participant can remove this random noise, if interactive zero-knowledge
proofs are used. The seller can then efficiently compute the bids of all bidders, hence
completely breaking privacy. Next, we also show that even if this attack is prevented
via non-interactive proofs, the protocol remains vulnerable to attacks on the privacy of
a single bidder. This is due to a lack of authentication.

Outline. In the next section, we recall the protocol by Brandt. Then, in Section 3,
we present our attacks in several steps. We first study the protocol using interactive
zero-knowledge proofs and without noise. Then we show how a dishonest participant
can remove the noise. Finally, as the messages are not authenticated, we show that
a malicious attacker in control of the network can recover any bidder’s bid, even if
non-interactive zero-knowledge proofs.

2 The Protocol
The protocol of Brandt [1] was designed to ensure full privacy in a completely dis-
tributed way. It exploits the homomorphic properties of a distributed El-Gamal En-
cryption scheme [5] for a secure multi-party computation of the winner. We first give a
high level description of the protocol and then present details on the main cryptographic
primitives it uses.

2.1 Informal Description
The participating n bidders and the seller communicate essentially using broadcast
messages. The latter can for example be implemented using a bulletin board, i.e. an
append-only memory accessible to everybody. The bids are encoded as k-bit-vectors
where each entry corresponds to a price. If the bidder a wants to bid the price ba, all
entries will be 1, except the entry ba which will be Y (a public constant). Each entry
of the vector is then encrypted separately using a n-out-of-n-encryption scheme set
up by all bidders. The bidders use multiplications of the encrypted bids (exploiting

2

the homomorphic property) to compute values vaj . Each one of this values is 1 if the
bidder a wins at price j, and is a random number otherwise. The decryption of the final
values takes place in a distributed way to ensure that nobody can access intermediate
values.

In a nutshell, the protocol realizes the following steps:

1. First, the distributed key is generated: each bidder chooses his part of the secret
key and publishes the corresponding part of the public key.

2. Each bidder then computes the joint public key, encrypts his bid-vector entry-
wise using this key and publishes the result.

3. Then the auction function is computed for every bidder using the homomorphic
properties of the encryption scheme, see next paragraph.

4. The outcome of this computation (n2 · k encrypted values) are published on the
bulletin board, and each bidder partly decrypts each value using his secret key.

5. These shares are sent to the seller, who can combine them to obtain the result.
The seller also publishes part of the shares so that each bidder can verify his
winning or loosing situation.

2.2 Mathematical Description
We do not detail all proofs here except the one used in step 3 “Outcome computation”.
Indeed, our attack exploits the algebraic properties of the latter. We consider that i, h ∈
{1, . . . , n}, j, bida ∈ {1, . . . , k} (where bida is the bid chosen by the bidder with index
a), Y ∈ Gq \ {1}. More precisely, the n bidders execute the following five steps of the
protocol [1]:

1. Key Generation
Each bidder a, whose bidding price is bida among k offers:

• chooses a secret xa ∈ Zq
• choose randomly ma

ij and raj ∈ Zq for each i and j.

• publishes ya = gxa and proves the knowledge of ya’s discrete logarithm.

• then computes y =

n∏
i=1

yi.

2. Bid Encryption
Each bidder a

• sets baj =

{
Y if j = bida

1 otherwise

• publishes αaj = baj · yraj and βaj = graj for each j.

3

• proves that for all j, logg(βaj) equals logy(αaj) or logy
(αaj
Y

)
, and that

logy

(∏k
j=1 αaj

Y

)
= logg

(∏k
j=1 βaj

)
.

3. Outcome Computation

• Each bidder a computes and publishes for all i and j:

γaij =

 n∏
h=1

k∏
d=j+1

αhd

 ·(j−1∏
d=1

αid

)
·

(
i−1∏
h=1

αhj

)ma
ij

δaij =

 n∏
h=1

k∏
d=j+1

βhd

 ·(j−1∏
d=1

βid

)
·

(
i−1∏
h=1

βhj

)ma
ij

and proves its correctness.

4. Outcome Decryption

• Each bidder a sends φaij = (

n∏
h=1

δhij)
xa for each i and j to the seller and

proves its correctness. After having received all values, the seller publishes
φhij for all i, j, and h 6= i.

5. Winner determination

• Everybody can now compute vaj =

∏n
i=1 γ

i
aj∏n

i=1 φ
i
aj

for each j.

• If vaw = 1 for some w, then the bidder a wins the auction at price pw.

2.3 Proof of equality of two discrete logs
In the original paper [1] the following interactive proof [2] is proposed to prove the
correctness of γaij and δaij in step 3 of the protocol: Peggy and Victor know v, w, g1
and g2, and Peggy wants to prove that she knows x such that v = gx1 and w = gx2 ; here
g1 = γaij , g2 = δaij and x = ma

ij :

1. Peggy chooses z at random and sends λ = gz1 and µ = gz2 to Victor.

2. Victor chooses a challenge c at random and sends it to Peggy.

3. Peggy computes r = (z + c · x) mod q and sends it to Victor.

4. Victor tests if gr1 = λ · vc and gr2 = µ · wc.

This interactive protocol can be converted into a non-interactive one using the Fiat-
Shamir heuristic [6].

4

3 The Attacks
We present two kinds of attacks. The first one uses some algebraic properties of the
computations performed during the protocol execution. Then we discuss other attacks
based on the lack of authentication of the protocol.

3.1 Attacking the fully private computations
For our main attack we analyze the computations done in step 3 of the protocol. Con-
sider the following example with three bidders and three possible prices. Then the first
bidder computes

γ111 = ((α12 · α13· α22 · α23· α32 · α33) · (1) · (1))m
1
11

γ112 = ((α13· α23· α33) · (α11) · (1))m
1
12

γ113 = ((1) · (α11 · α12) · (1))m
1
13

γ121 = ((α12 · α13· α22 · α23· α32 · α33) · (1) · (α11))m
1
21

γ122 = ((α13· α23· α33) · (α21) · (α12))m
1
22

γ123 = ((1) · (α21 · α22) · (α13))m
1
23

γ131 = ((α12 · α13· α22 · α23· α32 · α33) · (1) · (α11 · α21))m
1
31

γ132 = ((α13· α23· α33) · (α31) · (α12 · α22))m
1
32

γ133 = ((1) · (α31 · α32) · (α13 · α23))m
1
33

The second and third bidder do the same computations, but using different random
values ma

ij . Since each αij is either the encryption of 1 or Y , for example the value
γ122 will be an encryption of 1 only if

• nobody submitted a higher bid (the first block) and

• bidder 2 did not bid a lower bid (the second block) and

• no bidder with a lower index submitted the same bid (the third block).

If we ignore the exponentiation by ma
ij , each γaij is the encryption of the product of

several bij’s. Each bij can be either 1 or Y , hence (γaij)
−ma

ij will be the encryption of
a value Y lij , where 0 ≤ lij ≤ n. The lower bound of lij is trivial, the upper bound
follows from the observation that each αij will be used at most once, and that each
bidder will encrypt Y at most once.

Assume for now that we know all lij . We show next that this is sufficient to obtain
all bids. Consider the function f which takes as input the following vector1

b = logY

((
b11, . . . , b1k, b21, . . . , b2k, . . . , bn1, . . . , bnk

)T)
and returns the values lij . The input vector is thus a vector of all bid-vectors, where 1
is replaced by 0 and Y by 1. Consider our above example with three bidders and three
possible prices, then we have

b = logY

((
b11, b12, b13, b21, b22, b23, b31, b32, b33

)T)
.

1By abuse of notation we write logs
(
x1, . . . , xn

)
for

(
logs(x1), . . . , logs(xn)

)
.

5

A particular instance where bidder 1 and 3 submit price 1, and bidder 2 submits price
2 would then look as follows

b =
(
1, 0, 0, 0, 1, 0, 1, 0, 0

)T
Hence only the factors α11, α22 and α31 are encryptions of Y , all other α’s are encryp-
tions of 1. By simply counting how often the factors α11, α22 and α31 show up in each
equation as described above, we can compute the following result of f(b):(

1, 1, 1, 2, 0, 1, 2, 1, 1
)T

Note that since we chose the input of f to be a bit-vector, we have to simply count
the ones (which correspond to Y ’s) in particular positions in b, where the positions
are determined by the factors inside γaij . Hence we can express f as a matrix, i.e.
f(b) =M · b for the following matrix M :

f(b) =M · b =



0 1 1 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1
0 0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 1 1 0


·



1
0
0

0
1
0

1
0
0


=



1
1
1

2
0
1

2
1
1


To see how the matrix M is constructed, consider for example

(γa22)
−ma

22 = (α13 · α23 · α33) · (α21) · (α12)

which corresponds to the second row in the second vertical block:

• α12 and α13; hence the two ones at position 2 and 3 in the first horizontal block

• α21 and α23; hence the two ones at position 1 and 3 in the second horizontal
block

• α33; hence the one at position 3 in the third horizontal block

More generally, we can see that we each 3× 3 block consists of potentially three parts:

• An upper triangular matrix representing all bigger bids.

• On the diagonal we add a lower triangular matrix representing a lower bid by the
same bidder,

• In the lower left half we add an identity matrix representing a bid at the current
price by a bidder with a lower index.

This corresponds exactly to the structure of the products inside each γaij . It is also
equivalent to formula (1) in Section 4.1.1 of the original paper [1] without the random
vector R∗k. In the following we prove that the function f is injective. We then dis-
cuss how this function can be efficiently inverted (i.e. how to compute the bids when
knowing all lij’s).

6

3.1.1 Preliminaries.

Let Ik be the k × k identity matrix.
Let Lk be a lower k × k triangular matrix with zeroes on the diagonal, ones in

the lower part and zeroes elsewhere. Let Uk be an upper k × k triangular matrix with
zeroes on the diagonal, ones in the upper part, and zeroes elsewhere. In Figure 1 we
give a representation of these matrices. By abuse of notation we use I , L and U to
denote respectively Ik, Lk and Uk.

Ik =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 Lk =


0 0
1 0

1 1
. . .

...
...

.
1 1 . . . 1 0

 Uk =


0 1 1 . . . 1

0 1 . . . 1
.

...
. . . 1

0 0


Figure 1: Ik, Lk and Uk

For a k × k-matrix Mk we define (Mk)
r = M · · ·M (r times) and (Mk)

0 = Ik.
Let (e1, . . . , ek) be the canonical basis.

Lemma 1. Matrices Lk and Uk have the following properties, for 0 < j ≤ k and
r ≥ 0:

(Uk)
r · ej =

j−r∑
s=1

es and (Lk)
r · ej =

k∑
s=j+r

es

Lemma 2. Matrices Lk and Uk are nilpotent, i.e. (Uk)k = 0 and (Lk)
k = 0.

This lemma follows immediately from Lemma 1 by computing (Uk)
k · Ik and

(Lk)
k · Ik.

Lemma 3. If
k∑
i=1

xi = 1 then we haveLk ·x = 1−(Ik+Uk)·x, where 1 = (1, . . . , 1)T .

Proof. First note that since
k∑
i=1

xi = 1,

Lk · x =


0 0
1 0

1 1
. . .

...
...

.
1 1 . . . 1 0

 ·
x1...
xk

 =


0
x1

x1 + x2
...∑k−1

i=1 xi

 =


1−

∑k
i=1 xi

1−
∑k
i=2 xi

1−
∑k
i=3 xi

...
1− xk



7

On the other hand, we have also:

1− (Ik + Uk) · x = 1−


1 1 1 . . . 1

1 1 . . . 1
.

...
. . . 1

0 1

 ·
x1...
xk

 =


1−

∑k
i=1 xi

1−
∑k
i=2 xi

1−
∑k
i=3 xi

...
1− xk



Lemma 4.
eT1 · Uk−t−1 · z = zk−t−1 + eT1 · Uk−t · z

The proof follows immediately from the fact that eT1 ·Uk−x = (0, . . . , 0︸ ︷︷ ︸
k−x

, 1, . . . , 1︸ ︷︷ ︸
x

).

As an immediate consequence we obtain the following corollary.

Corollary 1.
eT1 · Uk−t · z = zk−t + eT1 · Uk−t+1 · z

Lemma 5. For z = ei − ej , we have that (Lk + Uk) · z = −z.

Proof. If i = j, then z = 0 and the results is true. Suppose w.l.o.g. that i > j
(otherwise we just prove the result for −z). Then

Uk · (ei − ej) =
i−1∑
s=1

es −
j−1∑
s=1

es =

i−1∑
s=j

es

Similarly

Lk · (ei − ej) =
k∑

s=i+1

es −
k∑

s=j+1

es =

i∑
s=j+1

−es

Therefore

(Lk + Uk) · (ei − ej) =
i−1∑
s=j

es −
i∑

s=j+1

es = ej − ei = −z

3.1.2 How to recover the bids when knowing the lij’s.

As discussed above, we can represent the function f as a matrix multiplication. Let M
be the following square matrix of size nk × nk:

M =


(U + L) U U
(U + I) (U + L) U . . . U

...
.

...
(U + I) . . . (U + I) (U + L) U
(U + I) (U + I) (U + L)


8

Then
f(b) =M · b

The function takes as input a vector composed of n vectors, each of k bits. It returns
the nk values lij , 1 ≤ i ≤ n and 1 ≤ j ≤ k. As explained above, the structure
of the matrix is defined by the formula that computes γaij , which consists essentially
of three factors: Firstly we multiply all αij which encode bigger bids (represented by
the matrix U), then we multiply all αij which encode smaller bids by the same bidder
(represented by adding the matrix L on the diagonal), and finally we multiply by all
αij which encode the same bid by bidders with a smaller index (represented by adding
the matrix I on the lower triangle of M). In our encoding there will be a “1” in the
vector for each Y in the protocol, hence f will count how many Y s are multiplied when
computing γaij . Using this representation we can prove the following theorem.

Theorem 1. f is injective, i.e. for two different correct bid vectors

u =

u1...
uk

 and v =

v1...
vk


with u 6= v we have M · u 6=M · v.

Proof. Let u and v be two correct bid vectors such that u 6= v. We want to prove that
M ·u 6=M ·v. We make a proof by contradiction, hence we assume thatM ·u =M ·v
which is equivalent to M · (u − v) = 0. Because u and v are two correct bid vectors
they only contain elements of the canonical basis (e1, . . . , ek), then

u =

u1...
uk

 =

ei1...
eik

 and v =

v1...
vk

 =

ej1...
ejk

 ,

where eik and ejk are elements of the canonical basis. We denote u − v by z, conse-
quently z1...

zk

 =

ei1 − ej1...
eik − ejk


Knowing that M · z = 0, we prove by induction on a that for all a the following
property P (a) holds:

P (a) : ∀l, 0 < l ≤ a, Uk−l · z = 0

This proves in particular that U0 · zl = 0, i.e. z = 0 which contradicts out hypothesis.

• Case a = 1: We prove by induction for all b ≥ 1 that the property Q(b) holds,
where:

Q(b) : ∀m, 0 < m ≤ b, Uk−1 · zm = 0

which gives us that Uk−1 · z = 0.

9

– Base case b = 1: We start by looking at the multiplication of the first row
of M with z. We obtain:

(L+ U) · z1 + U · (z2 + . . .+ zk) = 0

We can multiply each side by Uk−1, and use Lemma 5 to obtain:

Uk−1 · [−z1 + U · (z2 + . . .+ zk)] = 0

SinceU is nilpotent, according to Lemma 2 the latter gives−Uk−1 ·z1 = 0.
Hence we know Q(1) : Uk−1 · z1 = 0, i.e. that the last entry of z1 is 0.

– Inductive step b+1: Assume Q(b). Consider now the multiplication of the
(b+ 1)-th row of the matrix M :

(U+I) ·z1+ . . .+(U+I) ·zb+(L+U) ·zb+1+U ·(zb+2+ . . .+zk) = 0

Then by multiplying by Uk−1 and using Lemma 5 we obtain

Uk−1 · [(U + I) ·z1+ . . .+(U + I) ·zb−zb+1+U · (zb+2+ . . .+zk)] = 0

Since U is nilpotent according to Lemma 2 we have

Uk−1 · z1 + . . .+ Uk−1 · zb − Uk−1 · zb+1 = 0

Using the fact that for all m < b we have Uk−1 · zm = 0, the latter gives
−Uk−1 · zb+1 = 0.

• Inductive step a + 1: Assume P (a). By induction on b ≥ 1 we will show that
Q′(b) holds, where

Q′(b) : ∀m, 0 < m ≤ b, Uk−(a+1) · zm = 0

which gives us that Uk−(a+1) · z = 0, i.e. P (a+ 1).

– Base case b = 1: Consider the multiplication of the first row withUk−(a+1):

Uk−(a+1) · [(L+ U) · z1 + U · (z2 + . . .+ zk)] = 0

which can be rewritten as

−Uk−(a+1) · z1 + Uk−a · (z2 + . . .+ zk)] = 0

Using Uk−a · zl = 0 for all l, we can conclude that

−Uk−(a+1) · z1 = 0

i.e. Q′(1) holds.

10

– Inductive step b + 1: Assume Q′(b). Consider now the (b + 1)-th row of
the matrix M :

(U+I) ·z1+ . . .+(U+I) ·zb+(L+U) ·zb+1+U ·(zb+2+ . . .+zk) = 0

Then by multiplying by Uk−(a+1) and using Lemma 5 we obtain

Uk−(a+1)·[(U+I)·z1+. . .+(U+I)·zb+−zb+1+U ·(zb+2+. . .+zk)] = 0

Using Uk−a · zl = 0 for all l, we can conclude that

Uk−(a+1) · I · z1 + . . .+ Uk−(a+1) · I · zb − Uk−(a+1) · zb+1 = 0

Using the fact that for all m < b we have Uk−(a+1) · zm = 0, we can
conclude that

−Uk−(a+1) · zb+1 = 0

i.e. Q′(b+ 1) holds.

This theorem shows that if there is a constellation of bids that led to certain values
lij , this constellation is unique. Hence we are able to inverse f on valid outputs. We
will now show that this can be efficiently done.

3.1.3 An efficient algorithm.

Our aim is solve the following linear system: M · x = l. We will use the same steps
we used for the proof of injectivity to solve this system efficiently. First note that

M · x = l⇒ diag(Uk−t−1) ·M · x = diag(Uk−t−1) · l

where diag(Uk−t−1) is a nk × nk block diagonal matrix containing only diagonal
blocks of the same matrix Uk−t−1. We consider the r-th block of size k of the latter
equality. We have xr = (xr,1, xr,2, . . . , xr,k). When multiplying by eT1 we obtain the
first line of this block. The r-th block of M · x is

(U + I) · x1 + . . .+ (U + I) · xr−1 + (L+ U) · xr + U · xr+1 + . . .+ U · xk

= U · (
k∑
i=1

xi) + (

r−1∑
i=1

xi) + L · xr

and the r-th block of l is lr. Hence

eT1 ·

[
Uk−t ·

(
k∑
i=1

xi

)
+ Uk−t−1 ·

(
r−1∑
i=1

xi

)
+ Uk−t−1 · L · xr

]
= eT1 ·Uk−t−1 · lr

11

Using Lemma 3, we have

eT1 ·

[
Uk−t ·

(
k∑
i=1

xi

)
+ Uk−t−1 ·

(
r−1∑
i=1

xi

)
+ Uk−t−1 · (1− (In + Un)xr)

]
= eT1 · Uk−t−1 · lr

We remark that eT1 · Uk−t−1 · 1 = t+ 1, then we get

eT1 ·

Uk−t ·
 k∑
i=1,i6=r

xi

+ Uk−t−1 ·

(
r−1∑
i=1

xi

)
− Uk−t−1 · xr


= eT1 · Uk−t−1 · lr − (t+ 1)

Using Lemma 4, we have

eT1 ·

[
Uk−t ·

((
k∑
i=1

xi

)
− 2 · xr

)
+ Uk−t−1 ·

(
r−1∑
i=1

xi

)]
+ (t+ 1)

− eT1 · Uk−t−1 · lr = xr,k−t−1 (1)

Using several times Corollary 1 we have:

• eT1 · Uk−t ·

((
k∑
i=1

xi

)
− 2 · xr

)
= eT1 · Uk−t+1 ·

((
k∑
i=1

xi

)
− 2 · xr

)
+

eTk−t ·

((
k∑
i=1

xi

)
− 2 · xr

)

• eT1 · Uk−t−1 ·

(
r−1∑
i=1

xi

)
= eT1 · Uk−t ·

(
r−1∑
i=1

xi

)
+ eTk−t−1 ·

(
r−1∑
i=1

xi

)
• eT1 · Uk−t−1 · lr = eT1 · Uk−t · lr + lr,k−t−1

By a changing t to t− 1 in Equation (1) we get

eT1 ·

[
Uk−t+1 ·

((
k∑
i=1

xi

)
− 2 · xr

)
+ Uk−t ·

(
r−1∑
i=1

xi

)]
+ t− eT1 · Uk−t · lr

= xr,k−t

Then regrouping the applications of Corollary 1 and the latter formula within Equa-
tion (1), we obtain:

xr,k−t+e
T
k−t ·

((
k∑
i=1

xi

)
− 2 · xr

)
+ek−t−1 ·

(
r−1∑
i=1

xi

)
+1+ lr,k−t−1 = xr,k−t−1

This gives us a formula to compute the values of xi,j , starting with the last element
of the first block x1,k. Then we can compute the last elements of all other blocks
x2,k, . . . , xn,k, and then the second to last elements x1,k−1, . . . , xn,k−1 and so on.

12

Complexity Analysis. To obtain all values, we have to apply the above formula for
each t ≤ n and r ≤ k, hence we have:

n∑
t=1

k∑
r=1

(k + r) = n ·
(
k2 +

k(k + 1)

2

)
=

3

2
nk2 +

1

2
nk ∈ O

(
nk2

)
This is efficient enough to be computed on a standard PC for realistic values of n (the
number of bidders) and k (the number of possible bids). Those could be less than a
hundred bidders with a thousand different prices, thus requiring about the order of only
a hundred million arithmetic operations.

3.1.4 How to obtain the lij’s.

In the previous section we showed that knowing the lij’s allows us the efficiently break
the privacy of all bidders. Here is now how to obtain the lij’s.

The seller will learn all

vij =
(
Y lij

)(∑n
h=1m

h
ij)

at the end of the protocol. Since the mh
ij are randomly chosen, this will be a random

value if lij 6= 0. However a malicious bidder (“Mallory”, of index a) can cancel out
the mh

ij as follows: In step 3 of the protocol each bidder will compute his γaij and δaij .
Mallory waits until all other bidders have published their values, and then computes
his values γaij and δaij as:

γaij =

 n∏
h=1

k∏
d=j+1

αhd

 ·(j−1∏
d=1

αid

)
·

(
i−1∏
h=1

αhj

) ·
∏
k 6=a

γkij

−1

δaij =

 n∏
h=1

k∏
d=j+1

βhd

 ·(j−1∏
d=1

βid

)
·

(
i−1∏
h=1

βhj

) ·
∏
k 6=a

δkij

−1

The first part is a correct encryption of Y lij , with ma
ij = 1 for all i and j. The second

part is the inverse of the product of all the other bidders γkij and δkij , and thus it will
eliminate the random exponents. Hence after decryption the seller obtains vij = Y lij ,
where lij < n for a small n. He can compute lij by simply (pre-)computing all possible
values Y r and testing for equality. This allows the seller to obtain the necessary values
and then to use the resolution algorithm to obtain each bidder’s bid. Note that although
we changed the intermediate values, the output still gives the correct result (i.e. winning
bid). Therefore, the attack might even be unnoticed by the other participants. Note also
that choosing a different Yi per bidder does not prevent the attack, since all the Yi need
to be public in order to prove the correctness of the bid in step 2 of the protocol.

However the protocol requires Mallory to prove that γaij and δaij have the same
exponent. This is obviously the case, but Mallory does not know the exact value of

13

this exponent. Thus it is impossible for him to execute the proposed zero-knowledge-
proof-protocol directly. Yet, if interactive proofs are used, he is able to fake this proof
as follows.

First, note that we can rewrite γaij and δaij as:

v = γaij =

 n∏
h=1

k∏
d=j+1

αhd

 ·(j−1∏
d=1

αid

)
·

(
i−1∏
h=1

αhj

)
︸ ︷︷ ︸

g1

1−(
∑

k 6=am
k
ij)

w = δaij =

 n∏
h=1

k∏
d=j+1

βhd

 ·(j−1∏
d=1

βid

)
·

(
i−1∏
h=1

βhj

)
︸ ︷︷ ︸

g2

1−(
∑

k 6=am
k
ij)

When Mallory is asked by Victor for a proof of correctness of his values, he starts by
asking all other bidders for proofs. Each of them answers with values λo = gzo1 and
µo = gzo2 . Mallory can then answer Victor with values λ =

∏
o λ
−1
o and µ =

∏
o µ
−1
o .

Victor then sends a challenge c, which Mallory simply forwards to the other bidders.
They answer with ro = zo + c · mo

ij , and Mallory sends r = c −
∑
o ro to Victor,

who can check that gr1 = λ · vc and gr2 = µ · wc. If the other bidders did their proofs
correctly, then Mallory’s proof will appear valid to Victor:

λ · vc =
∏
o

λ−1o ·
(
g
1−(

∑
om

o
ij)

1

)c
=
∏
o

g−zo1 · gc−c(
∑

om
o
ij)

1 = g
c−

∑
o(zo+cm

o
ij)

1

µ · wc =
∏
o

µ−1o ·
(
g
1−(

∑
om

o
ij)

2

)c
=
∏
o

g−zo2 · gc−c(
∑

om
o
ij)

2 = g
c−

∑
o(zo+cm

o
ij)

2

Hence in the case of interactive zero-knowledge proofs Mallory is able to modify the
values γaij and δaij as necessary, and even prove the correctness using the bidders. Hence
the modifications may stay undetected, and the seller will be able to break privacy.

Putting everything together, the attack works as follows:

1. The bidders set up the keys as described in the protocol.

2. They encrypt and publish their bids.

3. They compute γhij and δhij and publish them.

4. Mallory, who is a bidder himself, waits until all other bidders have published
their values. He then computes his values as defined above, and publishes them.

5. If he is asked for a proof, he can proceed as explained above.

6. The bidders (including Mallory) jointly decrypt the values.

7. The seller obtains all Y lij ’s. He can then compute the lij’s by testing at most n
possibilities.

14

8. Once he has all values, he can invert the function f as explained above.

9. He obtains all bidders bids.

Again, note that for all honest bidders, this execution will look normal, so they might
not even notice that an attack took place.

3.2 Attacking the general protocol architecture
The previous attack only works in the case of interactive proofs. If we switch to non-
interactive proofs, Mallory cannot ask the other bidders for proofs using a challenge of
his choice.

However even with non-interactive zero-knowledge proofs the protocol is still vul-
nerable to attacks on a targeted bidder’s privacy. For example, we can exploit the fact
that no message is authenticated. A malicious attacker in control of the network can
hence impersonate any bidder of his choice, as well as the seller. In particular, if he
wants to know Alice’s bid, he can proceed as follows:

1. Mallory impersonates all other bidders. He starts by creating keys on their behalf
and publishes the values yi and the corresponding proofs for all of them.

2. Alice also creates her secret keyshare and publishes ya together with a proof.

3. Alice and Mallory compute the public key y.

4. Alice encrypts her bid and publishes her αaj and βbj together with the proofs.

5. Mallory publishes αij = αaj and βij = βaj for all other bidders i and also
copies Alice’s proofs.

6. Alice and Mallory execute the computations described in the protocol and pub-
lish γaij and δaij .

7. They compute φaij and send it to the seller.

8. The seller publishes the φaij and computes the vaj .

Since all submitted bids are equal, the seller (which might also be impersonated by
Mallory) will obtain Alice’s bid as the winning price, hence it is not private any more.
This attack essentially simulates a whole instance of the protocol to make Alice indi-
rectly reveal a bid that was intended for another, probably real auction.

More generally, the lack of authentication allows Mallory to impersonate all of the
bidders if he can control the network. Then Mallory can choose the bids of all the
bidders, and therefore select the winner at a chosen price, breaking fairness.

15

4 Conclusion and Future Work
In this paper we analyzed the protocol by Brandt [1] and showed that the underlying
computations have a weakness. This weakness can be exploited by malicious bidders
if interactive zero-knowledge proofs are used. When non-interactive zero-knowledge
proofs are used, we also described a different attack which exploits the lack of authen-
tication in the protocol.

This shows that properties such as authentication are necessary to achieve other
properties that might appear to be unrelated at first sight (like for instance privacy).
It also makes it clear that there is a difference between computing the winner in a
fully private way, and ensuring privacy for the bidders: if we use modified inputs, we
can break privacy even if the computations themselves are secure. Additionally our
analysis highlights that interactive and non-interactive proofs have different properties,
and that this is an important choice in protocol design. All in all, the results underline
that designing protocols is a complex task where the devil hides in the details.

References
[1] Felix Brandt. How to obtain full privacy in auctions. International Journal of

Information Security, 5:201–216, 2006.

[2] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Pro-
ceedings of the 12th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’92, pages 89–105, London, UK, UK, 1993. Springer-
Verlag.

[3] Brian Curtis, Josef Pieprzyk, and Jan Seruga. An efficient eAuction protocol. In
ARES, pages 417–421. IEEE Computer Society, 2007.

[4] George Danezis. An anonymous auction protocol using ”money escrow” (tran-
script of discussion). In Bruce Christianson, Bruno Crispo, and Michael Roe, ed-
itors, Security Protocols Workshop, volume 2133 of Lecture Notes in Computer
Science, pages 223–233. Springer, 2000.

[5] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[6] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume
263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[7] Ari Juels and Michael Szydlo. A two-server, sealed-bid auction protocol. In
Matt Blaze, editor, Financial Cryptography, volume 2357 of Lecture Notes in
Computer Science, pages 72–86. Springer, 2002.

[8] Vijay Krishna. Auction Theory. Academic Press, 2002.

16

[9] Toru Nakanishi, Daisuke Yamamoto, and Yuji Sugiyama. Sealed-bid auctions
with efficient bids. In Jong In Lim and Dong Hoon Lee, editors, ICISC, volume
2971 of Lecture Notes in Computer Science, pages 230–244. Springer, 2003.

[10] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In ACM Conference on Electronic Commerce, pages 129–
139, 1999.

[11] Kazumasa Omote and Atsuko Miyaji. A practical English auction with one-time
registration. In Vijay Varadharajan and Yi Mu, editors, ACISP, volume 2119 of
Lecture Notes in Computer Science, pages 221–234. Springer, 2001.

[12] Kazumasa Omote and Atsuko Miyaji. A second-price sealed-bid auction with
the discriminant of the p0-th root. In Matt Blaze, editor, Financial Cryptography,
volume 2357 of Lecture Notes in Computer Science, pages 57–71. Springer, 2002.

[13] Kun Peng, Colin Boyd, and Ed Dawson. A multiplicative homomorphic sealed-
bid auction based on Goldwasser-Micali encryption. In Jianying Zhou, Javier
Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume 3650 of Lecture
Notes in Computer Science, pages 374–388. Springer, 2005.

[14] Kun Peng, Colin Boyd, and Ed Dawson. Sealed-bid micro auctions. In Simone
Fischer-Hübner, Kai Rannenberg, Louise Yngström, and Stefan Lindskog, edi-
tors, SEC, volume 201 of IFIP, pages 246–257. Springer, 2006.

[15] Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Non-interactive
auction scheme with strong privacy. In Pil Joong Lee and Chae Hoon Lim, edi-
tors, ICISC, volume 2587 of Lecture Notes in Computer Science, pages 407–420.
Springer, 2002.

[16] Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Robust, privacy
protecting and publicly verifiable sealed-bid auction. In Robert H. Deng, Sihan
Qing, Feng Bao, and Jianying Zhou, editors, ICICS, volume 2513 of Lecture
Notes in Computer Science, pages 147–159. Springer, 2002.

[17] Ahmad-Reza Sadeghi, Matthias Schunter, and Sandra Steinbrecher. Private auc-
tions with multiple rounds and multiple items. In DEXA Workshops, pages 423–
427. IEEE Computer Society, 2002.

[18] Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and
Yuliang Zheng, editors, Public Key Cryptography, volume 1751 of Lecture Notes
in Computer Science, pages 422–432. Springer, 2000.

[19] Frank Stajano and Ross J. Anderson. The cocaine auction protocol: On the power
of anonymous broadcast. In Andreas Pfitzmann, editor, Information Hiding, vol-
ume 1768 of Lecture Notes in Computer Science, pages 434–447. Springer, 1999.

[20] Kapali Viswanathan, Colin Boyd, and Ed Dawson. A three phased schema for
sealed bid auction system design. In Ed Dawson, Andrew Clark, and Colin Boyd,
editors, ACISP, volume 1841 of Lecture Notes in Computer Science, pages 412–
426. Springer, 2000.

17

	Introduction
	The Protocol
	Informal Description
	Mathematical Description
	Proof of equality of two discrete logs

	The Attacks
	Attacking the fully private computations
	Preliminaries.
	How to recover the bids when knowing the li j's.
	An efficient algorithm.
	How to obtain the li j's.

	Attacking the general protocol architecture

	Conclusion and Future Work

