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Inverse scattering at fixed energy for the multidimensional Newton equation in short range radial potentials

 we obtain a uniqueness result when B is assumed to be zero in a neighborhood of infinity and V is assumed to be spherically symmetric in a neighborhood of infinity.

Introduction

Consider the following second order differential equation that is the multidimensional nonrelativistic Newton equation with electromagnetic field ẍ(t) = F (x(t), ẋ(t)) := -∇V (x(t)) + B(x(t)) ẋ(t), (1.1) where x(t) ∈ R n , ẋ(t) = dx dt (t). In this equation we assume that V ∈ C 2 (R n , R) and for any x ∈ R n , B(x) is a n × n antisymmetric matrix with elements B i,k (x), B i,k ∈ C 1 (R n , R), which satisfy

∂B i,k ∂x l (x) + ∂B l,i ∂x k (x) + ∂B k,l ∂x i (x) = 0, (1.2) 
for x = (x 1 , . . . , x n ) ∈ R n and for l, i, k = 1 . . . n.

For n = 3, the equation (1.1) is the equation of motion in R n of a nonrelativistic particle of mass m = 1 and charge e = 1 in an external and static electromagnetic field described by (V, B) (see, for example, [START_REF] Landau | The Classical Theory of Fields Pergamon[END_REF]Section 17]).

For the electromagnetic field the function V is an electric potential and B is the magnetic field. Then x denotes the position of the particle, ẋ denotes its velocity, ẍ denotes its acceleration and t denotes the time.

For the equation (1.1) the energy

E = 1 2 | ẋ(t)| 2 + V (x(t)) (1.3)
is an integral of motion.

We assume that the electromagnetic coefficients V and B are short range. More precisely we assume that (V, B) satisfies the following conditions

|∂ j 1 x V (x)| ≤ β |j 1 | (1 + |x|) -α-|j 1 | , x ∈ R n , (1.4 
)

|∂ j 2 x B i,k (x)| ≤ β |j 2 |+1 (1 + |x|) -α-1-|j 2 | , x ∈ R n , (1.5) 
for |j 1 | ≤ 2, |j 2 | ≤ 1, i, k = 1 . . . n and some α > 1 (here j l is the multiindex j l = (j l,1 , . . . , j l,n ) ∈ (N ∪ {0}) n , |j l | = n k=1 j l,k and β |j l | are positive real constants). We denote by . the norm on the short range electromagnetic fields defined by

(V, B) = sup x∈R n , j 1 ∈N n |j 1 |≤2 (1 + |x|) α+|j 1 | |∂ j 1 x V (x)| (1.6) 
+ sup

x∈R n , j 2 ∈N n |j 2 |≤1, i,k=1...n

(1 + |x|) α+1+|j 2 | |∂ j 2
x B i,k (x)| .

Under conditions (1.4)-(1.5), we have the following properties (see, for example, [START_REF] Simon | Wave operators for classical particle scattering[END_REF] and [START_REF] Loss | Scattering of particles by long-range magnetic fields[END_REF] where classical scattering of particles in a short-range electric field and in a long-range magnetic field are studied respectively): for any (v -, x -) ∈ R n × R n , v -= 0, the equation (1.1) has a unique solution x ∈ C 2 (R, R n ) such that

x(t) = tv -+ x -+ y -(t), (1.7) 
where | ẏ-(t)|+|y -(t)| → 0, as t → -∞; in addition for almost any (v -, x -) ∈ R n ×R n , v -= 0, the unique solution x(t) of equation (1.1) that satisfies (1.7) also satisfies the following asymptotics

x(t) = tv + + x + + y + (t), (1.8) 
where

v + = 0, | ẏ+ (t)| + |y + (t)| → 0, as t → +∞. At fixed energy E > 0, we denote by S 1 E the set {v -∈ R n | |v -| 2 = 2E}
and we denote by D(S E ) the set of (v -, x -) ∈ S 1 E × R n for which the unique solution x(t) of equation (1.1) that satisfies (1.7) also satisfies (1.8). We have that

D(S E ) is an open set of S 1 E × R n and Mes((S 1 E × R n )\D(S E )) = 0 for the Lebesgue measure on S 1 E × R n . The map S E : D(S E ) → S 1 E × R n given by the formula S E (v -, x -) = (v + , x + ), (1.9) 
is called the scattering map at fixed energy E > 0 for the equation (1.1). Note that if V (x) ≡ 0 and B(x

) ≡ 0, then v + = v -, x + = x -, (v -, x -) ∈ R n × R n , v -= 0.
In this paper we consider the following inverse scattering problem at fixed energy

Given S E at fixed energy E > 0, find (V, B).

(1.10)

Note that using the conservation of energy we obtain that if E < sup R n V then S E does not determine uniquely V .

We mention results on Problem (1.10). When B ≡ 0 and V is assumed to be spherically symmetric and monotonuous decreasing in |x| (V is not assumed to be short range), uniqueness results for Problem (1.10) were obtained in [START_REF] Firsov | Determination of the force acting between atoms via differential effective elastic cross section[END_REF][START_REF] Keller | Determination of the potential front scattering data[END_REF]. The scattering map S E also uniquely determines (V, B) at fixed and sufficiently large energy when (V, B) is assumed to be compactly supported inside a fixed domain of R n (see [START_REF] Novikov | Small angle scattering and X-ray transform in classical mechanics[END_REF] for B ≡ 0 and see [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]). This latter result relies on a uniqueness result for an inverse boundary kinematic problem for equation (1.1) (see [START_REF] Gerver | Inverse problem of mechanics at high energies[END_REF][START_REF] Novikov | Small angle scattering and X-ray transform in classical mechanics[END_REF] when B ≡ 0, and see [START_REF] Dairbekov | The boundary rigidity problem in the presence of a magnetic field[END_REF][START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]) and connection between this boundary value problem and the inverse scattering problem on R n (see [START_REF] Novikov | Small angle scattering and X-ray transform in classical mechanics[END_REF] for B ≡ 0, and see [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]).

To our knowledge it is still unknown whether the scattering map at fixed and sufficiently large energy uniquely determine the electromagnetic field under the regularity and short range conditions (1.4) and (1.5) (see [16, Conjecture B] for B ≡ 0).

In this paper we propose a generalization of results in [START_REF] Firsov | Determination of the force acting between atoms via differential effective elastic cross section[END_REF][START_REF] Keller | Determination of the potential front scattering data[END_REF] for the short range case where no decreasing monotonicity is assumed. More precisely we have the following uniqueness result.

Theorem 1.1. Let (λ, R) ∈ (0, +∞) 2 and let (V, B) be an electromagnetic field that satisfies the assumptions (1.2), (1.4) and (1.5) and (V, B) ≤ λ. Assume that B ≡ 0 outside B(0, R) and that V is spherical symmetric outside B(0, R). Then there exists a positive constant E(λ, R) (which does not depend on (V, B)) so that the scattering map at fixed energy E > E(λ, R) uniquely determines (V, B) on R n .

The proof of Theorem 1.1 is obtained by recovering first the electric potential in a neighborhood of infinity using Firsov or Keller-Kay-Shmoys' result [START_REF] Firsov | Determination of the force acting between atoms via differential effective elastic cross section[END_REF][START_REF] Keller | Determination of the potential front scattering data[END_REF] and then by recovering the electromagnetic field on R n using the following proposition which generalizes [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]Theorem 7.2]. Proposition 1.2. Let (λ, R) ∈ (0, +∞) 2 and let (V, B) be an electromagnetic field that satisfies the assumptions (1.2), (1.4) and (1.5) and (V, B) ≤ λ. Assume that (V, B) is known outside B(0, R). Then there exists a positive constant E(λ, R) so that the scattering map at fixed energy E > E(λ, R) uniquely determines (V, B) on R n .

Concerning the inverse scattering problem for the classical multidimensional nonrelativistic Newton equation at high energies and the inverse scattering problem for a particle in electromagnetic field (with B ≡ 0 or B ≡ 0) in quantum mechanics, we refer the reader to [START_REF] Gerver | Inverse problem of mechanics at high energies[END_REF][START_REF] Novikov | Small angle scattering and X-ray transform in classical mechanics[END_REF][START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF][START_REF] Jollivet | On inverse scattering at high energies for the multidimensional nonrelativistic Newton equation in electromagnetic field[END_REF] and references therein.

Concerning the inverse problem for (1.1) in the one-dimensional case, we can mention the works [START_REF] Abel | Auflösung einer mechanischen Aufgabe[END_REF][START_REF] Keller | Inverse problems[END_REF][START_REF] Astaburuaga | The direct and inverse problem in Newtonian Scattering[END_REF].

The structure of the paper is as follows. In section 2 we prove Proposition 1.2. In section 3 we prove Theorem 1.1. In section 4 we provide similar results for the relativistic multidimensional Newton equation with electromagnetic field.

2 Proof of Proposition 1. We will use the standard Lemma 2.1 on nontrapped solutions of equation (1.1). For sake of consistency its proof is given in Appendix.

Lemma 2.1. Let E > 0 and let R E and C E be defined by

C E := 2E (nβ 1 + 2β 0 )(1 + 2(E + β 0 )) , (2.1) 
sup

|x|≥R E (1 + |x|) -α ≤ C E 2 . (2.2) If x(t) is a solution of equation (1.1) of energy E such that |x(0)| < R E and if there exists a time T > 0 such that x(T ) = R E then |x(t)| 2 ≥ R 2 E + E|t -T | 2 for t ∈ (T, +∞), (2.3) 
and there exists a unique

(x + , v + ) ∈ R n × S 1 E so that x(t) = x + + tv + + y + (t), t ∈ R, where |y + (t)| + | ẏ+ (t)| → 0 as t → +∞.
Note that C E → +∞ as E → +∞ while sup |x|≥R (1+|x|) -α is a decreasing function of R that goes to 0 as R → +∞. Note that Lemma 2.1 is stated for positive times t but a similar result hold for negative times t.

The inverse kinematic problem for equation (1.1)

We first formulate the inverse kinematic problem for equation (1.1) inside a ball of center 0 and radius R > 0 denoted by B(0, R). For (m, l) ∈ (N\{0}) 2 and for a function

f from B(0, R) to R m of class C l we define the C l norm of f by f C l ,R = sup x∈B(0,R), α∈N n |α|≤l |∂ α x f (x)|.
We denote by ∂B(0, R) the boundary of the ball B(0, R).

Then we recall that there exists a constant

E(R, V C 2 ,R , B C 1 ,R ) so that at fixed energy E > E(R, V C 2 ,R , B C 1 ,R
) the solutions x of equation (1.1) in B(0, R) at energy E have the following properties (see for example [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]):

for each solution x(t) there are t 1 , t 2 ∈ R, t 1 < t 2 , such that x ∈ C 3 ([t 1 , t 2 ], R n ), (x(t 1 ), x(t 2 )) ∈ ∂B(0, R) 2 , x(t) ∈ B(0, R) for t ∈]t 1 , t 2 [, x(s 1 ) = x(s 2 ) for s 1 , s 2 ∈ [t 1 , t 2 ], s 1 = s 2 ;
(2.4) and for any two distinct points q 0 , q ∈ ∂B(0, R), there is one and only one solution x(t) = x(t, E, q 0 , q) such that x(0) = q 0 , x(s) = q for some s > 0.

(2.5) This is closely related to the property that at fixed and sufficiently large energy E, the compact set B(0, R) endowed with the riemannian metric E -V (x)|dx| and the magnetic field defined by B is simple (see [START_REF] Dairbekov | The boundary rigidity problem in the presence of a magnetic field[END_REF]). For (q 0 , q) two distinct points of ∂B(0, R) we denote by s(E, q 0 , q) the time at which x(t, E, q 0 , q) reaches q from q 0 and we denote by k 0 (E, q 0 , q) the velocity vector ẋ(0, E, q 0 , q) and by k(E, q 0 , q) the velocity vector ẋ(s(E, q 0 , q), E, q 0 , q). The inverse kinematic problem is then Given k(E, q 0 , q), k 0 (E, q 0 , q) for all q 0 , q ∈ ∂B(0, R), q 0 = q, at fixed sufficiently large energy E, find (V, B) in B(0, R).

The data k 0 (E, q 0 , q), k(E, q 0 , q), q 0 , q ∈ ∂B(0, R), q 0 = q, are the boundary value data of the inverse kinematic problem, and we recall the following result.

Lemma 2.2 (see, for example, Theorem 7.1 in [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]).

At fixed E > E( V C 2 ,R , B C 1 ,R , R
), the boundary data k 0 (E, q 0 , q), (q 0 , q) ∈ ∂B(0, R) × ∂B(0, R), q 0 = q, uniquely determine (V, B) in B(0, R).

Relation between boundary data of the inverse

kinematic problem and the scattering map S E

We will prove that at fixed and sufficiently large energy E the scattering map S E determines the boundary data k 0 (E, q 0 , q), k(E, q 0 , q), q 0 , q ∈ ∂B(0, R), q 0 = q. This will prove that S E uniquely determines (V, B) in B(0, R), which will prove Proposition 1.2. Let R > 0 and λ > 0 be such that (V, B) are known outside B(0, R) and

(V, B) < λ. Note that max( V C 2 ,R , B C 1 ,R ) ≤ (V, B) < λ.
Thus there exists a constant E 0 (λ, R) such that at fixed energy E > E 0 (λ, R) solutions x(t) of equation (1.1) in B(0, R) at energy E have properties (2.4) and (2.5) and such that at fixed E > E 0 (λ, R) the boundary data k 0 (E, q 0 , q), (q 0 , q) ∈ ∂B(0, R) × ∂B(0, R), q 0 = q, uniquely determine (V, B) in B(0, R). Then using that the constant C E → +∞ as E → +∞ in Lemma 2.1 we obtain that there exists

E 1 (λ, R) such that for E > E 1 (λ, R) we have sup |x|≥R (1+|x|) -α ≤ C E 2 so that R E can be replaced by R in Lemma 2.1. Set E(λ, R) = max(E 0 (λ, R), E 1 (λ, R)) and fix E > E(λ, R). Let (x -, v -) ∈ D(S E ) and (v + , x + ) = S E (v -, x -). We denote by x(., v -, x -) the solution of equation (1.1) that satisfies (1.7) (and (1.8)). Set t -(x -, v -) = sup{t ∈ R | |x(s, x -, v -)| ≥ R, s ∈ (-∞, t)}, t + (x -, v -) = inf{t ∈ R | |x(s, x -, v -)| ≥ R, s ∈ (t, +∞)}.
Since (V, B) is known outside B(0, R) we can solve equation (1.1) with initial conditions (1.7) and (1.8) and we obtain that x(., x -, v -) is known on

(-∞, t -(x -, v -)] ∪ [t + (x -, v -), ∞). If x(s, x -, v -) ∈ B(0, R) for any s ∈ R, then t ± (x -, v -) = ∓∞. If there exists s ∈ R such that x(s, x -, v -) ∈ B(0, R) then set q 0 = x(t -(x -, v -)), q = x(t + (x -, v -)).
(2.6)

Using Lemma 2.1 and E > E 1 (λ, R) we obtain that |x(s, x -, v -)| < R for s ∈ (t -(x -, v -), t + (x -, v -)
) and q 0 = q. (Note that if x(t) satisfies equation (1.1) then x(t + t 0 ) also satisfies (1.1) for any t 0 ∈ R.) Therefore we have

x(s, x -, v -) = x(s-t -(x -, v -), E, q 0 , q) for s ∈ (t -(x -, v -), t + (x -, v -))
where x(t, E, q 0 , q) is the solution of (1.1) given by (2.5), and we have

k 0 (E, q 0 , q) = ẋ(t -(x -, v -)), k(E, q 0 , q) = ẋ(t + (x -, v -)). (2.7)
We proved that the scattering map S E uniquely determines the data k 0 (E, q 0 , q), k(E, q 0 , q), (q 0 , q) ∈ ∂B(0, R) 2 , q 0 = q, when (q 0 , q) = (x(t

-(x -, v -)), x(t + (x -, v -)))
for (x -, v -) ∈ D(S E ). And using again Lemma 2.1 we know that for any (q 0 , q) ∈ ∂B(0, R) 2 , q 0 = q, the solution x(t, E, q 0 , q) given by (2.5) satisfies (1.7) and (1.8) for some (x ± , v ± ) ∈ R n × S 1 E and that |x(t, E, q 0 , q)| > R for t < 0 and t > s(E, q 0 , q). Thus S E uniquely determines the data k 0 (E, q 0 , q), k(E, q 0 , q), (q 0 , q) ∈ ∂B(0, R) 2 , q 0 = q.

3 Proof of Theorem 1.1

In this section we assume that the electromagnetic field (V, B) in equation (1.1) satisfies (1.4) and (1.5) and is so that B ≡ 0 and V is spherically symmetric outside B(0, R) for some

R > 0. Let W ∈ C 2 ([R, +∞), R) be defined by V (x) = W (|x|) for x ∈ B(0, R). From (1.4) it follows that sup r>R (1 + r) α |W (r)| ≤ β 0 and sup r>R (1 + r) α+1 |W ′ (r)| ≤ β 1 , (3.1) 
where W ′ denotes the derivative of W .

3.1 The function r min,.

Set

β := (2E + 2β 0 ) 1 2 max R, β 1 + 2β 0 2E 1 α . (3.2) 
Then for q ≥ β consider the real number r min,q defined by r min,q = sup{r ∈ (R, +∞) | W (r) + q 2 2r 2 = E}.

(3.

3)

The function r min,. has the following properties.

Lemma 3.1. The function r min,. is a C 2 strictly increasing function from [β, +∞) to (R, +∞) and we have r 3 min,q W ′ (r min,q ) < q 2 for q ≥ β and W (r min,q ) + q 2 2r 2 min,q = E, dr min,q dq = qr min,q q 2 -r 3 min,q W ′ (r min,q ) > 0.

(3.4)

In addition the following estimates and asymptotics at +∞ hold

q √ 2E + 2β 0 ≤ r min,q ≤ q 2E -2β 0 q -α (2β 0 + 2E) α 2 1 2
, for q ∈ [β, +∞), (3.5) r min,q = q √ 2E + O(q 1-α ), as q → +∞.

(3.6) Lemma 3.1 and works [START_REF] Firsov | Determination of the force acting between atoms via differential effective elastic cross section[END_REF][START_REF] Keller | Determination of the potential front scattering data[END_REF] allow the reconstruction of the force F in a neighborhood of infinity. In sections 3.2 and 3.3 we develop the reconstruction procedure given in [START_REF] Firsov | Determination of the force acting between atoms via differential effective elastic cross section[END_REF][START_REF] Keller | Determination of the potential front scattering data[END_REF].

The scattering angle

Let P be a plane of R n containing 0 and let (e 1 , e 2 ) be an orthonormal basis of P.

For (v 1 , v 2 ) ∈ R 2 and for v = v 1 e 1 + v 2 e 2 we define v ⊥ ∈ P by v ⊥ = -v 2 e 1 + v 1 e 2 .
Let q ≥ β. Then set x -:= (2E) -1 2 qe 1 and v -= √ 2Ee 2 . We have x -•v -= 0 and x -• v ⊥ -= -q, and for such couple (x -, v -) we consider x q (t) the solution of (1.1) with energy E and with initial conditions (1.4) 

at t → -∞. Let t -:= sup{t ∈ R | |x q (s)| ≥ R for s ∈ (-∞, t)}.
We will prove that t -= +∞. Since the force F in (1.1) is radial outside B(0, R) we obtain that x q (t) ∈ P for t ∈ (-∞, t -).

We introduce polar coordinates in P. We write x q (t) = r q (t)(cos(θ q (t))e 1 (t)+ sin(θ q (t))e 2 ) for t ∈ (-∞, t -) where the functions r q , θ q , satisfy the following ordinary differential equations

rq (t) = -W ′ (r q (t)) + q ′2 r q (t) 3 , (3.7) 
r q (t) 2 θq (t) = q ′ , for some q ′ ∈ R.

Asymptotic analysis of x q (t) at t = -∞ using the initial conditions (1.4) and ẏ-(t) = o(t -1 ) as t → -∞ (see for example [START_REF] Novikov | Small angle scattering and X-ray transform in classical mechanics[END_REF]Theorem 3.1] for this latter property) shows that q ′ = q. We refer the reader to the Appendix for details.

The energy E defined by (1.3) is then written as follows 2E = ṙq (t) 2 + q 2 r q (t) 2 + 2W (r q (t)).

(3.9)

Let t q = inf{t ∈ (-∞, t -) | r q (t) = r min,q }. Then using (3.3) and (3.9) we have ṙq (t q ) = 0. Since r q satisfies the second order differential equation (3.7) we obtain that t -= +∞, r q (t q + t) = r q (t q -t) for t ∈ R, and ± ṙq (t) > 0 for ±t > t q . We thus define

g(q) = +∞ -∞ dt r q (t) 2 = 2 +∞ tq dt r q (t) 2 .
(3.10)

The integral (3.10) is absolutely convergent and from (3.8) it follows that qg(q) = R θq (s)ds is the scattering angle of x q (t), t ∈ R. Note also that from (3.8) we have

S 1,E ( √ 2Ee 2 , (2E) -1 2 qe 1 ) = √ 2E cos qg(q) + π 2 , sin qg(q) + π 2 , (3.11) 
for q ∈ [β, +∞) and where S 1,E is the first component of the scattering map S E . Note that qg(q) → 0 as q → +∞ and that g is continuous on [β, +∞) (these properties can be proven by using [16, Theorem 3.1] and continuity of the flow of (1.1)). Hence using (3.11) we obtain that S 1,E uniquely determines the function g.

Reconstruction formulas

Let χ be the strictly increasing function from [0, β -2 ) to [0, r -1 min,β ), continuous on [0, β -2 ) and C 2 on (0, β -2 ), defined by χ(0) = 0, and

χ(σ) = r -1 min,σ -1 2 , for σ ∈ (0, β -2 ).
(3.12)

Let φ : (0, χ(β -2 )) → (0, β -2 ) denote the inverse function of χ. From (3.4) and (3.12) it follows that

2(E -V (χ(u) -1 )) = χ(u) 2 u , for u ∈ (0, β -2 ), (3.13) 2(E -V (s -1 ))φ(s) = s 2 , for s ∈ (0, χ(β -2 )). (3.14) 
Define the function H from (0, β -2 ) to R by

H(σ) := σ 0 g(u -1 2 )du 2 √ u √ σ -u for σ ∈ (0, β -2 ), (3.15) 
Hence H is known from the first component of the scattering map S E .

The following formulas are valid (see Appendix for more details)

H(σ) = π χ(σ) 0 ds 2(E -V (s -1 )) , 1 π √ σ dH dσ (σ) = d dσ ln(χ(σ)), (3.16) 
for σ ∈ (0, β -2 ).

Then note that from (3.6) it follows that χ(σ) = (2E)

1 2 σ -1 2 +O(σ -1+α 2 
)

-1 = (2E) -1 2 σ 1 2 +O(σ α+1 
2 ) as σ → 0 + , and ln (2E)

1 2 χ(σ)σ -1 2 = ln(1+O(σ α 2 
)) → 0 as σ → 0 + (note that we just need the assumption α > 0). Therefore we obtain the following reconstruction formulas

χ(σ) = (2E) -1 2 σ 1 2 e σ 0 1 π √ s dH ds (s)-1
2s ds for σ ∈ (0, β -2 ), (3.17)

W (s) = E - 1 2s 2 φ(s -1 )
for s ∈ (r min,β , +∞).

(3.18) 

Set β ′ = β 2E -2β 0 β -α (2β 0 + 2E) α 2 1 2 . ( 3 

The relativistic multidimensional Newton equation 4.1 Uniqueness results

Let c > 0. Consider the relativistic multidimensional Newton equation in an electromagnetic field

ṗ = F (x, ẋ) := -∇V (x) + 1 c B(x) ẋ, (4.1) 
p = ẋ 1 -| ẋ| 2 c 2 , ṗ = dp dt , ẋ = dx dt , x ∈ C 2 (R, R n ),
where (V, B) satisfy (1.2), (1.4) and (1.5). The equation (4.1) is an equation for x = x(t) and is the equation of motion in R n of a relativistic particle of mass m = 1 and charge e = 1 in an external static electromagnetic field described by the scalar potential V and the magnetic field B (see [START_REF] Einstein | Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen[END_REF] and, for example, [START_REF] Landau | The Classical Theory of Fields Pergamon[END_REF]Section 17]). In this equation x is the position of the particle, p is its impulse, F is the force acting on the particle, t is the time and c is the speed of light. For the equation (4.1) the energy

E = c 2 1 + |p(t)| 2 c 2 + V (x(t)) = c 2 1 -| ẋ(t)| 2 c 2 + V (x(t)), (4.2)
is an integral of motion. We denote by B c the euclidean open ball whose radius is c and whose centre is 0. Under the conditions (1.3), we have the following properties (see [START_REF] Yajima | Classical scattering for relativistic particles[END_REF]): for any

(v -, x -) ∈ B c × R n , v -= 0, the equation (4.1) has a unique solution x ∈ C 2 (R, R n ) that satisfies (1.7) where y -in (1.7) satisfies | ẏ-(t)| + | y -(t)| → 0, as t → -∞; in addition for almost any (v -, x -) ∈ B c × R n , v -=
0, the unique solution x(t) of equation (1.1) that satisfies (1.7) also satisfies the asymptotics

x(t) = tv + + x + + y + (t), (4.3) 
where

v + = 0, | ẏ+ (t)| + |y + (t)| → 0, as t → +∞. At fixed energy E > c, we denote by S E,c the set {v -∈ R n | |v -| = c 1 -c 4 E 2 }
and we denote by D(S rel E ) the set of (v -, x -) ∈ S E,c × R n for which the unique solution x(t) of equation (4.1) that satisfies (1.7) also satisfies (1.8). We have that

D(S rel E ) is an open set of S E × R n and Mes((S E,c × R n )\D(S rel E )) = 0 for the Lebesgue measure on S E,c × R n . The map S rel E : D(S rel E ) → S E,c × R n given by S rel E (v -, x -) = (v + , x + )
, is called the scattering map at fixed energy E > c 2 for the equation (4.1). Note that if V (x) ≡ 0 and B(x) ≡ 0, then

v + = v -, x + = x -, (v -, x -) ∈ B c × R n , v -= 0.
We consider the inverse scattering problem at fixed energy for equation (4.1) that is similar to the inverse problem (1.10)

Given S rel E at fixed energy E > c 2 , find (V, B). (4.4) 
Note that using the conservation of energy we obtain that if E < c 2 +sup R n V then S E does not determine uniquely V . For problem (4.4) Theorem 1.1 and Proposition 1.2 still hold. In Sections 4.2 and 4.3 we sketch the proof of Theorem 1.1 and Proposition 1.2 for equation (4.1).

For inverse scattering at high energies for the relativistic multidimensional Newton equation and inverse scattering in relativistic quantum mechanics see [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF] and references therein.

Concerning the inverse problem for (4.1) in the one-dimensional case, we can mention the work [START_REF] Funke | An inverse problem for classical relativistic mechanics[END_REF].

Proof of Proposition 1.2 for equation (4.1)

We first consider the analog of Lemma 2.1. Lemma 4.1. Let E > c 2 and let R E and C rel E be defined by

C rel E := min E -c 2 2β 0 , c 2 E-c 2 4c 2 + 1 2 -1 4β 1 n 3(E-c 2 ) 2c 2 + 1 2 , sup |x|≥R E (1 + |x|) -α ≤ C rel E 2 . (4.5) If x(t) is a solution of equation (1.1) of energy E such that |x(0)| < R E and if there exists a time T > 0 such that x(T ) = R E then |x(t)| 2 ≥ R 2 E + 1 2 c 2 E-c 2 4c 2 + 1 2 -1 3(E-c 2 ) 2c 2 + 1 2 |t -T | 2 for t ∈ (T, +∞), (4.6) 
and there exists a unique

(x + , v + ) ∈ R n ×S E,c so that x(t) = x + +tv + +y + (t), t ∈ R, where |y + (t)| + | ẏ+ (t)| → 0 as t → +∞.
The proof of Lemma 4.1 is similar to the proof of Lemma 2.1.

The solutions x(t) of equation (4.1) in B(0, R) for some R > 0 also have properties (2.4) and (2.5) at fixed and sufficiently large energy. Therefore at fixed and sufficiently large energy we consider the inverse kinematic problem in a ball B(0, R) for equation (4.1) similar to the inverse kinematic problem given in Section 2.2. Then Lemma 2.2 still holds (see [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF]Theorem 1.2]) and the connection between boundary data of the inverse kinematic problem and the scattering map S rel E is similar to the one given for the nonrelativistic case in Section 2.3 (note that the radius R has also to be chosen so that

sup |x|≥R (1 + |x|) -α < c 2 /(144β 1 n) = lim E→+∞ C rel E )
. This proves Proposition 1.2 for equation (4.1).

Proof of Theorem 1.1 for equation (4.1)

We assume that the electromagnetic field (V, B) in equation (4.1) satisfies (1.4) and (1.5) and is so that B ≡ 0 and V is spherically symmetric outside B(0, R) for some R > 0. Let W ∈ C 2 ([R, +∞), R) be defined by V (x) = W (|x|) for x ∈ B(0, R). We give the analog of Lemma 3.1. Let β = (2β 2 0 )

1 α E(2β 0 +β 1 )+β 1 β 0 -(E(2β 0 +β 1 )+β 1 β 0 ) 2 -4β 2 0 (E 2 -c 4 ) 1 2 -1 α
and set

β := max β, β 0 E -c 2 1 α E -1 c (E + β 0 ) 2 -c 4 , cR (E + β 0 ) 2 -c 4 E .
(4.7) Then for q ≥ β consider the real number r min,q defined by r min,q = sup{r ∈ (R, +∞)

| (E -W (r)) 2 -c 4 - q 2 E 2 c 2 r 2 = 0}. ( 4.8) 
The function r min,. has the following properties.

Lemma 4.2. The function r min,. is a C 2 strictly increasing function from [β, +∞) to (R, +∞) and we have r 3 min,q W ′ (r min,q ) c 2 (E-W (r min,q )) E 2 < q 2 for q ≥ β and (E -W (r min,q )) 2 -c 4 -q 2 E 2 c 2 r 2 min,q = 0, (4.9)

dr min,q dq = E 2 qr min,q -c 2 (E -W (r min,q ))r 3 min,q W ′ (r min,q ) + q 2 E 2 > 0. (4.10)

In addition the following estimates and asymptotics at +∞ hold

qE c (E + β 0 ) 2 -c 4 ≤ r min,q ≤ Eq c E -β 0 qE c √ (E+β 0 ) 2 -c 4 -α 2 -c 4 , (4.11) 
for q ≥ β, and

r min,q = qE c √ E 2 -c 4
+ O(q 1-α ), as q → +∞. (4.12)

Then take any plane P containing 0 and keep notations of Section 3.2. Let q ≥ β. Then set x -:= (c 1 -c 4 /E 2 ) -1 qe 1 and v -= c 1 -c 4 /E 2 e 2 , and consider x q (t) the solution of (4.1) with energy E and with initial conditions (1.4) at t → -∞. We write x q in polar coordinates: x q (t) = r q (t)(cos(θ q (t))e 1 (t) + sin(θ q (t))e 2 ) for t ∈ (-∞, t -) where t -:= sup{t ∈ R | |x q (s)| ≥ R for s ∈ (-∞, t)} and the functions r q , θ q , satisfy rq

(t) = -W ′ (r q (t)) E-W (rq(t)) c 2 3 + q 2 E 2 E -W (r q (t)) -rW ′ (r q (t)) r 3 (E -W (r q (t))) 3 , (4.13) 
r q (t) 2 θq (t) 1 -ṙq(t) 2 +rq(t) 2 θq(t) 2 c 2 = qE c 2 . ( 4 

.14)

The energy E defined by (4.2) is then written as follows

1 - ṙq (t) 2 c 2 - c 4 (E -W (r q (t))) 2 - q 2 E 2 c 2 r q (t) 2 (E -W (r q (t))) 2 = 0. ( 4.15) 
We also have θq (t) = qE r q (t) 2 (E -W (r q (t)))

.

Similarly to Section 3.2 we have t -= +∞, r q (t q + t) = r q (t q -t) for t ∈ R, and ± ṙq (t) > 0 for ±t > t q where t q = inf{t ∈ (-∞, t -) | r q (t) = r min,q }. We thus define

g(q) = +∞ -∞ dt r q (t) 2 (E -W (r q (t))) = 2 +∞ tq dt r q (t) 2 (E -W (r q (t)))
. (4.17)

From (4.16) Eqg(q) = R θq (s)ds is the scattering angle of x q (t), t ∈ R, and

S rel 1,E (v -, x -) = c 1 -c 4 /E 2 cos Eqg(q) + π 2 , sin Eqg(q) + π 2 , (4.18) 
for q ∈ [β, +∞) and where S rel 1,E is the first component of the scattering map S rel E . Since qg(q) → 0 as q → +∞ and that g is continuous on [β, +∞) S rel 1,E uniquely determines the function g. We now provide the reconstruction formulas for W from g in a neighborhood of infinity . Let χ be the strictly increasing function from [0, β -2 ) to [0, r -1 min,β ), continuous on [0, β -2 ) and C 2 on (0, β -2 ), defined by χ(0) = 0 and

χ(σ) = r -1 min,σ -1 2 for σ ∈ (0, β -2 ). Let φ : (0, χ(β -2 )) → (0, β -2 ) denote the in- verse function of χ. From (4.9) it follows that (E-V (χ(u) -1 )) 2 -c 4 -E 2 χ(u) 2 c 2 u = 0 for u ∈ (0, β -2 ), and (E -V (s -1 )) 2 -c 4 φ(s)-E 2 s 2 c 2 = 0 for s ∈ (0, χ(β -2 )
). Define the function H from (0, β -2 ) to R by (3.15). The following formulas are valid

H(σ) = π χ(σ) 0 ds (E -V (s -1 ) 2 -c 4 , E cπ √ σ dH dσ (σ) = d dσ ln(χ(σ)), (4.19)
for σ ∈ (0, β -2 ). The proof of formulas (4.19) is similar to the proof of formulas (3.16).

Then note that from (4.12) it follows that χ

(σ) = E c √ E 2 -c 4 σ -1 2 +O(σ - 1+α 2 
) A Proof of Lemmas 2.1 and 3.1

-1 = c √ E 2 -c 4 E σ 1 2 + O(σ α+1 
In this Section we give a proof of Lemmas 2.1 and 3.1, and we give details on the derivation of formulas (3.16) and the equality "q = q ′ " in Section 3.2. Proof Lemma 3.1. Note that for q ≥ β we have q 2 /(2R 2 ) > E+β 0 (1+R) -α ≥ E -W (R) and lim r→+∞ q 2 /(2r 2 ) = 0 < E = lim r→+∞ (E -W (r)). Hence using (3.3) we obtain r min,q ∈ (R, +∞) and W (r min,q ) + q 2 2r 2 min,q = E, (A. [START_REF] Landau | The Classical Theory of Fields Pergamon[END_REF] for q ∈ [β, +∞). Let q ∈ [β, +∞). From (A.14) it follows that q 2 /(2r 2 min,q ) ≤ E + β 0 and then r min,q ≥ q/ 2(E + β 0 ). Combining this latter estimate and estimate (3.1) we obtain that 2 E -sup 

2

 2 

2. 1

 1 Nontrapped solutions of equation (1.1)

2 -c 4 σ 1 2 = ln( 1 + O(σ α 2 ) 1 2s 2 , 2 1 2 .

 22121222 ) → 0, as σ → 0 + . ds , for σ ∈ (0, β -2 ), (4.21)W (s) = E -c 4 + E 2 c 2 s 2 φ(s -1 ) 1 for s ∈ (r min,β , +∞). (4.22) Set β ′ = β 2E-2β 0 β -α (2β 0 +2E)α Then note that from (4.7) and (4.11) it follows that r min,β ≤ β ′ . Therefore using (4.21) and (4.22) we obtain that W is determined by the first component of the scattering map S rel E on (β ′ , +∞). The proof of Theorem 1.1 for equation (4.1) then relies on this latter statement and on Proposition 1.2 for equation (4.1).

FF

  for t ∈ (0, +∞), where v + = ẋ(0) + +∞ 0 (x(τ ), ẋ(τ ))dτ, (A.11)x + = x(0) -(x(τ ), ẋ(τ )))dτ dσ, (A.13)for t ∈ (0, +∞), where by (A.9) the integrals in (A.11), (A.12) and (A.13) are absolutely convergent (α > 1) and |y + (t)| + | ẏ+ (t)| → 0 as t → +∞.

5 ) 2 ,

 52 and the asymptotics (3.6) follows from (A.17). Note that using (3.1) we haverW ′ (r) < β 1 r -α ≤ β 1 q -α (2(E + β 0 )) α (A.18) 2E -2W (r) > 2E -2β 0 r -α ≥ 2E -2β 0 q -α (2(E + β 0 )) α 2 , (A.19)

Proof of Lemma 2.1. We will use the following estimate. Under conditions (1.4) and (1.5) we have

Then using the conservation of energy and equation (1.1) we have

for t ∈ R. Using (A.1) and estimate on V and

for t ∈ R. Hence we have 

for r ≥ q(2(E + β 0 )) -1 2 and q ≥ β. From (A.18) and (A.19) we obtain

). We have f (q, r min,q ) = 0 for q ≥ β and from the implicit function theorem and (A.17) it follows that r min,. is a C 2 strictly increasing function from [β, +∞) to (R, +∞) so that r 3 min,q W ′ (r min,q ) < q 2 for q ≥ β and the derivative of r min,. is given by (3.4).

Derivation of formulas (3.16). We first make the change of variables "r" = r q (t) in (3.10) (dr = ṙq (t)dt and ṙq (t) = 2E -q 2 rq(t) 2 -2V (r q (t)), see (3.9)) and we obtain

, for q > β.

(A.21)

Performing the change of variables "r -1 = s" in (A.21) we obtain

, for u ∈ (0, β -2 ). (A.22)

Let σ ∈ (0, β -2 ). From (A.22) and (3.15) it follows that

And performing the change of variables u = φ(s) + ε(σ -φ(s)) in (A.23) (du = (σ -φ(s))dε) and using the equality (3.14) we obtain

for s ∈ (0, χ(β -2 )) (we used the integral value π =

. Using (A.23), (A.24) and (3.14) we obtain the first equality in (3.16) We end this appendix by giving details on the equality q ′ = q in section 3.2. We keep the notations of section 3.2. We set u θ = x r ⊥ and we have where ŵ = w |w| for w = 0. Using (A.30) and (A.31) we obtain

which proves that q ′ = r 2 θ = -x -• v ⊥ -.