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1 CEA, LIST, Sensorial and Ambient Interfaces Laboratory, 91191 Gif-sur-Yvette

Cedex, France
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Abstract.

This paper presents a novel force sensitive structure exploiting a dynamic mode

for probing the elastic properties of living cells. A key feature of this structure is the

possibility to conduct measurements in liquid environments while keeping high dynamic

performances. The structure indeed provides a steady area that can be adapted so that

suspension or adherent cells can be placed in culture medium. The steady area is also

connected to two adjacent beam resonators. Because these resonators never need to

be immersed into the culture medium during measurements, forces applied to cells can

be estimated with a high sensitivity via frequency shifts. In this paper, we conduct

an extensive theoretical analysis to investigate the nonlinear effects of large static

predeflections on the dynamic behavior of the structure. As a proof of concept, we also

report the fabrication, characterization and calibration of a first prototype intended to

deal with suspension cells with a diameter ranging from 100 to 500 µm. This prototype

currently offers a quality factor of 700 and a force sensitivity of ∼2.6 Hz/mN. We

also demonstrate that the prototype is capable of measuring the elastic modulus of

biological samples in a rapid and sufficiently accurate manner without the need of a

descriptive model.
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1. Introduction

Measuring the elastic properties of individual living cells turns out to be of increasing in-

terest. In particular, scientific evidences have revealed connections between alterations

in the elastic modulus (i.e., Young’s modulus) of single cells and pathophysiological

states [1]. For instance, a dramatically reduced Young’s modulus is a characteristic fea-

ture of cancerous cells [2, 3, 4, 5, 6, 7]. By contrast, red blood cells infected by malaria

or sickle cell disease have a significantly higher Young’s modulus than their healthy

counterparts [8, 9].

The elastic modulus of cells hence appears as a meaningful marker to differenti-

ate pathogenic cells and healthy cells. For diagnostic purposes, knowing the Young’s

modulus of cells may hence help to detect the presence of cancer as well as other cell-

based degenerative diseases at earlier stages. Furthermore, elasticity measurements also

have the potential to disclose the specific effects of pharmaceuticals at the cellular level

[10, 11, 12]. Therefore, cell elasticity measurements may also prove advantageous in

drug development.

Among the large variety of macro and microscale devices that have been devel-

oped to investigate various mechanical aspects of living cells (see [13, 14, 15, 16, 17]

and references therein), the atomic force microscope (AFM) probably remains the most

widespread tool for quantifying the Young’s modulus of different types of cells. By way

of example, results published in [2, 3, 4, 5, 6, 7, 8, 9] were all derived from measures

obtained with AFM cantilevers.

Notwithstanding indisputable advantages, using an AFM in order to evaluate the

Young’s modulus of a living cell remains a delicate, time-consuming task. Basically, the

extremity of the AFM cantilever must be cautiously and precisely positioned so that it

can be used to indent or compress the cell. Then, a force-deformation curve must be

acquired. Conventionally, a laser that reflects off the back surface of the cantilever onto

a position sensitive photodiode is used to detect the contact point with the cell and to

monitor the static deflection of the cantilever. However, if the cells are maintained in a

culture medium during measurements, the alignment of the laser beam may become del-

icate. Moreover, in the presence of aqueous solutions, capillary meniscuses arise at the

air-liquid interface when the AFM cantilever is immersed and removed. The compliant

cantilever must then withstand large capillary forces that may engender measurement

artifacts. Alternatively, an optical microscope and a video camera can be utilized [18].

The resolution is however limited by the optical components of the microscope and

measurement uncertainties can occur. Furthermore, such vision-based techniques solely

prove to be suitable for suspension cells with a spherical shape (e.g., red blood cells).

This paper introduces a novel force sensitive structure that has been designed with
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the aim to bring new solutions to these problems. In particular, the structure exploits a

dynamic mode to quantify the Young’s modulus of both suspension and adherent cells

so that valuable information on the cell state can be obtained in a simple and sufficiently

rapid manner for diagnosis applications.

2. Overall description of the structure

2.1. Concept

Structures exploiting resonance phenomena can outperform equivalent structures

operated in a static mode [19]. Despite this potential advantage, resonant cantilevers

are rarely used for determining the Young’s modulus of living cells. Indeed, a major

issue is that dynamic performances of AFM cantilevers are dramatically deteriorated as

soon as they are surrounded by a viscous medium. Thereby, the quality factor of typical

resonant AFM cantilevers immersed in liquids rarely exceeds 10-30 [20, 21].

(a) (b)

Figure 1. (a) Three dimensional schematic of the structure illustrated with

a suspension cell (trapping system not represented). (b) FEA showing the

antisymmetrical vibration mode exploited to extract the elastic properties of a

biological sample: the two outer beams oscillate in antiphase whereas the third central

beam remains immovable.

To extract the Young’s modulus of a single living cell while taking full benefit

of a dynamic mode, even in the presence of a liquid environment, we propose the

suspended structure shown in Fig. 1(a). It consists of a planar structure clamped at

its extremities. It also incorporates two rectangular apertures. Finite Element Analysis

(FEA) conducted with COMSOL V.4 shows that if the structure is mechanically excited

at the proper frequency, it can provide an antisymmetrical vibration mode where the two

outer beams oscillate in antiphase. In the mean time, the third central beam remains

immovable, as depicted in Fig. 1(b).

2.2. Sensing principle

Measuring the force applied to a cell is a prerequisite to extract its Young’s modulus.

Conceptually, if a static force normal to the structure’s plane is applied to the half

span of the central beam, the whole structure deflects. Therefore, the outer beams are
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forced to deflect as well. When the outer beams oscillate as illustrated in Fig. 1(b),

interactions between static and dynamic behaviors occur. Thereby, the static deflection

imposed by the normal force affects their initial resonance frequency. In fact, even slight

static pre-deflection of beam resonators may significantly impact their dynamics [22].

Accordingly, it is possible to recover the magnitude of the normal force applied upon the

central beam by monitoring frequency shifts of the outer beams, as it is demonstrated

in Section 3.

2.3. Key features

The balanced mode of vibration shown in Fig. 1(b) is of particular interest for

determining the Young’s modulus of individual cells. Indeed, it enables high sensitivity

rates offered by resonators without exposing cells to vibrations. Thereby, the area

located at the half span of the central beam can be adapted to place suspension or

adherent cells in liquids (see Fig. 2). A main advantage offered by such a configuration

is that, unlike conventional AFM cantilevers, the oscillating outer beams do not need

to be immersed in the liquid in order to measure a force applied to a cell. Therefore,

major energy losses are avoided and high quality factor can be guaranteed. Because the

outer beams always oscillate in air, potential difficulties related to laser alignments in

liquids are eliminated and measurements based on vision techniques are not required. It

is also worth noticing that since the central beam is inherently force sensitive, low-cost

and commercially available microindenters can be used to apply forces on cells during

experiments. Moreover, artifact measurements due to capillary effects are minimized

since the microindenter is not directly used as a force sensor.

Figure 2. Top: Illustration of an open microfluidic channel for cell studies, as reported

by Ryu et al. (adapted from [23, 24, 25]). Bottom: Conceptual view showing the

structure equipped with a similar open microfluidic channel (fluid inlet and outlet not

represented).
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3. Theoretical analysis

In this section, we demonstrate that the resonant structure can act as a force sensitive

cell substrate. To predict frequency shifts engendered by a normal force F applied to

the central beam, static and dynamic behaviors are studied independently. We here

mention that the experimental implementation of an open microchannel such as the one

sketched in Fig. 2 is currently under investigation and is not addressed in this paper.

Consequently, the presence of an open microchannel is not considered in the following

analysis.

3.1. Static behavior: large deflection of the structure

A static analysis including nonlinear effects is first conducted in order to detail how

the outer beams exactly behave during large deflections of the whole structure. Due to

symmetry, and without loss of generality, our analysis can be limited to one fourth of

the structure, as sketched in Fig. 3.

Figure 3. Top: for predicting the quasi-static deflection of the structure engendered

by a normal force F , only the darker “tuning fork” (top view) is considered. Bottom:

equivalent one-dimensional model (side view) of the colored beams (proportions

exaggerated for illustration purposes).

This quarter structure, similar in shape to a tuning fork, is composed of three

segments: the overhang (black), the central tine (dark gray), and the outer tine (light

gray). All segments are assumed to satisfy Bernoulli’s beam theory. One-dimensional

coordinate functions are used to approximate the displacement field of each segment.

To guarantee enough degrees of freedom, the flexural displacement w1,2,3(x) of each

segment is modeled by third order polynomial expressions










w1(x) = a0 + a1 x + a2 x2 + a3 x3

w2(x) = a4 + a5 x + a6 x2 + a7 x3

w3(x) = a8 + a9 x + a10 x2 + a11 x3.

(1)
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The three polynomials in (1) are then used to calculate the total potential energy

stored by the tuning fork during deflection

Utf = Ub + Us (2)

where Ub is the sum of strain energies developed by each segment during bending

Ub =

3
∑

i=1

1

2
EIi

∫ di

ci

(

d2wi

dx2

)2

dx. (3)

In (3) c1 = 0, d1 = l/2, c2,3 = l/2, d2,3 = l. Ii are the moments of inertia of the three

segments with I1 = bh3/4 and I2 = I3 = bh3/12, E represents the Young’s modulus of

the structure’s material, the width b and the length l are defined in Fig. 3 and h is the

structure’s thickness.

In addition, Us is the sum of energy contributions due to the midplane stretching

of the segments that occurs during deflection

Us =

3
∑

j=1

EAj

4l

[

∫ dj

cj

(

dwj

dx

)2

dx

]2

(4)

where c1 = 0, d1 = l/2, c2,3 = l/2 and d2,3 = l. Aj in (4) represents the cross section

areas of the three segments with A1 = 3bh and A2,3 = bh. The total potential energy

function can hence be written as

Φ = Utf − W (5)

where W = F w2(l) is the work done by the punctual force F .

Applying the principle of minimum potential energy, one sets for each unknown

coefficient ai

∂ Φ

∂ ai
= 0. (6)

The problem is then augmented with Lagrange multipliers by considering a set of

constraints. To obtain satisfactory results, mechanical constraints do not need to be

considered. Enforcing geometrical constraints is enough to provide an accurate solution.

Assuming that the central tine and the outer tine are rigidly linked to the overhang at

x = l/2, and that the central and outer tines are terminated by sliding conditions (see

Fig. 3), the following set of conditions can be enforced

w1(0) =
d w1

dx
(0) = 0 (7)

w1(l/2) = w2(l/2) = w3(l/2) (8)

dw1

dx
(l/2) =

dw2

dx
(l/2) =

dw3

dx
(l/2) (9)

dw2

dx
(l) =

dw3

dx
(l) = 0. (10)
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The augmented system can then be numerically solved for different values of F . To

compute such a system, an algorithm such as the one reported in [26] was used with the

following numerical values: l = 12.5 mm, b = 0.25 mm, h = 0.1 mm, E = 212 GPa.

To validate this modeling approach, FEA was used as a reference tool. COMSOL

simulations were conducted in the nonlinear deflection mode with the values of l, b, h

and E aforementioned. We also specified a density of 8030 kg m−3 and a Poisson’s

ratio of 0.29 for the structure’s material. These values were selected in accordance with

the material utilized for the prototype of Section 4. For a point force F = 260 mN

applied at the half span of the central beam, Fig. 4 shows the deflection profile of the

structure. Analytical results are in good agreement with FEA simulations and permit to

predict the deflection of the structure accurately. It can also be seen that the deflection

amplitude of the outer beam is smaller than the deflection of the central beam.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
−3

−2.5

−2

−1.5

−1

−0.5

0x 10
−4

D
ef

le
ct

io
n 

(m
)

Position along x (m)

Overhang

Central beam

Outer beam

F

Analytical
COMSOL

Figure 4. Deflection profile and deflection amplitude when a normal force F = 260 mN

is applied at the half span of the central beam.

This intuitive result is also confirmed by Fig. 5 which compares the deflection

amplitude of both beams as a function of the force F applied. Analytical and FEA

results are again in accordance. Figure 5 also clearly illustrates that the stretching (i.e.,

nonlinear) effect progressively dominates as the beams deflection increases. Thereby,

for deflections above ∼50% of the structure’s thickness, the structure becomes clearly

stiffer.

3.2. Dynamic analysis: effects of a static predeflection on the oscillation of the outer

beams

We now demonstrate that, if the force F is applied while the outer beams oscillate as

shown in Fig. 1(b), the variations of deflection imposed by F actually impact the initial

resonance frequency of the outer beams. To demonstrate such a coupling between static

and dynamic behaviors, a symmetric structure again simplifies the analysis. Indeed,
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Figure 5. Half span deflections of the central beam and one outer beam as a function

of the force F applied to the central beam. Due to symmetry, the second outer beam

deflects exactly in the same manner.

valuable insights into the structure’s dynamics can be grasped by restricting the analy-

sis to a single outer beam (see Fig. 6).

Figure 6. For predicting frequency shifts, only one outer beam is considered.

Vibrations (dashed green lines) take place around an equilibrium position (thick green

line). The curved shape is indirectly engendered by static deflections (proportions not

to scale)

To a first approximation, one can choose to model the outer beam as a hinged-

hinged beam terminated by two rotational springs of stiffness kr1 (see Fig. 6). The

presence of rotational springs is justified by the facts that extremities of the outer

beam are attached to the overhangs. Intuitively, it can be foreseen that, although the

overhangs can be considered as axially immovable ends, they should not act as ideal

clamping supports. In the literature, elastic rotational springs are often used to model

such a flexibility [27, 28, 29].

Again, energy approaches can be exploited to conveniently handle the configuration
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of Fig. 6. Because the outer beam is terminated by rotational springs attached to pinned

ends supports, it is conventional to assume a displacement function in the form of a sine

w(x) = Ds sin
(πx

l

)

(11)

where Ds is the midspan deflection of the outer beam.

Ds is related to the force F applied upon the central steady beam, and can be

estimated from the previous static analysis (see Fig.3)

Ds = w3(l) − w1(l/2). (12)

Conceptually, it is however more convenient to consider that Ds is rather due

to an unknown equivalent virtual force Fv (see Fig. 6). With an energy approach, a

relationship between Ds and Fv can be derived. Considering that Fv is applied at the

beam midspan, the potential energy stored by the beam is the sum of the following

contributions

UT = Ub + Us + Urs . (13)

In (13) Ub is the bending energy of the beam

Ub =
EI

2

∫ l

0

(

d2w

dx2

)2

dx (14)

Us is the energy developed during the midplane stretching of the beam

Us =
EA

8 l

[

∫ l

0

(

dw

dx

)2

dx

]2

(15)

and Urs is the energy stored by the two rotational springs of stiffness kr1

Urs =
kr1

2
θ2

0
+

kr1

2
θ2

l (16)

where θ0 and θl are the slopes
dw

dx
evaluated at x = 0 and x = l, respectively.

Considering that the work done by Fv is W1 = Fv w(l/2), the total potential energy

function Φ1 is

Φ1 = −Fv Ds +

[

π2kr1

l2
+

Ebh3π4

48l3

]

D2

s +
Ebhπ4

32l3
D4

s . (17)

Minimizing (17) with respect to Ds yields a cubic force-centered-deflection law

Fv = k1 Ds + k3 D3

s (18)

where

k1 =
Ebh3π4

24l3
+

2kr1
π2

l2
and k3 =

Ebhπ4

8l3
. (19)

In (19), k1 and k3 are linear and nonlinear spring constants, respectively.
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As in [30], it can now be assumed that small deflections of the beam about a mean

deflection Ds can be described approximately by a single stiffness value. An effective

spring constant is found by deflecting the beam from its equilibrium position by an

arbitrary amount ∆d (see Fig. 6), so that

Fv = k1 (Ds + ∆d) + k3 (Ds + ∆d)
3. (20)

Considering that vibration amplitudes ∆d are sufficiently small, terms proportional

to ∆2

d and ∆3

d in (20) can be neglected. Then, an equivalent stiffness of the outer beam

may be approximated by

keq =
dFv

d∆d
≈ k1 + 3 k3 D2

s . (21)

As often in structures involving coupled beams, vibrating beams can be modeled

to a first approximation as one degree of freedom oscillators (e.g., [31, 32]). If the single

outer beam is assumed to oscillate as an undamped lumped-parameter system, the static

deflection Ds affects its natural frequency as follows

f

f0

≈

[

1 +
3 k3

k1

D2

s

]1/2

. (22)

As previously, the numerical values E = 212 GPa, b = 0.25 mm, l = 12.5 and

h = 0.1 mm were used to compute (22). An order of magnitude for the rotational

stiffness kr1 was also found by using [33]

kr1 =
4 E bh3

3 l
. (23)

Equation (23) gives kr1 ≈ 5.6×10−3 Nm/rd. Nonetheless, (23) is originally intended

to estimate the rotational spring constant of anchors for clamped-clamped beams. In

our case, the outer beams are attached to the overhangs (see Fig. 3) which do no act as

ideal clamps. Therefore, the value of kr1 was slightly adapted to fit prestressed modal

analyses conducted with COMSOL. For kr1 = 3.45 × 10−3 Nm/rd, Fig. 7 proves that

(22) accurately predicts the amount of frequency change engendered by a force F ap-

plied to the central beam.

Alternatively, and because displacements of the central beam can also be predicted

with respect to the force F applied, the amount of frequency change can also be

estimated as a function of a displacement imposed to the central beam (see Fig. 8).

It is of interest to note that in both cases, quasi linear regions are predicted around

points P . In particular, a force sensitivity of 2.91 Hz/mN is predicted if the force

applied to the central beam exceeds 100 mN (see Fig. 7).

4. Experiments

To demonstrate the possibility to extract the Young’s modulus of living cells with the

structure, we fabricated a first prototype intended to deal with suspension cells whose

diameter approximately ranges from 100 to 500 µm. This monolithic prototype was
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Figure 7. Evolution of the resonance frequency of the outer beams when a vertical

force F is applied upon the half span of the central beam.
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Figure 8. Evolution of the resonance frequency of the outer beams when a vertical

displacement is imposed upon the half span of the central beam.

fabricated from a single sheet of biocompatible stainless steel. All dimensions are those

used for the theoretical analysis. Considering the total length of the prototype (25 mm),

precision wire cut electric discharge (EDM) machining was favored for rapid prototyp-

ing. Wire cut EDM, however, did not permit to implement an open microchannel.

Mechanical excitation was provided by a 3 mm long, 2 mm wide and 200 µm

thick piezoelectric (PZT) element (Physik Instrumente PIC151). This PZT element

was bonded onto the prototype with conductive paste and driven by an AC signal with

a function generator (Agilent 33120A) connected to a laboratory power amplifier (New-

tons4th LPA400).

During experiments, the prototype was suspended between two clamps. One of the
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clamps was fixed to a manual micropositioning stage that allowed horizontal translations

along the y direction. To ensure a firm attachment of the prototype and to avoid

slipping, the clamps were tightened with screws. The whole setup (see Fig. 9) was

mounted on a pneumatic antivibration isolation table to minimize the presence of

external disturbances. To measure small static deflection as well as beam oscillations,

we do not use a laser coupled to a sensitive photodiode. Instead, we used a home

made optical fiber displacement probe. This probe was constituted of two step index

multimode fibers having a diameter of 50 µm at their extremity. Such dimensions offered

a compact sensing head that could also be implemented in a future microfabricated

version of the structure. Further details about this fiber displacement probe can be

found in [34].

Figure 9. Top view of the prototype and experimental arrangement. The inset

provides a microscope view of the area indicated by dashed lines. CB and OB stand

for central beam and outer beams, respectively. Scale bar equals 1.5 mm.

4.1. Evaluation of static deflections

Experiments were first carried out to investigate the static deflection of the prototype.

To bend the structure, an indenter terminated by a metal bead with a diameter of

500 µm was placed beneath the central beam. The stiffness of the metal bead was much

higher than the stiffness of the structure. With a micropositioning stage (Physik Instru-

mente M112-1DG), incremental motions of 10 µm along the z direction were imposed to

the central beam. Considering the prototype symmetry, deflection data were acquired

only for one outer beam.

Fig. 10 demonstrates that the prototype deflected as expected during experiments,

even though the deflection of the outer beams tends to be 12% overestimated by theory

when the deflection of the central beam is above 30 µm. Several uncertainties sources

could explain this slight estimation error (e.g., values of Young’s modulus and Poisson’s
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Figure 10. Difference of static deflection ∆d between the central and the outer beams.

Solid line is plotted thanks to the curves from Fig. 5. Circles represent experimental

data. Dashed line is a fitting curve.

ratio used for calculations; uncertainties related to the fabrication process, the clamping

of the prototype, etc.).

4.2. Evaluation of dynamic performances

The dynamic behavior of the prototype was then explored. In a first step, the indenter

was removed and no force was applied to the central beam. To actuate the proto-

type, the PZT element was driven with a sinusoidal voltage. The peak-peak amplitude

of this sine signal after the power amplifier was 9V. The excitation frequency was then

swept with the function generator in order to find the resonance modes of the prototype.

As illustrated by Fig. 11(a), the antisymmetrical mode of interest was found at 3180 Hz.

(a) (b)

Figure 11. Oscilloscope screenshots showing: (a) The two outer beams oscillating in

antiphase when the structure is driven at 3180 Hz; (b) Vibrations measured at the half

span of the central beam with no force applied.
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When the PZT element was driven with a voltage supply of 9 V, the peak-peak

oscillation amplitude of the outer beams was 22 µm. During oscillations of the outer

beams, a lot of attention was paid to check if potential vibrations were transferred to the

central beam. As a matter of fact, they were very limited. As shown in Fig. 11(b), they

never exceeded 500 nm, that is to say 2% of the oscillation amplitude of the outer beams.

Droplets of water were also deposited upon the central beam with a micropipette. No

particular effect on the droplets was observed. It was also confirmed that the presence

of small amounts of liquids on the central beam did not alter the vibration mode.

In addition, we explored the frequency response of the antisymmetrical vibration

mode. With the outer beams oscillating in air, a quality factor of 700 was obtained (see

Fig. 12). This quality factor was not deteriorated when a liquid droplet was deposited

on the central beam. This is a high value when compared to typical quality factors of

AFM cantilevers in liquids (10-30).

Figure 12. Experimental frequency response for the prototype of Fig. 9 driven around

3180 Hz.

4.3. Frequency variations induced by large displacements

The coupling between static and dynamic behaviors was then investigated. To that end,

oscillations of the outer beams were monitored while the central beam was bent with the

indenter. For a total displacement of the indenter of 250 µm, the oscillation frequency

of the outer beams evolved as shown in Fig. 13.

Contrary to theoretical predictions, it is experimentally observed that for small

deflections of the central beam (i.e., deflections lower than 100 µm), the frequency of

the outer beams actually decreases. Such a behavior has been reported for buckled and

deflected beams subjected to axial loads [35, 36, 37, 38, 39]. Nevertheless, this decrease

finally appears as a transition period. Indeed, once the stretching effect dominates at

large deflections, a behavior very similar to the one initially predicted is retrieved. In

particular, it is worth noticing that the curve in Fig. 13 offers a linear displacement
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Dashed line represents variations predicted by Fig. 8 for the same initial frequency.

sensitivity of 5.75 Hz/µm around the point S. This displacement sensitivity is actually

∼17% better than the one expected initially by theory (4.8 Hz/µm).

4.4. Frequency variations induced by small forces

From the analysis of Fig. 13, it is clear that the prototype provides a much better

sensitivity when the central beam is largely bent. The central beam was hence main-

tained permanently curved (i.e., even with the indenter removed) to exploit the region

around the point S. Obviously, this axial translation compressed the whole structure.

As a result, the initial resonance of the antisymmetrical vibration mode decreased from

3180 Hz to 3080 Hz. Nevertheless, no significant impact on the dynamic behavior of the

prototype was noticed.

To estimate the force F applied to the central beam during small displacement

intervals, the force developed by our indenter was characterized. By pressing the

indenter against a precision electric scale (Kern 440-33), a linear relationship was found

(see Fig. 14(a)). Then, frequency variations with respect to the force generated by the

indenter were measured. With the prototype predeflected, only a linear increase of the

frequency was observed, as expected (see Fig. 14(b)). This linear increase corresponded

to a force sensitivity of 2.56 Hz/mN. Although a predeflection of the whole structure was

not included in our theoretical analysis, the force sensitivity measured experimentally

was only ∼12% lower than expected.

4.5. Direct extraction of the elastic modulus of a suspension cell

With the suspended structure, the force applied to a cell can be measured. In addition,

the cell deformation must also be determined. Conventionally, force-deformation infor-

mation are then used in conjunction with Hertz theory to retrieve the Young’s modulus



Resonant structure for measuring the elastic properties of cells 16

(a)

(b)

Figure 14. (a) Experimental force-displacement relationship obtained for small

displacements of the indenter. (b) Lin ear frequency shift measured for the structure

maintained slightly curved. Circles correspond to experimental data. Solid lines are

fitting curves.

of the cell. Hertz theory, however, is subjected to a number of important assumptions.

In particular, when dealing with a living cell, the condition of negligible force adhesion

is not always fulfilled. Furthermore, for suspension cells, Hertz theory requires to know

the radius of curvature of the cell to be probed. As an alternative, we preferred to

calibrate our structure so that a sufficient estimation of the Young’s modulus of the cell

could be rapidly obtained without the use of a descriptive model. For calibration, two

gel samples T7 and T5 were bought from the company Gelmec. They had a Young’s

modulus of 37.5 kPa and 119 kPa, respectively.

The gel samples were manually prepared so that their size was as similar as possible

to the size of the cells targeted. Thereby, efforts were made to obtain small cubic pieces

whose edges measured approximately 500 µm. The gel samples were then cautiously

placed on a flat indenter and compressed upon the central beam of the structure. To
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probe only the elastic properties of the gels, the amount of compression applied did not

exceed 10% of their thickness [40]. Moreover, the velocity of the translation steps was

kept very slow (4 µm/s) to minimize the occurrence of viscoelastic effects [18, 41].

Figure 15. Side view of the slightly curved prototype for measuring the Young’s

modulus of a lobster egg. The optical fiber probe used for monitoring frequency shifts

of the outer beams is visible in the upper right corner. Scale bar represents 500 µm.

The same protocol was repeated with a biological entity. Because embryos or

oocytes could not be obtained easily, we used a lobster egg with a diameter of 500 µm

as a viable alternative (see Fig. 15). Linear frequency variations induced during the

compression of the gel samples and the lobster egg are compared in Fig. 16(a).

To determine more precisely the elastic modulus of the lobster egg, slopes ST5

and ST7 indicated in Fig. 16(a) were used as single values plotted against the Young’s

modulus of the gels (see Fig. 16(b)). Since only the elastic properties of the materials

were probed, a linear regression equation linking these two values could be determined

[42]

Segg = 0.02914 × Eegg − 0.2329 (24)

where Segg is the slope of frequency variations measured for the lobster egg and

Eegg is its Young’s modulus. For Segg = 2.03 Hz/mN, (24) yields a Young’s modulus of

78 kPa for the lobster egg. Although no reference value has been found for lobster eggs

in the literature by the authors, the Young’s modulus obtained is in accordance with

orders of magnitude usually reported for most living cells [43, 44, 45].

5. Conclusion

This paper has presented a new force sensitive structure exploiting a dynamic mode

for probing the elastic modulus of living cells. A key feature of the triple beam con-

figuration reported is the possibility to conduct measurements in liquids while keeping

high dynamic performances. Another potential advantage is the possibility to adapt

the structure’s design for addressing both suspension and adherent cells. A first meso-

cale prototype has been characterized and calibrated with commercial gel samples. The
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Figure 16. (a) Frequency variations measured during the compression of the

commercial gel samples and the lobster egg; (b) Interpolation curve for extracting

the Young’s modulus of the lobster egg.

Young’s modulus of a lobster egg has also been experimentally measured without the

need of a descriptive model. Such an indirect technique might prove to be useful for

diagnosis applications since relative changes or observation of tendencies may be suffi-

cient to bring valuable information on the cell state.

Although performance characteristics of the prototype are encouraging, several

challenges still need to be addressed. In particular, it remains presently difficult to

obtain repeatable results due to our current clamping system. Likewise, maintaining the

structure in a slightly curved position turns out to be a delicate task. A microfabricated

version of the structure aimed at solving these problems is presently under investigation.

The implementation of an open fluidic channel coupled to a simple positioning and/or

trapping system is also ongoing. In the near future, tests with a larger number of cells

will also be conducted to validate the possibility to implement the suspended structure

in a workable platform.
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