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I. INTRODUCTION

Rheology is the study of deformation and flow of matter. True to its name, microrheology simply refers to "rheology on the micrometer (length), microliter (volume) or microsecond (time) scales". The continuing need to quantify material properties at the micro-scale drives researchers to find a technique that satisfies this objective, since the traditional mechanical rheometers are limited to a small low-frequency range (typically <100 Hz) and require relatively large samples (tens of milliliters). In the last decade, opticsbased microrheology techniques, such as quasielastic light scattering (QELS), diffusing wave spectroscopy (DWS), and video and laser particle tracking techniques, have proved to be powerful in studying the high-frequency viscoelastic properties of various complex fluids. These techniques are classified as passive microrheology, i.e., ones in which the linear viscoelastic regime is attained, since they are based on the application of the fluctuation-dissipation theorem in which the mean-square displacement (MSD) of a thermally-induced probe particle is monitored and directly related to the viscoelasticity of the materials (at thermal equilibrium) through a generalized Stokes-Einstein relation (GSER) [START_REF] Mason | Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[END_REF][START_REF] Mason | Particle tracking microrheology of complex fluids[END_REF]. The continuing developments in the theory and instrumentation of these techniques have resulted in the elimination of errors and limitations that had been introduced in the infancy of these techniques. However, some important issues still remain concerning probe particle-fluid interactions and their influence on the viscoelasticity of the studied liquid, their complicated setup and rearrangements, and lengthy calibration and data treatment.

Microcantilevers fall under the category of MicroElectroMechanical Systems (MEMS)

and rely primarily on mechanical phenomena and involve the transduction of the mechanical energy for detection [START_REF] Kovacs | Micromachined Transducers[END_REF]. They have received a great deal of attention for use as chemical sensors in gas or liquid media and as biosensors [START_REF] Fadel | Chemical sensing: millimeter size resonant microcantilever performance[END_REF][START_REF] Vidic | A new cantilever system for gas and liquid sensing[END_REF][START_REF] Lavrik | Cantilever transducers as a platform for chemical and biological sensors[END_REF][START_REF] Ph | Micro-and nanomechanical sensors for environmental, chemical, and biological detection[END_REF][START_REF] Zougagh | Micro-electromechanical sensors in the analytical field[END_REF][START_REF] Wang | MEMSbased gas flow sensors Microfluid[END_REF][START_REF] Dufour | Unconventional uses of microcantilevers as chemical sensors in gas and liquid media Sens[END_REF], viscometers [START_REF] Jakoby | Monitoring macro-and microemulsions using physical chemosensors Sens[END_REF][START_REF] Agoston | Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids Sens[END_REF][START_REF] Zhao | A MEMS viscometric sensor for continuous glucose monitoring[END_REF][START_REF] Belmiloud | Rheological behavior probed by vibrating microcantilevers[END_REF][START_REF] Smith | A MEMS viscometer for unadulterated human blood[END_REF] and dynamic rheometers [START_REF] Christopher | Development of a MEMS based dynamic rheometer[END_REF]. Since Atomic Force Microscopy (AFM) has been used to study the dynamics of biological materials qualitatively [START_REF] Rotsch | Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy[END_REF], considerable attempts have been devoted to AFM as a probe to study the viscoelasticity of complex fluids quantitatively [START_REF] Mahaffy | Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells[END_REF][START_REF] Du | Study of Elastic Modulus and Yield Strength of Polymer Thin Films Using Atomic Force Microscopy[END_REF][START_REF] Kawakami | Viscoelastic Properties of Single Poly(ethylene glycol) Molecules[END_REF][START_REF] Okajima | Stress relaxation of HepG2 cells measured by atomic force microscopy[END_REF][START_REF] Ogawa | Step response measurement of AFM cantilever for analysis of frequency-resolved viscoelasticity[END_REF]. However, these attempts are only restricted to the low frequency range. With AFM, the attachment of a colloidal sphere to the cantilever of the microscope provides highly accurate measurement of the hydrodynamic interaction between the probe particle and the fluid [START_REF] Mahaffy | Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells[END_REF]. These rheological functions can be subsequently modeled with standard rheological theory and compared with bulk measurements. Based on this approach, Belmiloud and coauthors proposed an analytical model based on a simplified hydrodynamic function [START_REF] Maali | Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids[END_REF] to estimate the material properties (viscosity and density) using the vibrating phenomena of silicon-based microcantilevers [START_REF] Belmiloud | Rheological behavior probed by vibrating microcantilevers[END_REF][START_REF] Youssry | A straightforward determination of fluid viscosity and density using microcantilevers: From experimental data to analytical expressions Sens[END_REF]. (This principle is extended in the current study by taking into account the elastic component of the fluid, as detailed Sec. III)

The microcantilever successfully proved to operate as a microviscometer probe with an acceptable accuracy for measuring the viscosity of various liquids [START_REF] Jakoby | Monitoring macro-and microemulsions using physical chemosensors Sens[END_REF][START_REF] Agoston | Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids Sens[END_REF][START_REF] Youssry | A straightforward determination of fluid viscosity and density using microcantilevers: From experimental data to analytical expressions Sens[END_REF]. In the present study, we extend the theoretical model [START_REF] Belmiloud | Rheological behavior probed by vibrating microcantilevers[END_REF] to exploit the vibrating phenomena of microcantilevers in an attempt to probe the linear viscoelastic spectra of complex fluids, i.e., to test the feasibility of microcantilevers operating as microrheometers.

The rheology of complex fluids is crucial for both applications and basic science since flow-structure relationships are of significant interest as they can provide a key understanding of the stability and performance of various formulations. Among those complex fluids of particular interest are synthetic and biopolymer dispersions and surfactant giant and wormlike micellar (WLM) solutions. These deserve significant attention due to their rich dynamics and unique characteristic mesoscopic structures, which make them ideal complex fluids to study from both fundamental and applications viewpoints. In this context, we test our novel method on various polymer and surfactant WLM solutions, trying to examine its validity in probing the high-frequency viscoelasticity and comparing/combining these results with those of low-frequency probes obtained by dynamic macrorheometry to understand both the slow and fast dynamics-microstructure relationships. The motivation for this study arises from the recent interest in developing microrheological techniques able to overcome the drawbacks introduced by the previously mentioned techniques. Moreover, arrays of several cantilevers covering a broad frequency bandwidth can be integrated on a chip to interrogate microliter-scale volumes of expensive and rare biological fluids for in situ microrheological measurements, thus providing another significant advantage of pursuing a microcantilever-based microrheometer.

II. MATERIALS AND METHODS

Cetylpyridinium chloride monohydrate (CPyCl) and sodium salicylate (NaSal; 99.5%) were purchased from VWR, Belgium, cetyltrimethylammonium bromide (CTAB; >99%) from G-Biosciences, USA, sodium chloride (NaCl; ≥99%) from Acros Organics, and polyethylene oxide (PEO; 400 kDa) and silicone oil from Sigma-Aldrich. All materials have been used without further purification. The surfactant solutions were prepared by mixing the appropriate weights of components (Table 1) with deionized water under continuous stirring for two days, after which the samples were stored for one week at room temperature to relax sufficiently prior to performing the experiments. The polymer solution was prepared by mixing the PEO powder with deionized water and stirring the mixture for two weeks at 40 °C. A drop of chloroform was added to prevent bacterial growth, and the solution was left at rest for two weeks prior to any measurements. The low-frequency viscoelastic behavior (macrorheology) of the examined complex fluids has been investigated using a stress-controlled rheometer AR-G2 (TA Instruments) equipped with a cone and plate geometry (plate diameter 40 mm, cone angle 0.03 rad, gap size 59 µm). The temperature was controlled by Peltier system (±0.1 °C). All measurements have been done at a fixed temperature of 20 °C, at which no change in the homogeneity of viscous modulus G" , and the complex viscosity η*) over an extended frequency range, typically from 1 to 100 kHz depending on the cantilever geometry. Each cantilever provides a deflection spectrum over a specified frequency range which can be significantly extended by merging the spectra of different cantilevers to cover broader range.

III. THEORY

For a vibrating cantilever actuated by an external driving force and immersed in an incompressible fluid, the drag force per unit length exerted on the surfaces of the cantilever beam is a sum of inertial and viscous forces proportional, respectively, to the acceleration and velocity of the beam, and can be written, in the frequency domain, as follows [START_REF] Blom | Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry[END_REF]:
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where w is the amplitude of deflection at the considered location along the microcantilever and f is the excitation frequency. The terms g 1 and g 2 correspond, respectively to the viscous and inertial forces and are related to the imaginary and real parts of the hydrodynamic function [START_REF] Dufour | Theoretical Analysis of Strong-Axis Bending Mode Vibrations for Resonant Microcantilever (Bio) Chemical Sensors in Gas[END_REF]:

(2a) (2b) 
where Γi and Γr are the imaginary and real parts of the hydrodynamic function, is the fluid mass density and b is the cantilever width. For a uniform rectangular cantilever with a finite thickness, Maali et al. [START_REF] Maali | Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids[END_REF] simplified the hydrodynamic function of a ribbon geometry proposed by Sader [START_REF] Sader | Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[END_REF] to be:
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The parameters a1=1.0553, a2=3.7997, b1=3.8018 and b2=2.7364 were estimated by Maali over a wide range of Reynolds number (Re=10 0 -10 3 ) by simply fitting the hydrodynamic expression of Sader to Eqs. 3 [START_REF] Maali | Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids[END_REF]. Parameter , often called the boundary layer thickness, is the thickness of a thin viscous layer surrounding the cantilever over which the velocity has dropped by a factor of 1/e (e=2.72), and can be given by [START_REF] Batchelor | Fluid Dynamics[END_REF]: [START_REF] Fadel | Chemical sensing: millimeter size resonant microcantilever performance[END_REF] where η is the fluid's dynamic viscosity. Under the assumption that no interference exists between higher-order modes of vibration and the first-order mode, the transfer function can be written as: [START_REF] Vidic | A new cantilever system for gas and liquid sensing[END_REF] This function is the ratio of the deflection at the free-end of the cantilever, , to the excitation force at the free-end . H0 denotes the static value of the transfer function, f 0 and ξ are, respectively, the eigenfrequency and the damping coefficient in the fluid which both depend on the terms and , and L is the cantilever length. This permits the imaginary and real parts of the normalized transfer function, with respect to the static value, to be obtained experimentally at each frequency, knowing the module and the phase . Consequently, and in Eqs. 2 can be calculated at each frequency by: (6a)
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where is the mass per unit length of the cantilever, and is the resonant frequency of the cantilever in vacuum. Thus, the determination of the viscous and inertial parts of the drag force allows one to extract analytically at each frequency the viscosity and mass density of the fluid [START_REF] Belmiloud | Rheological behavior probed by vibrating microcantilevers[END_REF][START_REF] Belmiloud | Vibrating Microcantilever used as Viscometer and Microrheometer[END_REF]. It is worth mentioning that this approach has been built on the assumption that the fluid has a negligible elasticity so that the elastic modulus (G') tends to zero. This is not the case for complex fluids such as polymer and surfactant solutions where such fluids have a considerable variation of G' with the frequency.

The apparent viscosity η in Eq. 4 should be replaced by the complex dynamic viscosity η* when investigating the frequency-dependent rheological properties of fluids.

This complex viscosity is linked to the complex shear modulus G* by the equation [START_REF] Ph | Micro-and nanomechanical sensors for environmental, chemical, and biological detection[END_REF] where η' and η" are, respectively, the real and imaginary components of the complex viscosity, and ω is the angular frequency (ω=2πf). Substituting Eq. 7 in Eqs. 2 leads to the following expressions for the elastic (G') and viscous (G") moduli:
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In conclusion, and can be estimated from the amplitude and phase of deflection spectra of a cantilever immersed in a fluid, thereby permitting the viscoelastic rheological properties of the fluid (G', G", η*) to be calculated from Eqs. 8 with a prior knowledge of the fluid's mass density.

IV. RESULTS AND DISCUSSION

We illustrate the application of the proposed method to the study of the rheological behavior of several representative simple Newtonian (silicone oil) and complex fluids. We consider in particular two different types of complex fluids: surfactant WLM and polymer solutions. These solutions are characterized by their rich dynamics and unique mesoscopic structures that make them ideally suited for validating the proposed method. In addition, their high-frequency viscoelasticity has been studied recently using particular microrheological techniques such as DWS [START_REF] Bellour | Brownian motion of particles embedded in a solution of giant micelles[END_REF][START_REF] Cardinaux | Microrheology of giant-micelle solutions[END_REF][START_REF] Willenbacher | Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions[END_REF][START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF][START_REF] Sarmiento-Gomez | Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine[END_REF] and laser particle tracking [START_REF] Buchanan | Highfrequency microrheology of wormlike micelles[END_REF][START_REF] Buchanan | Comparing macrorheology and one-and two-point microrheology in wormlike micelle solutions[END_REF][START_REF] Atakhorrami | High-bandwidth one-and two-particle microrheology in solutions of wormlike micelles[END_REF]; thus, a detailed comparison between the proposed method and these techniques may be made.

A. Linear viscoelasticity and thermal effect

The frequency behavior of materials can give information on molecular structure at the quiescent state. Therefore, the applied force necessary to induce flow should be low enough to avoid destruction of the material's microstructure. Analogous to the strain sweep experiments in conventional rheology, actuation voltage sweep has been conducted to estimate the actuation voltage limit that will ensure operation in the linear viscoelastic regime. Figure 3 shows an example of the amplitude and phase of the ratio between the tip deflection of the LH cantilever immersed in the CPyCl1 solution and the actuation voltage at different voltage values. 
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The For comparison, dynamic strain sweep tests have been conducted for the complex fluids at 1 Hz. This is the common frequency at which such mechanical experiments are frequently done. In contrast to the microrheological data, the representative complex fluids show a decrease in the critical strain amplitudes as follow: PEO>CTAB1≳CPyCl2. Such differences in both the trend and values of the critical strain may be attributed to the larger difference between the frequency at which the conventional rheology (1 Hz) and our microrheology (kHz) were conducted. The slow dynamics and hence the bulk properties of the fluids are dominant at 1 Hz; however, the microscopic properties of a single chain control the dynamic behavior at the kHz frequency scale.

B. Microrheology of Newtonian fluid

The first step in evaluating this method is to run a series of experiments on simple Newtonian liquids of known viscosity and mass density such as silicone oil. The highfrequency rheogram of 20-mPa.s silicone oil, as an example, is depicted in figure 6. It is clear that the silicone oil behaves a liquid-like Newtonian fluid since G" is higher than G' and η* and is almost independent of the frequency. Generally, the overall trend of the dynamic moduli obtained by microrheology shows a quite good continuity with the macrorheology data, particularly with G" which perfectly exhibits a scaling law G"~ω 1 over six decades of frequency. The low-frequency G' of a Newtonian fluid usually tends to zero; therefore, a high degree of uncertainty in G' obtained by macrorheology is expected. One of the greatest advantages of the proposed method is the large range of frequencies that it covers. This is immediately apparent from figure 6 which shows the high-frequency viscoelastic behavior of a Newtonian fluid that is not accessible by conventional rheometry because of its inertial constraint. Optics-based techniques such DWS [START_REF] Mason | Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[END_REF][START_REF] Scheffold | Diffusing-wave spectroscopy of nonergodic media[END_REF] and particle tracking [START_REF] Mason | Particle tracking microrheology of complex fluids[END_REF][START_REF] Buchanan | Highfrequency microrheology of wormlike micelles[END_REF][START_REF] Buchanan | Comparing macrorheology and one-and two-point microrheology in wormlike micelle solutions[END_REF][START_REF] Gittes | Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations[END_REF] aim to achieve the same goal in probing the high-frequency behavior of complex fluids. However, they have shown some drawbacks and limitations stemming from the significant contribution of the probe particle to the sample's viscoelasticity [START_REF] Scheffold | Diffusing-wave spectroscopy of nonergodic media[END_REF][START_REF] Krall | Internal Dynamics and Elasticity of Fractal Colloidal Gels[END_REF][START_REF] Romer | Sol-Gel Transition of Concentrated Colloidal Suspensions[END_REF], possible particle-sample interactions [START_REF] Verma | Attractions between Hard Colloidal Spheres in Semiflexible Polymer Solutions[END_REF][START_REF] Starrs | One-and two-point micro-rheology of viscoelastic media[END_REF][START_REF] Mizuno | Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems[END_REF], a limited medium ergodicity and opacity and a specific mismatch between the medium and probe particles as well as special calibration and alignment issues related to the optical setup and time-consuming data treatment. In contrast, our approach relies on the absence of fluidcantilever chemical interactions since the cantilever's surface is isolated by a inert inorganic layer. Also, no complicated setup and calibration issues are introduced, nor is data treatment required. Moreover, neither prior knowledge of the surface chemistry of the cantilever nor mismatches between the examined liquid and probe device are needed.

Since the deflection spectra are collected via optical instrument (vibrometer), the opacity of fluids may be considered as a constraint; however, this limitation could be overcome by using electrical measurements (piezoresistance and gain-phase analyzer). However, a relatively turbid PEO solution and non-ergodic concentrated surfactant solutions could be examined using optical measurements as will be described below.

C. Microrheology of polymer solution

The first model complex fluid for testing our approach is the semidilute solution of polyethylene oxide (PEO) that forms a viscoelastic entanglement network. The macro-and microrheology of 5 wt.% PEO solution is depicted in figure 7. It is evident from the plot that low-and high-frequency viscoelastic properties of the PEO solution are consistent and the combination of both techniques yields viscoelastic moduli over eight decades of frequency.

In fact, the microrheology data are obtained by the cantilevers LL, LH and A, and the lack of a cantilever with longer geometry leads to the absence of dynamic moduli over the 10 1 -10 3 Hz range. However, the qualitative and, to some extent, the quantitative viscoelastic behaviors of the polymer solution are in good agreement with the results obtained by other mechanism. Now, the importance of microrheology has been raised to precisely predict the viscoelastic behavior at higher frequencies, and also to deduce the stress relaxation mechanisms according to the scaling laws predicted by polymer theory. For flexible polymers, it is known that the shear modulus G* scales with the frequency, in the highfrequency limit, according to this relation: G* ~ω0.5-0.7 [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. The exponent 0.5 implies the Rouse mode when no hydrodynamic effect exists and the flexible polymer chains can freely drain [START_REF] Rouse | A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers[END_REF]. The uncertainty at the onset of the G' and G" data obtained by our method, their varied slopes and the uncovered frequency ranges restrict making a precise statement about scaling exponents. However, we could carefully estimate a scaling exponent of 0.5 corresponding to the Rouse mode in agreement with previous findings for analogous flexible polymer solutions using particle tracking microrheology [START_REF] Gittes | Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations[END_REF][START_REF] Schnurr | Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal Fluctuations[END_REF]. Beyond the highest crossover, a scaling exponent of 0.75 has been found in accordance with the predicted one by theoretical models, accounting for internal bending modes of Kuhn segments governing the stress relaxation mechanism at that frequency [START_REF] Gittes | Dynamic shear modulus of a semiflexible polymer network[END_REF][START_REF] Morse | Viscoelasticity of tightly entangled solutions of semiflexible polymers[END_REF].

D. Microrheology of WLM solutions

More complex models with very rich dynamic properties are the surfactant wormlike micellar solutions that drew considerable attention during the last decade to test modern microrheology techniques such as DWS [START_REF] Bellour | Brownian motion of particles embedded in a solution of giant micelles[END_REF][START_REF] Cardinaux | Microrheology of giant-micelle solutions[END_REF][START_REF] Willenbacher | Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions[END_REF][START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF][START_REF] Sarmiento-Gomez | Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine[END_REF] and particle tracking microrheology [START_REF] Buchanan | Highfrequency microrheology of wormlike micelles[END_REF][START_REF] Buchanan | Comparing macrorheology and one-and two-point microrheology in wormlike micelle solutions[END_REF][START_REF] Atakhorrami | High-bandwidth one-and two-particle microrheology in solutions of wormlike micelles[END_REF]. Similarly, we examined our method with various WLM solutions. Quantitatively, the comparison of viscoelasticity of surfactant WLM systems from different authors is a challenge, since the measurement protocols, cell geometry, sample preparation, and even different reactive stocks have been described as factors that could introduce large deviations in the dynamic behavior of wormlike micelles. It is important to note that the estimation of the plateau modulus G 0 for different nominally identical samples have an error bar of 20%; for relaxation times the error bar is 5% [START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF]. As will be seen, microrheology also shares some of these problems. Therefore, this has to be considered when microrheology and mechanical rheology are compared in wormlike micelles. However, they cannot be considered the only origin of deviations in the viscoelastic data as will be described below. surfactant molar ratios, the rheological behavior tends to fit the Maxwell model well as the surfactant concentration increases. This results from enough micellar growth to form a network that stress-relaxes via reptation and breaking-recombination mechanisms [START_REF] Cates | Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions Macromolecules 20 2289-2296[END_REF].

Figure 8 presents the high-frequency viscoelasticity extending beyond the Maxwell regime to cover eight decades of frequency. At high frequencies we expect an asymptotic crossover (corresponding to the shortest relaxation time; τ min ) from elastic response determined by collective network dynamics to response dominated by short-range single filament relaxation. In our experiments (figure 8), frequencies less than 1 kHz are not accessible due to the lack of a cantilever that operates in this frequency range. Thus, the G'-G" crossover at high frequency cannot be inferred since it typically appears in the frequency range beyond 1.6 kHz for WLM solutions [START_REF] Cardinaux | Microrheology of giant-micelle solutions[END_REF][START_REF] Willenbacher | Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions[END_REF][START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF], far below the range of the cantilevers used here. However, the general viscoelastic behavior for the presented wormlike micelles is in a good agreement with the results presented previously for the same surfactant solutions [START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF][START_REF] Buchanan | Highfrequency microrheology of wormlike micelles[END_REF]. Again, the uncertainty at the onset of the G' and G" data (c.f. CTAB1 in figure 8) and the uncovered frequency ranges restrict making a precise statement about the scaling behavior of the dynamic moduli beyond τ min . However, a scaling law G"~ω 0.5 has been noticed in all examined WLM solutions (figure 8) indicating an intramicellar Rouse relaxation mode of the wormlike micelles, in accordance with a previously reported exponent [START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF] A closer inspection for the scaling relations of G" at f >50 kHz (the crossover at the highest frequency) reveals that G"~ω 0.75 , reflecting the Kuhn segment bending mode in WLMs. The same scaling laws and thus the deduced relaxation mechanisms have been found in analogous WLM solutions using DWS [START_REF] Willenbacher | Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions[END_REF][START_REF] Galvan-Miyoshi | Diffusing wave spectroscopy in Maxwellian fluids[END_REF][START_REF] Sarmiento-Gomez | Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine[END_REF]. It is worth noting that for WLMs the high-frequency shear moduli are essentially independent of temperature [START_REF] Willenbacher | Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions[END_REF]; thus, the assumption that the heating effect induced by voltage application is not responsible for any uncertainty of moduli estimation.

In conclusion, our method provides high bandwidth frequency accessibility and much better defines the viscoelastic parameters than conventional rheometers, so that the microscopic properties of single chain and, thus, the associated relaxation mechanisms can be accurately estimated, in addition to the macroscopic (bulk) rheological properties, since the cantilever dimensions are much higher than the characteristic length scales (e.g. mesh size) of polymers or micellar networks. Another interesting advantage of our method is that it may be used to estimate the steady shear viscosity from the complex viscosity measurements. This can be done by applying the Cox-Merz rule through which information about nonlinear rheology at higher shear rates can be obtained from linear microrheology measurements. As can be seen from figure S(2), the polymer solution and diluted WLM solution of CPyCl1 perfectly obey Cox-Merz rule.

The calculation method used to relate the mechanical resonance response of an immersed microcantilever to the rheological properties of the medium requires an extremely precise estimation of the parameters involved in Eqs. 8 (resonant frequency in vacuum, static deflection and structural properties of the cantilever, density of the fluid).

An error in one of these parameters strongly affects the calculated G' and G". This point will be studied in detail in a future work. The static deflection of the cantilever (or static applied force) is difficult to measure independently with good accuracy. For instance, we need to measure the static deflection for the shortest cantilever (cantilever A) with a resolution less than one picometer and this measurement has to be done under identical conditions (temperature, type of fluid, electromagnetic applied force) as the resonant measurement.

Results presented in this work are still affected by some error in this parameter estimation, especially the data far above or below the resonance frequency. A detailed analytical study covering this issue will appear in the near future.

V. CONCLUSION AND PERSPECTIVES

A microcantilever-based microrheometer has the potential to monitor the viscoelasticity of microliter-scale samples of Newtonian and complex fluids over a large frequency range (1 to 100 kHz). It has the capability to distinguish between the highfrequency dynamic behavior of various structured fluids, overcoming the limitations introduced by optical-based techniques (e.g. particle tracking and DWS) since it can measure viscoelastic moduli in the range of 0.01-10 kPa.

The approach presented herein can be integrated into arrays of microcantilevers on a unique chip to simultaneously measure the viscoelastic properties of soft matter and biological fluids in situ. Moreover, the non-linear rheology can be monitored as well if the cantilever is placed in a microfluidic cell under pressure-driven flow. This will be the aim of future work.
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Table 1 .

 1 The composition of surfactant solutions used in this study.

	Sample [Surfactant] (mM) [NaSal] (mM) [NaCl] (mM)
	CPyCl1	28	14	500
	CPyCl2	112	56	0.5
	CTAB1	100	40	-

Table 2 .

 2 Dimensions

	LL	2810	100	20	3.5
	LH	1440	285	20	12
	A	500	100	20	92

(L=length, b=width, h=thickness) and resonant frequency in air for the microcantilevers used.

Cantilever L (µm) b (µm) h (µm) fr (kHz)
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