
HAL Id: hal-00745245
https://hal.science/hal-00745245v1

Submitted on 11 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State space exploration of spatially organized
populations of agents

Antoine Dautriche, Jean-Louis Giavitto, Hanna Klaudel, Franck Pommereau

To cite this version:
Antoine Dautriche, Jean-Louis Giavitto, Hanna Klaudel, Franck Pommereau. State space explo-
ration of spatially organized populations of agents. 5th IEEE Conference on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW 2011), Oct 2011, Ann Arbor, MI, United States. pp.79-84,
�10.1109/SASOW.2011.9�. �hal-00745245�

https://hal.science/hal-00745245v1
https://hal.archives-ouvertes.fr

State Space Exploration of Spatially Organized

Populations of Agents

Antoine Dautriche∗, Jean-Louis Giavitto†, Hanna Klaudel∗ and Franck Pommereau∗

∗IBISC, University of Évry,
523 place des terrasses de l’Agora,

91000 Evry, France
email: [adautriche,klaudel,pommereau]@ibisc.fr

†IRCAM, UMR STMS 9912 CNRS,
1 place Igor Stravinsky,
75004 Paris, France

email: giavitto@ircam.fr

Abstract—In this paper, we aim at modeling and
analyzing the behavior of a spatial population of agents
through an exploration of their state space. Agents are
localized on a dynamic graph and they have internal
states. They interact with an environment. The evolu-
tion of the agents and of the environment is specified
by a set of rules. The framework is carefully designed
to enable the construction of a global state space that
can be automatically build and analyzed.

The formalism, called IRNs for integrated regulatory
networks, may be seen as an extension of logical regu-
latory networks (à la Thomas) developed in systems
biology with spatial information and generalized to
use arbitrary data values and update functions of this
values. This thus allows to model systems with multi-
ple agents that may be located on a varying spatial
structure, may store and update local information,
may depend on varying global information and may
communicate in their neighborhood. A model of such
a system can be defined as an IRN, and then analyzed
using model-checking to asses its properties.

This paper sketches the modeling framework and
its semantics. We show how IRN may be used for
the modeling of a population of simple agents, the
automatic analysis of various reachability properties
and the use of symmetries to reduce the size of the
state space.

I. Introduction

Several dedicated programming language have been de-
veloped in Spatial Computing to ease the handling of
spatial constraints and resources. However, at the best of
our knowledge, they have not been the target of automated
analysis like model-checking. Model-checking consists in
checking a given property against every possible execution
of a system model. Such a technique, even if it has
limitations, may help the understanding of the complex
networks of spatial interactions. In particular, the ability
to perform model-checking based analysis makes possible
the assessment of causality-related properties and reveal
rare events, which usually cannot be obtained through
simulation (that can observe only a limited subset of the
possible executions).
But this feature constrains the possible choices for

modeling. In particular, there should be a finite number of
possible system evolutions from a given configuration and

they should be enumerable. Moreover, each configuration
should be represented in a normalized form, allowing the
recognition of two identical configurations. For instance,
floating-point positions or attributes are not a possible
solution; instead, we shall use solutions based on discrete
(qualitative) and combinatorial structures.
This paper aims at proposing such a modeling frame-

work for a population of agent thought as a spatially dis-
tributed dynamical system. We are particularly interested
by the modeling of the dynamics of space: either because
the agents move or because the spatial organization is dy-
namic. The model integrates the behavior of autonomous
agents with their spatial behavior: their location and
their interaction. It takes into account variables specifying
information about the agents (their internal states) as well
as their spatial organization and the environment (global
variables). The evolution proceeds by the asynchronous
update of a variable.
The resulting framework, called IRNs for Integrated

Regulatory Networks, is illustrated on a simple example of
mobile agents. It was initially motivated by the modeling
of growing tissues at a cellular level in systems biology
and targeted applications like developmental processes,
invasive cancers, plant growth, etc. In these application
domains, agents are cells and the behavior of an agent
is controlled by a genetic regulatory network. One of the
motivations of this paper is to show that the techniques
developed for this application domain can be of a wider
use (in particular, they are not limited to model regulatory
processes).
The formalism proposed here encompasses the general-

ized logical formalism initially proposed by René Thomas
in the seventies [16], [17] by considering arbitrary finite
domains for the variables and arbitrary functions between
them to model the evolution of the variables. It extends
the proposal we made in [5] to integrate the handling
of spatial relationships, by: 1) including a more general
notion of observables and a more orthogonal management
of variables and measures, 2) considering general labeled
graph to model the spatial relationships, and 3) includ-
ing the handling of environmental factors which are not
necessarily under the direct control of the agent (e.g., a

temperature) but affect the model dynamics (e.g., a rate
of diffusion).

II. Integrated regulatory networks

A. Intuitive presentation

The notion of IRN is presented in several steps. First,
we consider a population of agents. Each agent is charac-
terized by an internal state. For the sake of simplicity, we
assume here that agents are homogeneous and exhibit the
same behavior. (This is not a limitation because one can
use a variable whose value allows to switch between various
distinct behaviors.) In [2], [5] agents are called modules.

The internal state of an agent is defined as a set of local
variables. Each local variable lvar is associated with an
update function with the same name that provides the
following information: its codomain defines the range of
values lvar can assume, the current value of lvar being
denoted as xlvar ; its arguments define the variables (and
measures, cf. below) lvar depends on.
The evolution of a local variable within an agent may

depend on the values of some local variables in other
agents. This is modeled as a local measure, allowing to
collect those values in the neighborhood of the evolving
agent. For example, a local measure may integrate the
concentrations of a regulatory component diffused toward
a cell from its neighbors according to the distances between
cells.
Next, to model spatial relations between agents, we

localize them on a topological collection. Topological col-
lections have been introduced in [6] to describe arbitrary
complex spatial structures that appear in biological sys-
tems [7] and other dynamical systems with a time varying
structure [4], [8]. For the simplicity of the presentation, we
consider in this paper that the neighborhood relationships
between agents are represented by a partially labeled graph.
For example, the graph may reflect the spatial arrange-
ment of cells in a tissue, or the positions of agents in a
building. Some vertexes of this graph are agent identifiers
and each such vertex and its associated label corresponds
to a given agent. The other vertexes are “empty locations”
(places in space where there is no agent). They do not have
labels. Two agents i and j are neighbors if there is an edge
between the vertexes labeled i and j.
Topological collections are used to implement a database

that records the neighborhood relationships, which can
be queried and updated efficiently. So, local variables
become bindings attached to the vertexes of the collection.
Similarly, local measures taken from an agent i become
computations of a single value from (possibly several)
multisets of pairs (ℓj , xlvar j) where ℓj is the label of the arc
between i and j and xlvar j is the value of a local variable
lvar of an agent j.
The whole graph may be labeled itself, yielding global

variables. Global variables may reflect environmental pa-
rameters like temperature or pressure. Moreover, global
measures are obtained by computing a value from an

observation of the whole graph. For example, a global
measure may be the number of cells in the tissue.
Finally, we introduce graph updates to allow for evo-

lutions of the structure of the graph. They correspond to
spatial modifications in the system, like agents movements,
creation or the disappearance of agents, but also transfor-
mations of the underlying space. However, we make the
assumption that a graph update is triggered from some
agent. Note that this is not a limitation because a special
agent may be used to model the environment, i.e., to
trigger “spontaneous” changes.
The dependencies between variables, measures and

graph are subject to some constraints which are explained
below.

B. A Graphical Syntax

To support intuition, IRNs are depicted using a graph-
ical notation inspired by that largely used to describe
regulatory networks in systems biology. Beware not to
confuse the graph of an IRN with the graph used to
represent the spatial relationships.
In the graphical representation of an IRN, the vertexes

are variables or measures and an arc from one variable A

to a variable B indicates that the value of B depends on
the value of A. The graphical conventions are described in
Figure 1. The shape and style (dotted or plain line) of the
components denote their nature while the arcs indicate a
potential influence (resulting in corresponding arguments
in the function). Note that influences may be arbitrary
and are not limited to inhibition or activation, as in logical
regulatory networks.
The constraints about the arcs are defined consistently

with the arguments allowed for each kind of update func-
tion. The rationale is as follows: local variables and mea-
sures can depend both on local and global information that
is available to every agent; global variables or measures

lv
local

variable

lm
local

measure

gvglobal
variable

gmglobal
measure

gugraph
update

✓ ✓ ✓ ✓ –

✓ ✓ ✓ ✓ –

– – ✓ ✓ –

– – ✓ ✓ –

✓ ✓ ✓ ✓ –

Fig. 1. Graphical conventions: measures are depicted in dotted lines;
local objects are depicted by round nodes while global objects are
depicted by square nodes. The check marks indicate whether an arc
is allowed (✓) or not (–) from each node type in the top row toward
the node types in the left column.

occur globally in the system and so cannot depend on
any local information; graph updates occur at some given
agent and thus can depend on local or global information,
but no function can depend on a graph update because
it does not compute any value but instead transforms the
spatial structure. Moreover, we assume that any variable
may depend on its current value, so we do not need to
draw self-loops in the graphical representation.
Finally, we require that an IRN is well-formed, in the

sense that there is no mutual recursion between measures
(cycle between measure nodes) and all functions are total
on their finite domain and computable.

C. The Little Horses Game

In the rest of this paper, we illustrate the use of the IRN
formalism with the modeling and the analysis of a modified
version of a children game called The Little Horses. We
consider this example for its pedagogical value. It does
not involve any transformation of space but only agent
destructions and movements, which is enough to illustrate
the expressiveness of our approach.
This game is played on a board. We consider here a one-

directional discrete ring (a finite set of slots) on which the
horses (the agents) move following a predefined direction.
The behavior of a horse is specified by a reactive systems
similar to the animat approach developed by P. Maes et
al. [11]. Each horse evolves according to the IRN depicted
in the right of Fig. 2:

• E is a local variable representing the energy level of
the horse, ranging in {0, 1, 2}.

• A is a local variable representing the appetite of the
horse, ranging in {true, false}. It is hungry (xA = true)
when its energy is below 2 and then it is kept busy
eating. The horse stops to be hungry (xA = false)
when its energy level reach 2.

• F is a global measure whose value indicates the
occupation of the next two slots in the ring. F is global
instead of local because a local measure queries the
variables of the agents in the neighborhood of another
one. Here we are not interested in these values, but
only in the presence of agents.

• J is a graph update that represents a jump of the
horse i from a slot to a next one. To do so, the local
state must be such that xE = 2 (enough energy) and
xA = false (not busy eating), then there are several
cases:

– if the next slot is free, the horse simply jumps
there and its energy is dropped to xE = 1;

– if the next slot is occupied by a horse j whose
energy is 0, then i is allowed to jump where j
is currently located; then j is removed from the
board and the energy of i is dropped to xE = 1.

– if the next slot is occupied by a horse j whose
energy is not 0 and the slot next to j is free,
then i is allowed to jump toward the slot next to
j and its energy is dropped to xE = 0;

– in any other case, graph update J cannot occur.

To obtain information about the surrounding in order
to perform J or not, the horse needs the global
measure F to know which one among the two next
slots is free (if any) and it needs the local measure
E1 , allowing to sense the energy of a horse in the
next slot.

The corresponding IRN is graphically depicted in Fig. 2
(left and right). There is no global variable in this model.
In some version of the game, the direction of the movement
changes each time a horse is removed. An example of
possible global variable would be the direction of the
movements.

D. Formal specification of the framework

The IRN is specified by the finite set of its global and
local variables with their corresponding variable update
functions, its local and global measures definitions, and
its graph update functions. A state of an IRN is defined
by a binding λ of its global variables and a topological
collection C that will define, in particular, the bindings
for the vertexes (local variables of the agent located on
this vertex) and the edges.
1) Variables, Measures and Update Functions: We as-

sume that IRN variables range over finite sets of values
and may be updated using variable update functions.
For each global or local variable var , there is a unique
update function that computes the new value of var and
whose allowed parameters are defined consistently with
the constraints given in Figure 1 (e.g., a global variable
update may take as parameters only global variables or
global measures as shown in the corresponding row).
A local variable has a value in each agent i in C, which

is computed by an update function with the same name
(common to all agents). For example, in the Little Horses
modeling, local variables A and E may be specified by
giving their update functions:

A(xE i) ∈ {false, true}
xE i 7−→ (xE i < 2)

E (xE i, xAi) ∈ {0, 1, 2}
xE i, xAi 7−→ if xAi ∧ (xE i < 2) then xE i + 1 else xE i

where xAi is the value of the local variable A for agent i.
Measures are obtained from observations of the topolog-

ical collection C. We distinguish global measures that are
obtained by observing C globally, and local measures that
are obtained by observing an agent i and its neighborhood
in C.
A global measure is defined by a function (with the

same name) that returns a value in a finite set, taking as
parameters C and the binding λ for the global variables,
and possibly other parameters as allowed by Figure 1. For
example, in the Little Horses modeling, global measure F

has the following signature:

F (C, λ, i) ∈ {Slot1, Slot2,NoSlot}

E A

J

F

E1

E A E AE A

J

F

E1

Fig. 2. Left: The IRN that describe the behavior of a horse. Middle: A possible spatial organisation of the Little Horses board, with a 9-slots
ring and 3 consecutive horses on it. Note that each slot has two neighbors, the next slot on the ring and the second next. Right: Graphical
representation of the IRN specification of Little Horses; in the upper level, global measure F , local measure E1 and graph update J; in the
lover level, local variables A and E ; in gray, a partial view of a the ring C with three occupied vertexes (so we represent the corresponding
local variables; note that when a slot is empty, there is no associated local variables: local variables are attached to agent not to vertexes).

and returns Slot1 if the slot next to the slot i is free, Slot2
if the slot i+ 1 next to i is occupied and the slot i+ 2 is
free and NoSlot elsewhere.
A local measure lm is defined using a function with the

same name that returns a value from a finite set, taking
as parameters the values of lvar in all the neighbors of i
for each local variable lvar depends on, and possibly other
parameters as allowed by Figure 1. These values for each
such lvar , denoted by xlvar@i, are collected as a multiset of
pairs (ℓj , xlvar j), where ℓj is the label of the edge between
i and j in C. In the Little Horse example local measure E

may be specified as:

E1(xE@i) ∈ {0, 1, 2} : xE@i 7−→ xE (i+1)

returning the energy level of the neighbor (if this has a
meaning, that is, if the slot next to i is occupied by a
horse). Here the function simply selects an element in the
multiset. But using a multiset to collect the local variables
of the agent in the neighborhood enables the computation
of aggregate measures, even if the neighborhood is non-
uniform or dynamic.
A graph update is a function that takes as parameters a

topological collection C, a binding λ for global variables,
and an agent identifier i. It either returns an empty set
when the application conditions have not been met, or
computes a set of new collections {C1, . . . , Cn} (n > 0).
In terms of topological collections, a graph update corre-
sponds to a set of transformations.
2) State of an IRN and Dynamics: A state of an IRN is

represented by a pair (λ,C) where λ is a binding assigning
values to the global variables, and C is a topological
collection that records the graph structure and the value of
the local variables as bindings attached to the vertexes. A
topological collection is a function from vertexes and edges
to values. The local variable of an agent are gathered in a
record. In other words, we have xgvar = λ(gvar) for a global
variable gvar and xlvar i = C(i).lvar for a local variable lvar
and a vertex i.
Schematically, a state (λ,C) of an IRN may evolve to

another one (λ′, C ′) in one of the following manners, if

the corresponding application conditions are met and if
(λ′, C ′) 6= (λ,C):

• by applying a graph update gup to the current topo-
logical collection for an agent i: the resulting topolog-
ical collection may be any C ′ returned by gup(C, i),
and the global variables are unchanged λ′

df

= λ;
• by applying a global variable update: the resulting

topological collection is unchanged C ′
df

= C, and
binding λ′ is λ updated for some global variable gvar

such that λ′(gvar)
df

= gvar(· · ·);
• by applying a local variable update on an agent

i of C: the resulting topological collection C ′ is
C where lvar at agent i has been updated, i.e.,
C ′(i)(lvar)

df

= lvar(· · ·) and C ′(i′)(v)
df

= C(i′)(v) for
every (i′, v) 6= (i, lvar), and the global variables are
unchanged λ′

df

= λ.

Given an initial state (λ0, C0), and the evolution rules
defined above, one may build a transition system −→
describing the dynamics of the IRN.

III. Building an IRN State Space and

Checking its Properties

We have implemented a tool for the automatic building
of the state graph reachable from a given state according
to the IRN dynamics. This prototype allows an exhaustive
exploration of the state space of the IRN.
This tool is composed of two parts: one part is the

coding in MGS of all the update functions. MGS [4],
[13] is an experimental spatial programming language
implementing the concepts of topological collections and
their transformations. For example, the rule:

{appetite=0, energy=2} as b, u:emptyslot

/ (b == i)

−→ u, b+{energy=1};

specify one case of the graph update J. The rule takes the
abstract form x, y/cond → exp. The left hand side matches
two labeled vertexes x and y in the graph that are linked by
and edge (this is specified by the comma between x and y).
If they satisfy the condition cond , the labels are replaced

by the labels computed in the right hand side. The pattern
{appetite=0, energy=2} as b matches a record with at
least two fields appetite and energy respectively with
value 0 and 2. The entire record is referred as b. The label
referred by u must be of a predefined type emptyslot

representing an empty location. The expression b denotes
the vertex labeled by b. So the entire pattern specify a
configuration where a horse with enough energy can jump
to the next slot which is empty. The right hand side
describes the labels resulting from this jump. The notation
r + r’ denotes the asymmetric merge of records: the fields
of r + r’ are the fields of r and r’ where the value of the
field of r have been updated by those of r’.

The second part of the tool is a driver (written in
Python) that triggers the computation of all the states
s′ satisfying the relation s −→ s′ for a given state s.
By iterating this procedure, we can build the orbit of
a state (the states s′ such that s →∗ s′) and more
generally, the graph G corresponding to the transition
system. The driver is generic: it takes the signature of
the update functions of an IRN and the corresponding
MGS implementation and builds the states reachable from
a given one.
Several reachability properties can be checked using

standard graph algorithms on G. A state s′ is reachable
from a given state s if there is path from s to s′ in G. A
steady state is a state without output edges. A garden of
Eden is a partition of G in two components with no edge
going from the second component to the first (the garden
of Eden can only be leaved). The strongly connected com-
ponents with no output edges, are the bassins of attraction
of the system. If the transition system is deterministic they
are also the limit cycles of the system, etc.

IV. Reducing the State Space Size

using Symmetries

One main shortcoming of this approach is the (unavoid-
able) explosion of the state space. Several techniques can
be used to limit this explosion. We sketch here a method
relying on the detection of symmetric executions.
An equivalence relation ≃ is a bisimulation for the

relation −→ iff (s1 ≃ s2) and s1 → s′1 imply that there
exists s′2 such that s2 → s′2 and s′1 ≃ s′2. If ≃ is a
bisimulation for −→, then reachability properties can be
checked on the reduced system −→ / ≃.

Here we consider equivalence relations triggered by
automorphism of topological collection (that is, in the
context of this paper, automorphism of labeled graphs).
For example, for the Little Horses, it is intuitive that
configurations that are obtained by a rotation of the ring
must be equivalent (they have all the same future up to a
rotation). Checking for graph automorphism is an heavy
task, but note that the automorphism applies on the board
(which has a limited size), not on the state space (which
grows exponentially with the size of the board).
We have devised a method to check “on the fly” that

agents
states transitions stable

full reduced full reduced states

1 21 5 21 5 0
2 199 28 358 55 0
3 981 214 2446 554 0
4 2828 526 8638 1669 0
5 4345 629 14616 2220 1

Fig. 3. Number of states and transitions in the full and reduced
state-space of the Little Horses IRN, depending on the number of
agents in the system (for a fixed ring of 5 slots). Full and reduced
state-spaces have the same number of stable states. When there are
5 agents, a stable state is found, corresponding to the case where
no move is possible. In every other case, there always exists at
least one free slot so that moves are always possible. In this latter
situation, there exists attractors in the system, which can be checked
by searching the terminal strongly connected components of the
state-space.

two states are equivalent. When a new state s′ is built,
the driver checks that it does not exists already an equiv-
alent state s in the current reachability graph G. This
is done by first converting s′ into a graph gs′ and then
checking the existence of an automorphism with the graph
gs (the existence test is implemented in MGS using the
NAUTY library [12]). The graph gs associated to a state
s corresponds to the graph of the underlying topological
collection, labeled consistently with the values of local
variables. Fig. 3 shows how handling symmetries reduces
the size of the state space for various instances of the Little
Horses example.

V. Related and future works

In this paper, we advocate the use of automated model-
checking techniques for a class of multi-agent systems tak-
ing into account dynamic spatial relationships. Notice in
particular that in our proposal, communication is possible
through two ways: on the one hand, data local to each
agent may be“sensed” from its neighborhood; on the other
hand, agents may trigger transformations of the spatial
structure around them. In the latter case, and agent may
relabel its attached edges to “send” information to its
neighbors.
We have also presented preliminary results for the auto-

mated building of the state space and we have illustrated
the approach on a toy example, showing in particular the
benefits of symmetries reduction.
Discrete algebraic formalisms like process algebras or

Petri nets are relevant for the modeling of multi-agent
systems because automated tools can be used to help
both the modeling and the systematic analysis of system
behaviors. Some process algebras (e.g., used to study
mobility or variants of π-calculus used for biological mod-
eling) include a notion of localization but often the spatial
relationships are not explicitly exposed (the algebra of
locations is encoded into identifiers) or too limited (nesting
structures). The IRN framework presented in this paper

relies on topological collections and topological collection
rewriting to manage spatial information. This approach
has been validated in many applications and for a wide
variety of spatial representations. The MGS language is
used to implement the underlying computation under the
supervision of a generic driver. A complete description
of the driver is given in [3]. So, with respect to other
formalisms, IRNs provide the modeler with an explicit
and powerful tool to represent and manipulate spatial
information. This is typically strongly either abstracted
(see, e.g., “membranes” in P-systems [14]) or captured by a
geometrical approach (see, e.g., [1], [15] for surveys) which
is not suitable for model-checking.
The IRN formalism may be enriched and extended in

several directions. Natural extensions to many different
kinds of agents may easily be provided. Future works will
provide a generalized formal definition of the framework
presented in the paper. We also intend to run case studies
in order to assess the relevance of our proposal. In par-
ticular, running larger examples will allow to assess the
scalability of the method with respect to model size and
number of agents, as well as the efficiency of symmetry
reductions to reduce state space explosion.
Concerning spatial transformations, we focus here on

labeled graphs. However, the notions of topological collec-
tion and topological rewriting are more general and may
handle higher dimensional objects, a feature relevant in a
lot of application areas [18].
Another direction of future research consists in relaxing

some constraints concerning the definition of the dynam-
ics; for example, to allow alternative update strategies or
infinite state spaces. Concerning the former, the current
framework defines the dynamics of the system using an
asynchronous strategy. This approach is relevant, e.g.,
for regulation networks but may be cumbersome in other
application domains. The design space of update strategy
is largely open, from asynchronous to synchronous and
from deterministic to non-deterministic ones. In particu-
lar, it is usually observed that using a synchronous update
strategy results in smaller state-spaces (but with states
that are not reachable using asynchronous updates), which
may be another direction to achieve better scalability. For
the latter research direction, the actual IRN specification
restrictions ensure finiteness of the state space, but may
become artificial in practice. Some of these restrictions
may be relaxed by resorting to abstraction and specific
reduction techniques, like those in [9], [10], which originally
have been designed for systems with dynamic process
creation.

Acknowledgements: This work is partially supported by
the ANR research projects AutoChem, Calamar and Syn-
BioTIC.

References

[1] Arne T. Bittig and Adelinde M. Uhrmacher. Spatial modeling in
cell biology at multiple levels. InWinter Simulation Conference,
pages 608–619, 2010.

[2] C. Chaouiya, H. Klaudel, and F. Pommereau. A modular,
qualitative modelling of regulatory networks using Petri nets,
chapter 12 of Modeling in Systems Biology – the Petri Net
Approach. Springer, 2010.

[3] Antoine Dautriche. Construction de l’espace des états d’un IRN
et techniques de réduction. Master’s thesis, University of Evry,
Master MOPS, July 2011. (in French).

[4] J.-L. Giavitto. Topological collections, transformations and
their application to the modeling and the simulation of dynam-
ical systems. In 14th International Conference on Rewriting
Technics and Applications (RTA’03), volume 2706 of LNCS,
pages 208–233, Valencia, June 2003. Springer.

[5] J.-L. Giavitto, H. Klaudel, and F. Pommereau. Qualitative mod-
elling and analysis of regulations in multi-cellular systems using
petri nets and topological collections. In Proceedings Fourth
Workshop on Workshop on Membrane Computing and Biologi-
cally Inspired Process Calculi (MeCBIC 2010), volume 40. Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS),
23-24 August 2010. ArXiv e-prints 1011.0498.

[6] J.-L. Giavitto and O. Michel. The topological structures of
membrane computing. Fundamenta Informaticae, 49:107–129,
2002.

[7] J.-L. Giavitto and O. Michel. Modeling the topological organi-
zation of cellular processes. BioSystems, 70:149–163, 2003.

[8] J.-L. Giavitto and A. Spicher. Topological rewriting and the
geometrization of programming. Physica D: Nonlinear Phenom-
ena, 237(9):1302 – 1314, 2008. Novel Computing Paradigms:
Quo Vadis?

[9] H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau. An
approach to state space reduction for systems with dynamic
process creation. In ISCIS’09, IEEE digital library. IEEE, 2009.

[10] H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau. State space
reduction for dynamic process creation. SACS, 20, 2010.

[11] Patti Maes. A bottom-up mechanism for behavior selection in
an artificial creature. In Bradford Book, editor, proceedings of
the first international conference on simulation of adaptative
behavior. MIT Press, 1991.

[12] B. D. McKay. Nauty version 2.2. http://cs.anu.edu.au/people/
bdm/nauty/, 1994–2003.

[13] O. Michel, J.-L. Giavitto, J. Cohen, and A. Spicher. The MGS
homepage. http://mgs.spatial-computing.org.

[14] G. Paun. Computing with membranes. Journal of Computer
and System Sciences, 61(1), 2000.

[15] K. Takahashi, S. N. V. Arjunan, and M. Tomita. Space in
systems biology of signaling pathways - towards intracellular
molecular crowding in silico. FEBS Letters, 579(8):1783 – 1788,
2005.

[16] R. Thomas. Boolean formalization of genetic control circuits.
J. Theor. Biol., 42:563–85, 1973.

[17] R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour
of biological regulatory networks–I. Biological role of feedback
loops and practical use of the concept of the loop-characteristic
state. Bull. Math. Biol., 57:247–76, 1995.

[18] E. Tonti. On the mathematical structure of a large class of physi-
cial theories. Rendidiconti della Academia Nazionale dei Lincei,
52(fasc. 1):48–56, Jan. 1972. Scienze fisiche, matematiche et
naturali, Serie VIII.

