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Abstract— Simple linear regression is usually used for WSN data 

reduction. The mechanism is concerned about energy 

consumption, but neglects the prediction accuracy. The 

prediction error from it is often ignored and inconsistencies are 

forwarded to the user application. This paper proposes to use a 

method based on multiple linear regression to improve prediction 

accuracy. The improvement is achieved by multivariate 

correlation of readings gathered by sensor nodes in field. Tests 

show that our solution outperforms some current solutions 

adopted in the literature. 
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I.  INTRODUCTION 

Sensors can be used in a lot of applications such as event 
detection, location, monitoring and control. Among these 
applications, environment monitoring is a very common 
scenario. Therefore, data gathering is periodical, generating a 
large amount of data flow in the network. The data flow is a 
problem in WSN due to energy consumption [9]. In this 
scenario, the sensor nodes frequently send the same 
information gathered from a specific area. The overlapping of 
information sent to the sink causes waste of energy, which 
decrease the network lifetime. The problem tends to worsen 
according to the number of nodes deployed (scalability), 
because data communication is responsible for most of the 
energy consumption in WSN [2]. The correlation between the 
data gathered by sensor node and its neighbors, as well as the 
correlation between the data gathered by the sensor node itself 
over a given time [9] is important for efficient protocols. They 
are known as spatial and temporal correlation. When more than 
one variable in the correlation is taken into account, it was 
named multivariate correlation. 

Prediction of data purposely not sent to the sink in order to 
reduce traffic, is a technique which has been adopted in the 
literature [5]. It helps reducing the overall energy consumption 
of the network. An algorithm is embedded within the sensor 
node to calculate the coefficients of a linear regression 
function. These coefficients are named β and α, and represent a 
sequence of variable samples gathered by the sensor, such as 
temperature. This approach usually takes into account the 

correlation of only one variable to be predicted (named 
dependent or response variable, e.g. temperature) and only one 
variable to predict the dependent variable (named independent 
or explanatory variable, e.g. time/epoch). However, prediction 
accuracy increases when more than one independent variable is 
used and they are strongly correlated. Furthermore, the time 
variable is not the more correlated variable with others 
variables such as temperature, humidity and light. Thus, the 
prediction adopted by current solutions, is sometimes not 
accurate. 

We propose a method that performs prediction based on 
multivariate correlation. In our method, we take into account 
the correlation between two readings of data gathered by the 
sensor node and the time variable/epoch. Our method is 
different from current works which use the correlation between 
one variable gathered and the time variable. 

II. METODOLOGY

Tree-based routing protocol to forward the data flow to the 
sink node is used, an approach similar to the one adopted, by Li 
et al. [3]. Nevertheless, to avoid spatial overlapping in our 
proposal, each sensor node checks whether there is a degree of 
multivariate correlation between the packets previously sent by 
its neighbors. This is done before each sensor node sends the 
linear regression coefficients to the sink. Moreover, multiple 
linear regression prevents temporal overlapping in the same 
sensor node. 

In this paper, simulations with simple and multiple linear 
regression functions were carried out to evaluate the prediction 
solution in two phases: 1) the correlation degree of the 
variables gathered from the sensor node is measured to decide 
which variable will be the independent one. Here in this paper, 
the Pearson’s coefficient (r) in a real data trace indicates the 
strength of a linear relationship between two variables, e.g. if 
the variables area independent, the Pearson’s coefficient is 
zero; 2) to evaluate prediction accuracy, the sensor nodes run 
linear regression functions. An original application to data 
gathering without any prediction mechanism was developed. 
This application emulates a real gathering of temperature, 
humidity and light data. Then, the original version of this 
application is compared to two modified versions that use 
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simple linear regression and one that uses multiple linear 
regression. Prediction accuracy performance is evaluated by 
means of Residual Sum of Squares (SSerr) and coefficient of 
determination (R

2
) [1]. They are used to compare both versions 

using simple linear regression and version using multiple linear 
regression. SSerr is the sum of power of prediction errors for 
each dependent variable using simple or multiple linear 
regression. R

2
 represents the improvement of the sum of the 

power of prediction errors. 

III. RELATED WORK

Some works [3][4][8] have showed the feasibility of the use 
of spatial and temporal correlation to optimize the 
communication protocols in WSN. They use algorithms 
embedded within motes, in distributed or centralized way, to 
reduce data transmission to the sink. These techniques reduce 
energy consumption and consequently increases the network 
lifetime. Xu and Lee [10] propose a localized prediction 
mechanism based on object tracking that reduces energy 
consumption due to hierarchy topology. 

Matos et al. [5] propose simple linear regression to reduce 
data generated by sensor nodes which gather temperature from 
the external environment. They compare the prediction 
accuracy performance of the simple linear regression to 
prediction based on the average. The difficulty lies on the fact 
that prediction accuracy based on simple linear regression 
depends on one variable, which in many situations is not 
correlated with each other. The time variable is usually less 
correlated than other variables that are being gathered on field, 
such as temperature, humidity or light. Therefore, prediction 
errors tend to be higher, i.e., less accurate. That paper is the 
closest to our proposed solution, but it performs prediction of 
user’s queries, instead of constantly performing prediction of 
stream. 

Seo et al. [6] carried out evaluations in some techniques for 
reducing the multivariate data flow. These techniques are based 
on wavelet, sampling, hierarchical clustering and Singular 
Value Decomposition – SVD. Silva et al. [7] reduces data 
dimensionality gathered by sensor nodes. The authors used 
Principal Component Analysis – PCA as reduction technique in 
an air quality monitoring application. However, there is no 
concern for multivariate spatial correlation. Also, there are few 
details about the solution operation, mainly about the result 
error from the dimensionality reduction procedure. 

Multivariate spatial and temporal correlation is key to solve 
problems of prediction accuracy through data reduction 
techniques. The works found in the literature have superficially 
addressed their implementation. Our paper has the advantage of 
performing correlation analysis of variables gathered by sensor 
nodes before the prediction is implemented. Also, the effects of 
using prediction based on multivariate spatial and temporal 
correlation in WSN were checked. 

IV. BACKGROUND

Many sensor nodes deployed on field are able to perform 
monitoring of more than one variable, which we named 
multisensor. Moreover, those variables are usually strongly 
correlated. In this section we describe two techniques found in 
the literature which are used in the conception of our method. 

To the best of our knowledge, we did not find any paper that 
uses multiple linear regressions to perform prediction and 
which also uses Euclidian distance. But, we found papers such 
as Skordylis et al. [8] which use a technique adopted for spatial 
correlated data reduction by Pearson’s coefficient (r). Also, we 
found a paper such as Matos et al. [5] which uses a technique 
adopted for temporal correlated data reduction by simple linear 
regression. 

A. Pearson’s coefficient 

The Pearson’s coefficient (Equation 1) is used for works 
such as [8] to identify the spatial correlation of the same 
variable between two sensor nodes. It can also be used to 
identify the correlation between two variables of the same 
sensor node. In our work, it is used to figure out the correlation 
degree (weak or strong) between variables gathered by sensor 
nodes on field. 

,  ∑∑ ∑ (1)

where ,  represents the relationship between two 

unidimensional vectors  and , to be compared in terms of 
their correlation. They contain samples history of two 
variables,  , … ,  and  , … ,  , where 1, … ,  and  is the number of samples.  and  
represent the average of samples of each variable vector. 

When the coefficient r is close to bounds (1 or -1), the 
correlation between two vectors is strong. Thus, we can 
calculate the spatial and temporal correlation of the readings of 
just one variable between two neighbor sensor nodes [8]. The 
problem is that we cannot calculate the multivariate spatial 
correlation, which is necessary for our solution. But, we can 
build a table which determines how much one variable is 
related to another. The correlation table for variables from real 
data trace is showed in the next section. The coefficient r is 
used to identify what variable is more correlated to another in 
our solution. This more correlated variable was used to 
calculate β and α coefficients of the multiple linear regression 
and also for recovery in the sink to which the data was not sent. 

B. Simple linear regression 

The current solutions of data reduction by linear regression 
are performed by using simple linear regression based on the 
least squares (Equation 2 and Equation 3), as applied by Matos 
et al. [5]. In that case, each sensor node calculates β and α 
coefficients by using one variable, usually the epoch/time. 
Then, the sensor node sends its β and α coefficients to the sink, 
instead of sending the readings. The advantage of that solution 
is that energy consumption is reduced, but on the other hand, 
the prediction is sometimes not accurate. 

β  ∑ ∑ (2)

α  β (3)
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where β represents a constant that is multiplied by the value 
of each independent variable. α is a constant added to the 
previous multiplication, resulting in the predicted value.  and 

 are two unidimensional vectors, which respectively represent 
samples history of the independent and dependent variables, 
with , … ,  and , … , , where 1, … ,  and  

is the number of samples.  and  represent the average of 
samples of each vector. 

Two application versions based on univariate correlation 
(simple linear regression based on the least squares) were 
developed and compared to other version, which is based on 
multivariate correlation (our solution). The β and α coefficients 
are calculated according to Equation 2 and Equation 3. α  β (4)

where   and   represent one unidimensional vector, 

which respectively contain the values of the predictions made 
by one dependent variable  and samples history of one 

independent variable . , … ,   and , … ,  , where 1, … ,  and  is the number of samples. 

β and α respectively represent the coefficients calculated by 
Equation 2 and Equation 3. 

The β and α coefficients are calculated by each sensor node 
and are used at the moment of arrival at the sink, according to 
Equation 4. In our solution, Equation 4 is extended due to 
multivariate correlation. We used multiple linear regression 
instead of simple linear regression. Then, in the next section, 
we describe how to calculate the β and α coefficients to 
perform our method. 

V. PROPOSED SOLUTION 

The purpose of our paper is to apply the multivariate 
correlation method to improve prediction accuracy on WSN 
data reduction. The data reduction is performed by multiple 
linear regressions which calculate its β and α coefficients. Each 
sensor node sends β and α coefficients to the sink, instead of 
sending all data gathered by the sensor node on field. 

Given this: 1) prediction of consecutive readings by 
multiple linear regression is performed in each sensor node, 
preventing multivariate temporal overlapping; 2) each sensor 
node calculates the β and α coefficients, then sends them to the 
sink, instead of all the readings gathered on field; 3) If 
Euclidean distance detects the presence of multivariate spatial 
overlapping, the packet is dropped. Therefore, we prevent the 
same information to be sent by multiple neighbor sensor nodes; 
and 4) the not sent data recovery is made by the sink. 

Main contributions of this paper are: 1) to start a new 
discussion about prediction accuracy in environmental 
monitoring, which includes the correlation between variables 
gathered such as temperature, humidity and light; 2) to show 
that is possible to deploy more accurate prediction solutions 
through the multivariate correlation method; and 3) to present 
the challenges and shows in details the steps required to deploy 
this solution for data reduction with prediction approach by 
multiple linear regression. 

A. Steps of our proposal 

• Step 1:  Each sensor node stores a fixed number of
samples of gathered readings from all the variables.

• Step 2:  Each sensor node calculates the β and α
coefficients of the multiple linear regression function
when they reach the maximum storage threshold
previously defined.

• Step 3:  Each sensor node checks its table of β and α
coefficients received from its neighbor sensor nodes by
broadcast, before sending β and α coefficients to the
sink.

• Step 4:  If the values generated by the sensor node
already have been sent earlier to a neighbor sensor
node, the sensor node drops the β and α coefficients
calculated by it. Then, it sends a special packet of
reduced size, named correlation packet. This packet
advertises that the sensor node is correlated to another
neighbor sensor node.

• Step 5:  If β and α coefficients have not been sent by
another neighbor sensor node yet, they are sent to its
parent node until the sink is reached.

• Step 6:  After Step 5, the sensor node also sends the
sequence of variable readings which is used as
independent variable. It is worth mentioning that this
variable was found by using Pearson's coefficient
(Equation 2). In our experiment the variable is the
temperature.

• Step 7:  When β and α coefficients reach the sink, they
are used in the multiple linear regression function to
predict the readings which have not been sent.
Moreover, these β and α coefficients are stored for later
use by the correlation packets (Step 4).

• Step 8:  Similarly, when the correlation packet arrives
at the sink, it uses β and α coefficients previously
stored (Step 7).

B. Multivariate spatial correlation 

The spatial correlation can be exploited to optimize data 
communication to the sink and between neighbor sensor nodes 
[4][8][9]. It happens due to overlapping of data being sent to 
the sink by several sources from high density network [9]. We 
use the Euclidean distance (Equation 5) to determine the 
multivariate spatial correlation between two multidimensional 
vectors, instead of using Pearson’s coefficient. The Euclidian 
distance shows how close a multidimensional vector is to other. 

, ∑ (5)

where ,  represents the correlation between two 

multidimensional vectors of dimension ,  and 1, … ,  

to be compared in terms of their correlations. Each vector 
contains the values of β and α coefficients of each gathered 
variable by sensor node  and its neighbor sensor node  with , … ,  and , … , . 
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The smaller the Euclidean distance, higher the correlation 
between two vectors. Thus, we can compare β and α 
coefficients of the multiple linear regression generated from 
consecutive readings gathered by a sensor node to β and α 
coefficients from its neighbor sensor nodes at a given time. If 
the Euclidian distance is close to 0 (zero), then it means that a 
packet with the same content was previously sent by any other 
neighbor sensor node (Step 4). 

In our proposed solution, the sensor node detects if there is 

multivariate spatial correlation between itself and its neighbor 

node by tree-based routing. This is similar to the compression 

mechanism adopted by Li et al. [3]. The sensor node checks 

the relationship degree of β and α coefficients by calculating 

the value of ,  (Equation 5). It eliminates the overlapping 

of information between neighbor sensor nodes. Thus, some 

sensor nodes do not send data packets at a given time. Thereby, 

it reduces the broadcast between neighbor sensor nodes and 

also the data forwarded by the relays. 

C. Multivariate temporal correlation 

The temporal correlation happens due to the fact that the 
sensor node gathers correlated data from one or more variables 
at a given time. It is observed in the nature of physical 
phenomena [9]. The simple linear regression function is able to 
work over temporal correlation, but it is not able to work over 
the multivariate temporal correlation (more than one variable). 
In our solution, we use multiple linear regression function to 
work over the multivariate correlation. 

β X X X Y with β βββ (6) 

where β represents the vector of constants which are 

multiplied by each value of the independent variable. But, we 

use β α  for simplicity and compatibility with β and α 

coefficients of the simple linear regression (previous section). 

 is one multidimensional vector, which represents the 

samples history of the independent variable (Step 1), together 

with its transpose vector .  is one unidimensional vector, 

which represents the samples history of the dependent variable 

(Step 1). 
Our data reduction solution occurs in a distributed way, 

where each sensor node calculates β and α coefficients from the 
multiple linear regression (regression based on the least 
squares) function (Step 2). Then, it only sends β and α if there 
is no multivariate spatial correlation with other neighbor sensor 
node. Β and α coefficients are not calculated by the simple 
linear regression as the amount of independent variables is 
greater. The multiple linear regression is described, according 
to Equation 6. 

D. Data recovery 

The last step occurs in the sink, which receives β and α 
coefficients or the correlated packet. Thereafter, the predictor 
calculates the values of the missing readings based on β and α 
coefficients (Step 7) by the multiple linear regression function 
(Equation 7). But, if the correlated packet arrives at the sink, it 

uses β and α coefficients of the correlated sensor node (Step 8), 
advertised by the packet and previously recorded (Step 7) from 
a neighbor sensor node. β  β , … , β  (7) 

where  represents one unidimensional vector, which 

contains the values of predictions made for one dependent 
variable  and  represents the multidimensional vector, 

which contains values history of the samples from more than 
one independent variable . , … ,  and , … , , with 1, … , , where  is the number of 

samples, and 1, … , , where  is the dimension of the 
vector . β and α respectively represent the coefficients 

calculated using Equation 6. As a reminder β α  due to 
compatibility with the notation of β and α coefficients which is 
used in this paper. 

VI. EXPERIMENTS AND RESULTS

The main goal of our proposed solution is not to reduce 
energy consumption compared to the current works based on 
simple linear regression. Although our solution to spend twice 
the amount of energy compared to simple linear regression, it is 
still cheaper than the application without data reduction. Tests 
were run in Tossim simulator involving simple linear 
regression function (one dependent variable and one 
independent variable) and multiple linear regression function 
(one dependent variable and more than one independent 
variable). 

A. Application versions 

The performance evaluation was done through four 
application versions, which we used to simulate and compare 
multiple linear regression to simple linear regression and of the 
original version of a monitoring application. This monitoring 
application simulates the gathering of three variables from the 
environment, as temperature, humidity and light. 

The TinyOS 2.x provides for default, packets up to 28 bytes 
to be sent by applications of sensor nodes. Therefore, we only 
use the amount of fields with their respective sizes needed to fit 
the maximum acceptable size. We created four application 
versions to achieve the simulations, where: 

• First version (a.k.a Original):  sends temperature,
humidity and light readings periodically every 1024
clock shots from the sensor node, without performing
prediction. This version was created to serve as base
for us to verify the energy consumption in the later
versions, which use prediction for data reduction. It is
the original application (without prediction). For this
version there is only one type of application packet of
20 bytes containing readings of data gathered of the
temperature, humidity and light variables. In addition,
this packet contains information to be manipulated by
the network layer.

• Second version (a.k.a SimpleCount):  modified version
of the original application through of a simple linear
regression function. It sends only β and α coefficients
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for each dependent variable, without sending any 
reading. It uses a counter (time variable) as the 
independent variable to predict the temperature, 
humidity and light variables. This version is based on 
the method proposed by current works as Matos et al. 
[5]. In this version, we created two types of application 
packets: one packet of 20 bytes containing β and α 
coefficients calculated for each dependent variable; and 
one reduced size packet of 10 bytes to send the 
message that the sensor node is spatially correlated to a 
neighbor sensor node. Moreover, the two packets 
above containing information to be manipulated by the 
network layer. 

• Third version (a.k.a SimpleTemperature):  modified
version of the second version through a simple linear
regression function using the temperature as
independent variable, instead of time variable. It sends
reading samples of the temperature variable and β and
α coefficients for each dependent variable (except
temperature) to predict the dependent variables
humidity and light. The temperature was chosen as
independent variable due to the results obtained from
coefficient r, which can be seen later in the next
section. Three types of application packets were
created in this version: one packet of 20 bytes
containing β and α coefficients calculated for each
dependent variable (except the temperature variable);
one reduced size packet of 10 bytes to send the
message that the sensor node is spatially correlated to a
neighbor sensor node; and one packet of 18 bytes
containing 10 readings of temperature in sequence to
be used in the prediction of the humidity and light
variables. In addition, the three packets above
containing information to be handled by the network
layer. The temperature variable is sent in sequence in a
same packet, because it is not more predicted by the
sink and is also used to predict the other two variables.

• Fourth version (a.k.a. Multiple):  modified version of
the original application through a multiple linear
regression function, using counter and temperature as
independent variables. Our proposed method is based
on this version. It sends reading samples of
temperature and β and α coefficients for each
dependent variable (except temperature) with , ,  where . It predicts the dependent
light and humidity variables. Three types of application
packets were created in this version: one packet of 20
bytes containing β and α coefficients calculated for
each dependent variable (except temperature), with, , where ; one reduced size packet
of 10 bytes to send the message that the sensor node is
spatially correlated to a neighbor sensor node; and one
packet of 18 bytes containing 10 temperature readings
in sequence to be used in the prediction of the humidity
and light variables. In addition, the three packets above
containing information to be manipulated by the
network layer. The temperature variable is sent in
sequence in a same packet as in the third version.

B. Scenarios  

We simulated six different scenarios 30 times each. The 
scenarios have all four application versions and the number of 
nodes ranges from 4 to 100. All results obtained from 
experiments have confidence interval of 95%. We observed 
from the trace that the light variable presented different values. 
Also, it was verified that the type of topology and density 
influenced the results. Then, in order to evaluate the 
performance, scenarios with the following characteristics were 
used: 

• Scenario 1:  Gathered readings with the values of the
light variable constant, topology in grid and network
density with one sensor node every 5 meters.

• Scenario 2:  Gathered readings with the values of the
light variable not constant, topology in grid and
network density with one sensor node every 5 meters.

• Scenario 3:  Gathered readings with values of the light
variable not constant, random topology and network
density ranging according to the number of sensor
nodes.

• Scenario 4:  Gathered readings with values of the light
variable constant, random topology and network
density ranging according to the number of sensor
nodes.

• Scenario 5:  Gathered readings with values of the light
variable not constant, random topology and fixed
network density.

• Scenario 6:  Gathered readings with values of the light
variable constant, random topology and fixed network
density.

C. Analysis of correlation between gathered variables 

Initially the level of correlation between gathered variables 
by sensor nodes was found to define which variable would be 
the best choice as independent variable. This analysis of 
correlation was run through Pearson's coefficient (r) (Equation 
1) on a real trace of Intel Berkeley Research
(http://db.csail.mit.edu/labdata/labdata.html). The coefficient r 
results (Table I) show that there is a greater correlation between 
the temperature variable and other variables gathered by the 
sensor nodes (such as humidity and light) than with the time 
variable. The time variable is usually used by prediction 
solutions of WSN found on the literature. 

D. Performance evaluation 

We developed and embed all four application versions 
within the sensor nodes in the Tossim. Then, we measured the 
performance of prediction accuracy to reveal how much better 
our solution is compared to currents works. It simulates the 
gathering of temperature, humidity and light without 
prediction. 

SSerr and R2
 results from prediction of the light (Figure 1 – 

Appendix) show that there are different behaviors in the 
scenarios where the light variable is irregular.  
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TABLE I. RESULTS OF THE CORRELATION ANALYSIS 

Temperature Humidity Light Time

Temperature 1.0000 -0.7987 0.4550 -0.2681 

Humidity -0.7987 1.0000 -0.2489 0.1987 

Light 0.4550 -0.2489 1.0000 -0.1807 

Time -0.2681 0.1987 -0.1807 1.0000 

As per previous section, the gathered readings of the light 
variable in the trace are irregular, sometimes they are constant 
and sometimes they are not constant. But, SSerr and R

2
 results 

from prediction of humidity (Figure 2 – Appendix) show for all 
scenarios that the lowest prediction accuracy was obtained 
when we compared simple linear regression based on the time 
and temperature variables as explanatory variable. The best 
prediction accuracy was obtained when multiple linear 
regression was used. The multiple linear regression function 
does not work properly in the presence of low correlation 
between variables. On the other hand, the multiple linear 
regression remains the best choice for predicting of the 
humidity variable. 

The performance evaluation of prediction accuracy was 
repeated to analyze the behavior of our solution. When we 
increase the samples amount, energy consumption decreases, 
SSerr increases and improvement decreases. But, WSN cannot 
spend much energy, thus Scenario 6 was simulated again, due 
to the fact that it had better performance results among the 
other scenarios. The samples amount ranged from 6 (six), 8 
(eight) and 10 (ten), which we respectively named Scenario 6C, 
Scenario 6B and Scenario 6A. Then, the improvement of 
humidity for the application version 4 (multiple linear 
regression) decreased from 0.995868 to 0.978811 (Figure 3a – 
Appendix) and the SSerr of humidity increased from 0.021840 
to 0.203488 (Figure 3b – Appendix). Note also that the 
application version 4 had always better results than the others 
versions. 

The results for light are a little bit different than the results 
for humidity but had the same behavior. The improvement of 
the light for application version 4 (multiple linear regression) 
decreased from 0.999752 to 0.974384 (Figure 4a – Appendix) 
and the SSerr of the light increased from 0.000384 to 0.054342 
(Figure 4b – Appendix). 

E. Light results 

The results for improvement of the prediction of the light 
variable show the drawback of multiple linear regression. 
Where there is no correlation between the variables, prediction 
accuracy decreases or does not work properly. Table II and 
Table III (Appendix) show more details of the results of SSerr 
and R2

. 

Figure 5 (Appendix) shows epochs from a collecting day 
where the correlation between the variables is low. Note that in 
epochs ranging from 3550 to 4900, the light variable increases 
a lot. Consequently, the simple and multiple linear regressions 
tend to worsen prediction accuracy. This explains some 
abnormal results when we used the light variable as 
independent variable. 

VII. CONCLUSIONS

Several sensor boards are able to monitor more than one 
variable (multisensor), adding new challenges, such as 
increasing precision by reducing prediction error. So, we 
propose a method to improve prediction accuracy on WSN data 
reduction by applying multivariate spatial and temporal 
correlation. 

We conducted experiment simulations involving simple and 
multiple linear regression functions to assess our prediction 
solution. Results of SSerr and R

2
 show that multivariate 

correlation method outperforms current methods of prediction 
accuracy. 

Therefore, we conclude that the solutions currently adopted 
are more susceptible to errors than our proposal. Usually they 
use simple linear regression based on the time variable as 
independent variable. Although multiple linear regression 
spends a little more energy than simple linear regression in data 
communication, it may be the best choice. 

ACKNOWLEDGMENT 

Carlos Giovanni would like to thank the State University of 
Piauí (UESPI) to support as professor of Computer Science. 

REFERENCES 

[1] Hair, J., Black, W., Babin, B., and Anderson, R (1998). Multivariate 
Data Analysis. Prentice Hall. 

[2] Koshy, J., Wirjawan, I., Pandey, R., and Ramin, Y. (2008). Balancing 
computation and communication costs: The case for hybrid execution in 
sensor networks. Ad Hoc Networks, 6(8):1185 – 1200. Energy Efficient 
Design in Wireless Ad Hoc and Sensor Networks. 

[3] Li, J., Deshpande, A., and Khuller, S. (2010). On computing 
compression trees for data collection in wireless sensor networks. In 
Proceedings of the 29th conference on Information communications, 
INFOCOM’10, pages 2115–2123, Piscataway, NJ, USA. IEEE Press. 

[4] Liu, C., Wu, K., and Pei, J. (2007). An energy-efficient data collection 
framework for wireless sensor networks by exploiting spatiotemporal 
correlation. Parallel and Distributed Systems, IEEE Transactions on, 
18(7):1010 –1023. 

[5] Matos, T. B., Brayner, A., and Maia, J. E. B. (2010). Toward in-network 
data prediction in wireless sensor networks. In Proceedings of the 2010 
ACM Symposium on Applied Computing, SAC ’10, pages 592–596, 
New York, NY, USA. ACM. 

[6] Seo, S., Kang, J., and Ryu, K. H. (2005). Multivariate stream data 
reduction in sensor network applications. In EUC Workshops’05, pages 
198–207. 

[7] Silva, O., Aquino, A., Mini, R., and Figueiredo, C. (2009). Multivariate 
reduction in wireless sensor networks. In Computers and 
Communications, 2009. ISCC 2009. IEEE Symposium on, pages 726–
729. 

[8] Skordylis, A., Guitton, A., and Trigoni, N. (2006). Correlation-based 
data dissemination in traffic monitoring sensor networks. In Proceedings 
of the 2006 ACM CoNEXT conference, CoNEXT ’06, pages 42:1–42:2, 
New York, NY, USA. ACM. 

[9] Vuran, M. C., Akan, O. B., and Akyildiz, I. F. (2004). Spatio-temporal 
correlation: theory and applications for wireless sensor networks. 
Comput. Netw., 45:245–259. 

[10] Xu, Y. and Lee, W.-C. (2003). On localized prediction for power 
efficient object tracking in sensor networks. In Distributed Computing 
Systems Workshops, 2003. Proceedings. 23rd International Conference 
on, pages 434 – 439. 

6



APPENDIX – FIGURES AND TABLES 

(a) Improvement for light (b) SSerr for light 

Figure 1  Improvement and SSerr of the prediction performed by application versions for the variable light. 

(a) Improvement for humidity (b) SSerr for humidity 

Figure 2  Improvement and SSerr of the prediction performed by application versions for the variable humidity. 

(a) Improvement for humidity (b) SSerr for humidity 

Figure 3  Improvement and SSerr of the prediction performed by application versions for the variable humidity ranging sample amount (Scenario 
6A – ten samples, Scenario 6B – eight samples and Scenario 6C – six samples). 
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(a) Improvement for light (b) SSerr for light 

Figure 4  Improvement and SSerr of the prediction performed by application versions for the variable light ranging sample amount (Scenario 6A – ten 

samples, Scenario 6B – eight samples and Scenario 6C – six samples). 

Figure 5  Epochs from a collect day where the variable light is less correlated with the variables temperature and humidity. 

TABLE II. PERFORMANCE RESULTS OF THE SSERR AND R2
 FROM ALL VERSIONS IN SCENARIOS 1, 4 AND 6 

Independent variable

Count (Time) Temperature Count and Temperature 

Version 2 Version 3 Version 4 

SSerr R2 Sserr R2 SSerr R2

Temperature 0.210300 0.296891 - - - - 

Humidity 9.355700 0.025813 2.033940 0.788210 0.203488 0.978811 

Light 2.121380 0.000000 0.073135 0.965525 0.054342 0.974384 

TABLEIII. PERFORMANCE RESULTS OF THE SSERR AND R2
 FROM ALL VERSIONS IN SCENARIOS 2, 3 AND 5 

Independent variable

Count (Time) Temperature Count and Temperature 

Version 2 Version 3 Version 4 

SSerr R2 Sserr R2 SSerr R2

Temperature 10.321800 0.290535 - - - - 

Humidity 4.964100 0.476813 8.583820 0.095316 0.185308 0.980470 

Light 140.150060 0.869629 794.135000 0.261311 1075.060000 0.000000
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