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ON THE CLASS OF CAUSTICS BY REFLECTION OF PLANAR CURVES

ALFREDERIC JOSSE AND FRANÇOISE PÈNE

Abstract. Given any light position S ∈ P2 and any algebraic curve C of P2 (with any kind
of singularities), we consider the incident lines coming from S (i.e. the lines containing S) and
their reflected lines after reflection on the mirror curve C. The caustic by reflection ΣS(C) is the
Zariski closure of the envelope of these reflected lines. We introduce the notion of reflected polar
curve and express the class of ΣS(C) in terms of intersection numbers of C with the reflected
polar curve, thanks to a fundamental lemma established in [15]. This approach enables us to
state an explicit formula for the class of ΣS(C) in every case in terms of intersection numbers
of the initial curve C.

Introduction

Let V be a three dimensional complex vector space endowed with some fixed basis. We
consider a light point S[x0 : y0 : z0] ∈ P2 := P(V) and a mirror given by an irreducible algebraic
curve C = V (F ) of P2, with F ∈ Symd(V∨) (F corresponds to a polynomial of degree d in
C[x, y, z]). We denote by d∨ the class of C. We consider the caustic by reflection ΣS(C) of the
mirror curve C with source point S. Recall that ΣS(C) is the Zariski closure of the envelope of
the reflected lines associated to the incident lines coming from S after reflection off C. When S
is not at infinity, Quetelet and Dandelin [17, 9] proved that the caustic by reflection ΣS(C) is
the evolute of the S-centered homothety (with ratio 2) of the pedal of C from S (i.e. the evolute
of the orthotomic of C with respect to S). This decomposition has also been used in a modern
approach by [2, 3, 4] to study the source genericity (in the real case). In [15] we stated formulas
for the degree of the caustic by reflection of planar algebraic curves.

In [7], Chasles proved that the class of ΣS(C) is equal to 2d∨ + d for a generic (C, S). In [1],
Brocard and Lemoyne gave (without any proof) a more general formula only when S is not at
infinity. The Brocard and Lemoyne formula appears to be the direct composition of formulas
got by Salmon and Cayley in [18, p. 137, 154] for some geometric characteristics of evolute and
pedal curves. The formula given by Brocard and Lemoyne is not satisfactory for the following
reasons. The results of Salmon and Cayley apply only to curves having no singularities other
than ordinary nodes and cusps [18, p. 82], but the pedal of such a curve is not necessarily a curve
satisfying the same properties. For example, the pedal curve of the rational cubic V (y2z − x3)
from [4 : 0 : 1] is a quartic curve with a triple ordinary point. Therefore it is not correct to
compose directly the formulas got by Salmon and Cayley as Brocard and Lemoyne apparently
did (see also Section 5 for a counterexample of the Brocard and Lemoyne formula for the class
of the caustic by reflection).

Let us mention some works on the evolute and on its generalization in higher dimension
[10, 19, 6]. In [10], Fantechi gave a necessary and sufficient condition for the birationality of the
evolute of a curve and studied the number and type of the singularities of the general evolute. Let

Date: April 13, 2013.
2000 Mathematics Subject Classification. 14H50,14E05,14N05,14N10.
Key words and phrases. caustic, class, polar, intersection number, pro-branch, Plücker formula
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us insist on the fact that there exist irreducible algebraic curves (other than lines and circles) for
which the evolute map is not birational. This study of evolute is generalized in higher dimension
by Trifogli in [19] and by Catanese and Trifogli [6].

The aim of the present paper is to give a formula for the class (with multiplicity) of the caustic
by reflection for any algebraic curve C (without any restriction neither on the singularity
points nor on the flex points) and for any light position S (including the case when S is
at infinity or when S is on the curve C).

In Section 1, we define the reflected lines Rm at a generic m ∈ C and the (rational) “reflected
map” RC,S : P2 → P2 mapping a generic m ∈ C to the equation of Rm.

In section 2, we define the caustic by reflection ΣS(C), we give conditions ensuring that ΣS(C)
is an irreducible curve and we prove that its class is the degree of the image of C by RC,S.

In section 3, we give formulas for the class of caustics by reflection valid for any (C, S). These
formulas describe precisely how the class of the caustic depends on geometric invariants of C
and also on the relative positions of S and of the two cyclic points I, J with respect to C. As a
consequence of this result, we obtain the following formula for the class of ΣS(C) valid for any
C of degree d ≥ 2 and for a generic source position S:

class(ΣS(C)) = 2d∨ + d− Ω(C, ℓ∞)− µI(C)− µJ(C),
where Ω(C, ℓ∞) is the contact number of C with the line at infinity ℓ∞ and with µI(C) and µJ(C)
are the multiplicities number of respectively I and J on C.

In Section 4, our formulas are illustrated on two examples of curves (the lemniscate of Bernoulli
and the quintic considered in [15]).

In section 5, we compare our formula with the one given by Brocard and Lemoyne for a light
position not at infinity. We also give an explicit counter-example to their formula.

In Section 6, we prove our main theorem. In a first time, we give a formula for the class of
the caustic in terms of intersection numbers of C with a generic “reflected polar” at the base
points of RC,S. In a second time, we compute these intersection numbers in terms of the degree
d and of the class d∨ of C but also in terms of intersection numbers of C with each line of the
triangle IJS.

In appendix A, we prove a useful formula expressing the classical intersection number in terms
of probranches.

1. Reflected lines Rm and rational map RC,S

Recall that we consider a light position S[x0 : y0 : z0] ∈ P2 and an irreducible algebraic
(mirror) curve C = V (F ) of P2 given by a homogeneous polynomial F ∈ Symd(V) with d ≥ 2.
We write Sing(C) for the set of singular points of C. For any non singular point m, we write
TmC for the tangent line to C at m. We set S(x0, y0, z0) ∈ V \ {0}. For any m[x : y : z] ∈ P2,
we write m(x, y, z) ∈ V \ {0}. We write as usual ℓ∞ = V (z) ⊂ P2 for the line at infinity. For
any P(x1, y1, z1) ∈ V \ {0}, we define

∆PF := x1Fx + y1Fy + z1Fz ∈ Symd−1(V∨).

Recall that V (∆PF ) is the polar curve of C with respect to P [x1 : y1 : z1] ∈ P2.

Since the initial problem is euclidean, we endow P2 with an angular structure for which
I[1 : i : 0] ∈ P2 and J [1 : −i : 0] ∈ P2 play a particular role. To this end, let us recall the
definition of the cross-ratio β of 4 points of ℓ∞. Given four points (Pi[ai : bi : 0])i=1,...,4 such
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that each point appears at most 2 times, we define the cross-ratio β(P1, P2, P3, P4) of these four
points as follows :

β(P1, P2, P3, P4) =
(b3a1 − b1a3)(b4a2 − b2a4)

(b3a2 − b2a3)(b4a1 − b1a4)
,

with convention 1
0 = ∞. For any distinct lines A1 and A2 not equal to ℓ∞, containing neither I

nor J , we define the oriented angular measure between A1 and A2 by θ (modulo πZ) such that

e−2iθ = β(P1, P2, I, J) =
(a1 + ib1)(a2 − ib2)

(a1 − ib1)(a2 + ib2)

(where Pi[ai : bi : 0] is the point at infinity of Ai). Let Q ∈ Sym2(V∨) be defined by Q(x, y) :=
x2 + y2. It will be worth noting that Q(∇F ) = F 2

x + F 2
y = ∆IF∆JF . For every non singular

point m of C \ ℓ∞, we recall that tm[Fy : −Fx : 0] ∈ P2 is the point at infinity of TmC and so
tm 6∈ {I, J} is equivalent to m 6∈ V (Q(∇F )).

Now, for any m ∈ C \ (ℓ∞ ∪ Q(∇F )) and any incident line ℓ containing m, we define as
follows the associated reflected line Rm(ℓ) (for the reflexion on C at m with respect to the
Snell-Descartes reflection law Angle(ℓ,Tm) = Angle(Tm,Rm)).

Definition 1. For every m ∈ C \ (ℓ∞ ∪ V (Q(∇F ))), we define rm : ℓ∞ → ℓ∞ mapping P ∈ ℓ∞
to the unique rm(P ) such that β(P, tm, I, J) = β(tm, rm(P ), I, J).

We define Rm : Fm → Fm with Fm := {ℓ ∈ G(1,P2), m ∈ ℓ} by Rm(ℓ) = (m rm(Pℓ)) if Pℓ

is the point at infinity of ℓ.

We have (on coordinates)

rm([x1 : y1 : 0]) = [x1(F
2
x − F 2

y ) + 2y1FxFy : −y1(F
2
x − F 2

y ) + 2x1FxFy : 0]

Remark 2. Observe that rm is an involution on ℓ∞ ∼= P1 with exactly two fixed points tm
and nm[Fx : Fy : 0]. As a consequence, Rm is an involution with two fixed points Tm(C) and
Nm(C) := (mnm) the normal line to C at m.

Moreover rm(I) = J and rm(J) = I.

Definition 3. For any m[x : y : z] ∈ C \ ({S} ∪ ℓ∞ ∪ V (Q(∇F )) we define the reflected line
Rm on C at m (of the incident line coming from S) as the line Rm := Rm((mS)).

For m[x : y : z] ∈ C \ ({S} ∪ ℓ∞ ∪ V (Q(∇F )), the point at infinity of (Sm) is sm[x0z −
z0x : y0z − z0y : 0]. Due to the Euler identity, on C, we have xFx + yFy + zFz = 0 and so
(x0z − z0x)Fx + (y0z − z0y)Fy = z∆SF . Hence r(sm) = [−vm : um : 0] and the reflected line
Rm is the set of P [X : Y : Z] ∈ P2 such that umX + vmY + wmZ = 0, with

um := (z0y − zy0)(F
2
x + F 2

y ) + 2z∆SF.Fy ∈ Sym2d−1(V∨)

vm := (zx0 − z0x)(F
2
x + F 2

y )− 2z∆SF.Fx ∈ Sym2d−1(V∨)

wm :=
−xum − yvm

z
= (xy0 − yx0)(F

2
x + F 2

y )− 2∆SF (xFy − yFx) ∈ Sym2d−1(V∨).

Definition 4. We call reflected map of C from S the following rational map

RC,S :
P2 → P2

m 7→ [um : vm : wm]
.

We also define the rational map TC,S := (RC,S)|C : C → P2.
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For any m ∈ V, it will be useful to define RF,S(m) := (um, vm, wm) ∈ V and to notice that

RF,S(m) = Q(∇F (m)) · (m ∧ S)− 2∆SF (m) · (m ∧ nm) ∈ V,

with1 nm(Fx(m), Fy(m), 0) ∈ V.

Proposition 5. The base points of TC,S are the following:

I, J , S (if these points are in C), the singular points of C and the points of tangency of C with
some line of the triangle (IJS).

Proof. We have to prove that the set of base points of TC,S is the following set: M := C ∩
({I, J, S} ∪ V (∆SF,Q(∇F )) ∪ V (Fx, Fy)). We just prove that Base(TC,S) ⊂ M, the converse
being obvious (observe that if m ∈ {I, J}, we automatically have Q(∇F (m)) = 0 and nm ∈
V ect(m)). Let m[x; y; z] ∈ C be such that RF,S(m) = 0. Then m and Q(∇F (m)) · S −
2∆SF (m) · nm are colinear. Due to the Euler identity, we have 0 = DF (m) ·m (with DF (m)
the differential of F at m) and so 0 = −∆SF (m) ·Q(∇F (m)) since DF (m) · S = ∆SF (m) and
since DF (m) · nm = Q(∇F (m)). Hence ∆SF (m) = 0 or Q(∇F (m)) = 0.

If ∆SF (m) = 0, then either Q(∇F (m)) = 0 or m = S.

If ∆SF (m) 6= 0 and Q(∇F (m)) = 0 , then Fx(m) = Fy(m) = 0 or m = [Fx(m) : Fy(m) : 0].
Assume that m = [Fx(m) : Fy(m) : 0]. Then, since Q(∇F (m)) = 0, we conclude that m ∈
{I, J}. �

In the following result, we state the S-generic birationality of TC,S. We give a short version
of the proof of [16]. Let us indicate that another proof of the same result has been established
at the same period by Catanese in [5].

Proposition 6 (see also [16, 5]). Let C be an irreducible curve of degree d ≥ 2. Then, for a
generic S ∈ P3, the map TC,S is birational.

Proof. For every m ∈ C0 := C \ (ℓ∞ ∪ V (Q(∇F ))) and every S ∈ P2 \ {m}, we write Rm,S for
the reflected line Rm((mS)). For every m ∈ C0, we consider the set Km := {S ∈ P2 \ C : ∃m′ ∈
C0 \ {m}, Rm,S = Rm′,S}.

• Let us prove that, for any m ∈ C0, Km is contained in an algebraic curve K̄m of degree
less than 2d2 + 2.

Let m ∈ C0. Consider S ∈ P2 \ C and m′ ∈ C0 \ {m} such that Rm,S = Rm′,S. Then
we have Rm,S = Rm′,S = (mm′) and so S ∈ Rm,m′ ∩Rm′,m.

Assume first that Rm,m′ = Rm′,m. Then this line is (mm′) and it is its own reflected
line both at m and at m′. This implies that (mm′) is either TmC or NmC, so that
S ∈ TmC ∪ NmC.

Assume now that Rm,m′ 6= Rm′,m. Then S = τm(m′) with τm : P2 → P2 the rational
map associated to τm : V → V with τm(m′) = RF,m′(m) ∧ RF,m(m′). Hence Km ⊆
K̄m := TmC ∪ NmC ∪ τm(C), where A is the Zariski closure of a set A. Since the degree
(in m′) of the coordinates of τm is 2d, we conclude that deg K̄m ≤ 2d2 + 2.

• The set K of points S ∈ P2 \ C such that RC,S is not birational is contained in

K̄ :=
⋃

E⊂C0:#E<∞

⋂

m∈C0\E

K̄m.

1with ∧ : V ×V → V being given in coordinates by (x1, y1, z1) ∧ (x2, y2, z2) =





z2y1 − z1y2
z1x2 − z2x1

x1y2 − y1x2



.



ON THE CLASS OF CAUSTICS BY REFLECTION OF PLANAR CURVES 5

To conclude we will apply the Zorn lemma. We have to prove that {⋂m∈C0\E
K̄m, #E <

∞} is inductive for the inclusion. Let (Fj :=
⋂

m∈C0\Ej
K̄m)j≥1 be an increasing sequence

of sets (with Ej finite subsets of C0). Write Z for the union of these sets. Observe that
Z ⊆ K̄m0

for some fixed m0 ∈ C0 \
⋃

i≥1 Ei. The set K̄m0
is the union of irreducible

algebraic curves C1, ..., Cp. We write di for the degree of Ci. If Ci ⊆ Z, we write
Ni := min{j ≥ 1 : Ci ⊂ Fj}. If Ci 6⊆ Z, then (Ci ∩ Fj)j≥1 is an increasing sequence of
finite sets containing at most di(2d

2+2) points and we set Ni := min{j : (Ci∩Z) ⊆ Fj}.
We obtain Z = Fmax(N1,...,Np). Due to the Zorn lemma, there exists a finite set E0 such

that K ⊂ ⋂m∈C0\E0
K̄m, from which the result follows.

�

2. Caustic by reflection

Definition 7. The caustic by reflection ΣS(C) is the Zariski closure of the envelope of the
reflected lines {Rm;m ∈ C \ ({S} ∪ ℓ∞ ∪ V (Q(∇F ))}.

Recall that, in [15], we have defined a rational map ΦF,S called caustic map mapping a
generic m ∈ C to the point of tangency of ΣS(C) with Rm and that ΣS(C) is the Zariski closure
of ΦF,S(C).

In the present work, we will not consider the cases in which the caustic by reflection ΣS(C) is
a single point. We recall that these cases are easily characterized as follows.

Proposition 8. Assume that

(i) S 6∈ {I, J},
(ii) C is not a line (i.e. d 6= 1),
(iii) if d = 2, then S is not a focus of the conic C.

Then ΣS(C) is not reduced to a point and is an irreducible curve.

Proof. Assume (i), (ii) and (iii) and that ΣS(C) = {S′} with S′ = [x1 : y1 : z1].

When S 6∈ ℓ∞, we will use the fact that ΣS(C) is the evolute of the orthotomic of C with
respect to S. Since C is not a line, the orthotomic of C with respect to S is not reduced to a
point but its evolute is a point. This implies that the orthotomic of C with respect to S is either
a line (not equal to ℓ∞) or a circle. But C is the contrapedal (or orthocaustic) curve (from S)
of the image by the S-centered homothety (with ratio 1/2) of the orthotomic of C. Therefore
d = 2 and S is a focal point of C, which contradicts (iii).

When S ∈ ℓ∞ but S′ 6∈ ℓ∞, then, for symetry reasons, we also have ΣS′(C) = {S} and we
conclude analogously.

Suppose now that S, S′ ∈ ℓ∞. We have z0 = z1 = 0. For every m = [x : y : 1] ∈ C \ (ℓ∞ ∪
V (Q(∇F ))), we have β(S, tm, I, J) = β(tm, S′, I, J) Therefore we have

(ix0 − y0)(−iFy + Fx)

(iFy + Fx)(−ix0 − y0)
=

(iFy + Fx)(−ix1 − y1)

(−iFy + Fx)(ix1 − y1)

and so

(ix0 − y0)(ix1 − y1)(−iFy + Fx)
2 = (iFy + Fx)

2(−ix0 − y0)(−ix1 − y1).

Now, according to (i), ix0 − y0 6= 0, −ix0 − y0 6= 0, ix1 − y1 6= 0, −ix1 − y1 6= 0. Hence
(−iFy + Fx)

2 = a(iFy + Fx)
2 for some a 6= 0, which implies that d = 1 and contradicts (ii).
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Hence we proved that ΣS(C) is not reduced to a point. Now the irreducibility of ΣS(C) comes

from the fact that ΣS(C) = ΦF,S(C) and that C is an irreducible curve. �

Proposition 9. Assume that ΣS(C) is not reduced to a point. Then we have

class(ΣS(C)) = deg(TC,S(C)), (1)

where TC,S(C) stands for the Zariski closure of TC,S(C).

Proof. This comes from the fact that ΣS(C) is the Zariski closure of the envelope of {Rm, m ∈
C \ (Sing(C)∪{S} ∪ ℓ∞ ∪ V (Q(∇F ))} and can be precised as follows. For every algebraic curve
Γ = V (G) (with G in Symk(V∨) for some k), we consider the Gauss map δΓ : P2 −→ P2 defined
on coordinates by δΓ([x : y : z]) = [Gx : Gy : Gz ], we obtain immediately the commutative
diagram :

C
(ΦF,S)|C−→ ΣS(C)

TC,S

ց ↓ δΣS(C)

δΣS(C)(ΣS(C)) ∼= (ΣS(C))∨
, (2)

with ΦF,S the caustic map defined in [15] (see the begining of the present section). �

Let us notice that, according to the proof of Proposition 9, the rational map TC,S as the
same degree as the rational map (ΦF,S)|C (since ΣS(C) is irreducible and since the Gauss map
(δΣS(C))|ΣS(C) is birational [11]).

3. Formulas for the class of the caustic

Since the map TC,S may be non birational, we introduce the notion of class with multiplicity
of ΣS(C):

mclass(ΣS(C)) = δ1(S, C) × class(ΣS(C))
where class(ΣS(C)) is the class of the algebraic curve ΣS(C) and where δ1(S, C) is the degree of
the rational map TC,S. We recall that δ1(S, C) corresponds to the number of preimages on C of
a generic point of ΣS(C) by TC,S .

Before stating our main result, let us introduce some notations. For every m1 ∈ P2, we write
µm1

= µm1
(C) for the multiplicity of m1 on C and consider the set Branchm1

(C) of branches
of C at m1. We denote by E the set of couples point-branch (m1,B) of C with m1 ∈ C and
B ∈ Branchm1

(C). For every (m1,B) ∈ E , we write eB for the multiplicity of B and Tm1
(B) the

tangent line to B at m1; we observe that µm1
=
∑

B∈Branchm1
(C) eB. We write im1

(Γ,Γ′) the

intersection number of two curves Γ and Γ′ at m1. For any algebraic curve C′ of P2, we also
define the contact number Ωm1

(C, C′) of C and C′ at m1 ∈ P2 by

Ωm1
(C, C′) := im1

(C, C′)− µm1
(C)µm1

(C′) if m1 ∈ C ∩ C′

and
Ωm1

(C, C′) := 0 if m1 6∈ C ∩ C′.

Recall that Ωm1
(C, C′) = 0 means that m1 6∈ C ∩ C′ or that C and C′ intersect transversally at

m1.

Theorem 10. Assume that the hypotheses of Proposition 8 hold true.

(1) If S 6∈ ℓ∞, the class (with multiplicity) of ΣS(C) is given by

mclass(ΣS(C)) = 2d∨ + d− 2f ′ − g − f − g′ + q′, (3)

where
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• g is the contact number of C with ℓ∞, i.e. g :=
∑

m1∈C∩ℓ∞
Ωm1

(C, ℓ∞),
• f is the multiplicity number at a cyclic point of C with an isotropic line from S, i.e.

f := iI(C, (IS)) + iJ(C, (JS)),
• f ′ is the contact number of C with an isotropic line from S outside {I, J, S}, i.e.

f ′ :=
∑

m1∈(C∩(IS))\{I,S}

Ωm1
(C, (IS)) +

∑

m1∈(C∩(JS))\{J,S}

Ωm1
(C, (JS)),

• g′ given by g′ := iS(C, (IS)) + iS(C, (JS)) − µS ;
• q′ is given by

q′ :=
∑

(m1,B)∈E:m1 6∈{I,J,S},Tm1
B=(IS) or Tm1

B=(JS), im1
(B,Tm1

(B))≥2eB

[im1
(B,Tm1

(B))− 2eB].

(2) If S ∈ ℓ∞, the class of ΣS(C) is
mclass(ΣS(C)) = 2d∨ + d− 2g − µI − µJ − µS − c′(S), (4)

with

c′(S) :=
∑

B∈BranchS(C):iS(B,ℓ∞)=2eB

(eB +min(iS(B, OscS(B))− 3eB, 0)),

where OscS(B) is any smooth algebraic osculating curve to B at S (i.e. any smooth
algebraic curve C′ such that iS(B, C′) > 2eB).

The notations introduced in this theorem are directly inspired by those of Salmon and Cayley
[18] (see Section 5). Let us point out that, in this article, g is not the geometric genus of the
curve.

Remark 11. Observe that we also have

c′(S) :=
∑

B∈BranchS(C):iS(B,ℓ∞)=2eB

(eB +min(β1(S,B)− 3eB, 0)),

where β1(S,B) is the first characteristic exponent of B non multiple of eB (see [22]).

Observe that, when iS(B,TS(B)) = 2eB, we have min(iS(B, OscS(B)) − 3eB, 0) = 0 except if
S is a singular point and if the probranches of B are given by Y − x−1

0 y0 = αZ2 + α1Z
β1 + ...

in the chart X = 1 if x0 6= 0 (or X − y−1
0 x0 = αZ2 +α1Z

β1 + ... in the chart Y = 1 otherwise),
with α 6= 0, α1 6= 0 and 2 < β1 < 3. Hence c′(S) =

∑

B∈BranchS(C):iS(B,ℓ∞)=2eB
eB when C admits

no such branch tangent at S to ℓ∞.

Combining Proposition 6 and Theorem 10, we obtain

Corollary 12 (A source-generic formula for the class). Let C ⊂ P2 be a fixed curve of degree
d ≥ 2. For a generic source point S, we have δ1(S, C) = 1 and class(ΣS(C)) = 2d∨+d−g−µI−µJ

with g the contact number of C with ℓ∞.

Proof. Due to Proposition 6, δ1(S, C) = 1 for a generic S ∈ P2. So class(ΣS(C)) = mclass(ΣS(C)).
Assume moreover, that S 6∈ ℓ∞ (so we apply the first formula of Theorem 10), S 6∈ C (so

g′ = 0), that (IS) and (JS) are not tangent to C (so f ′ = q′ = 0 and f = µI(C) + µJ(C)). We
obtain the result. �

4. Examples

Let us now illustrate our result for two particular mirror curves.
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4.1. Example of the lemniscate of Bernoulli. We consider the case when C = V (F ) is the
lemniscate of Bernoulli given by F (x, y, z) = (x2+ y2)2− 2(x2− y2)z2 and when S ∈ P2 \{I, J}.
The degree of C is d = 4. The singular points of C are : I[1 : i : 0], J [1 : −i : 0] and O[0 : 0 : 1].
These three points are double points, each one having two different tangent lines. Hence the
class of C is given by d∨ = d(d− 1)− 3× 2 = 6 and so

2d∨ + d = 16.

The tangent lines to C at I are ℓ1,I := V (y− iz− ix) and ℓ2,I := V (y− iz+ ix) (the intersection
number of C with ℓ1,I or with ℓ2,I at I is equal to 4). The tangent lines to C at J are ℓ1,J :=
V (y+ iz − ix) and ℓ2,J := V (y+ iz + ix) (the intersection number of C with ℓ1,J or with ℓ2,J at
J is equal to 4). This ensures that we have

f = 2(2 + 1S∈ℓ1,I + 1S∈ℓ2,I + 1S∈ℓ1,J + 1S∈ℓ2,J ).

Observe that ℓ∞ is not tangent to C. Indeed I and J are the only points in C ∩ ℓ∞ and ℓ∞ is
not tangent to C at these points. Therefore we have g = 0 and c′(S) = 0.

Since I and J are also the only points at which C is tangent to an isotropic line (i.e. a line
containing I or J), we have f ′ = 0, g′ = µS , q

′ = 0. In this case, one can check that δ1(S, C) = 1.
Finally, we get

if S 6∈ ℓ∞, class(ΣS(C)) = 12− 2(1S∈ℓ1,I∪ℓ2,I + 1S∈ℓ1,J∪ℓ2,J )− µS . (5)

Moreover, since µI = µJ = 2, we have

if S ∈ ℓ∞ \ {I, J}, class(ΣS(C)) = 16− 2− 2 = 12, (6)

(since µI = µJ = 2 and since µS = 0). For example, for S[1 : 0 : 1], we get class(ΣS(C)) = 8,
since S is in ℓ2,I ∩ ℓ1,J but not in C (so µS = 0).

4.2. Example of a quintic curve. As in [15], we consider the quintic curve C = V (F ) with
F (x, y, z) = y2z3 − x5. We also consider a light point S[x0 : y0 : z0] ∈ P2 \ {I, J}. This curve
admits two singular points: A1[0 : 0 : 1] and A2[0 : 1 : 0], we have d = 5.

We recall that C admits a single branch at A1, which has multiplicity 2 and which is tangent
to V (y). We observe that iA1

(C, V (y)) = 5.

Analogously, C admits a single branch at A2, which has multiplicity 3 and which is tangent
to ℓ∞. We observe that iA2

(C, ℓ∞) = 5.

We obtain that the class of C is d∨ = 5 and that C has no inflexion point (these two facts are
proved in [15]). In particular, we get that 2d∨ + d = 15.

Since A2 is the only point of C ∩ ℓ∞, we get that g = ΩA2
(C, ℓ∞) = 2 and f = 0.

The curve C admits six (pairwise distinct) isotropic tangent lines other than ℓ∞: ℓ1, ℓ2 and
ℓ3 containing I

∀k ∈ {1, 2, 3}, ℓk = V

(

ix− y +
3i

25
αk 3

√
20z

)

, with α := e
2iπ
3

and ℓ4, ℓ5 and ℓ6 containing J :

∀k ∈ {1, 2, 3}, ℓ3+k = V

(

ix+ y +
3i

25
αk 3

√
20z

)

.

For every i ∈ {1, 2, 3, 4, 5, 6}, we write ai the point at which C is tangent to ℓi (the points ai
correspond to the points of C ∩ V (F 2

x +F 2
y ) \ {A1, A2}). Since C contains no inflexion point and

since A1 and A2 are the only singular points of C, we get that,

f ′ = #{i ∈ {1, 2, 3, 4, 5, 6} : S ∈ ℓi \ {ai}} and q′ = 0
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when S 6∈ ℓ∞.

Now recall that g′ = iS(C, (IS)) + iS(C, (J S)) − µS . Again, in this case, one can check that
δ1(S, C) = 1. If S 6∈ ℓ∞, we have

class(ΣS(C)) = 13− 2×#{i ∈ {1, 2, 3, 4, 5, 6} : S ∈ ℓi \ {ai}} − g′ (7)

and if S ∈ ℓ∞ \ {I,J }, we have

class(ΣS(C)) = 11− 3× 1S=A2
. (8)

We observe that the points of P2 \ {I,J } belonging to two dictinct ℓk are outside C. The set of
these points is

E :=
3
⋃

k=1

{[

− 3

25
3
√
20αk : 0 : 1

]

,

[

3

50
3
√
20αk :

3

50

√
3

3
√
20αk : 1

]

,

[

3

50
3
√
20αk : − 3

50

√
3

3
√
20αk : 1

]}

with α = e
2iπ
3 . Finally, the class of the caustic in the different cases is summarized in the

following table.

Condition on S ∈ P2 \ {I,J } class(ΣS(C)) =
S = A2 8
S ∈ E 9

S ∈ C ∩⋃6
k=1(ℓk \ {ak}) 10

S ∈ (ℓ∞ \ {A2}) ∪
(

⋃6
k=1 ℓk \ (E ∪ C)

)

∪ {A1} ∪ {a1, ..., a6} 11

S ∈ C \
(

ℓ∞ ∪ {A1} ∪
⋃6

k=1 ℓk

)

12

otherwise 13

5. On the formulas by Brocard and Lemoyne and by Salmon and Cayley

5.1. Formulas given by Brocard and Lemoyne. Recall that, when S 6∈ ℓ∞, ΣS(C) is the
evolute of an homothetic of the pedal of C from S.

The work of Salmon and Cayley is under ordinary Plücker conditions (no hyper-flex, no
singularities other than ordinary cups and ordinary nodes). In [18, p.137], Salmon and Cayley
gave the following formula for the class of the evolute :

n′ = m+ n− f − g.

Replace now m, n, f and g by M , N , F and G (respectively) given in [18, p. 154] for the
pedal. Doing so, one exactly get (with the same notations) the formula of the class of caustics
by reflection given by Brocard and Lemoyne in [1, p. 114].

As explained in introduction, this composition of formulas of Salmon and Cayley is incorrect
because of the non-conservation of the Plücker conditions by the pedal transformation. Never-
theless, for completeness sake, let us present the Brocard and Lemoyne formula and compare it
with our formula. Brocard and Lemoyne gave the following formula for the class of the caustic
by reflection ΣS(C) when S 6∈ ℓ∞:

class(ΣS(C)) = d+ 2(d∨ − f̂ ′)− ĝ − f̂ − ĝ′ + q̂′, (9)

for an algebraic curve C of degree d, of class d∨, ĝ times tangent to ℓ∞, passing f̂ times through
a cyclic point, f̂ ′ times tangent to an isotropic line of S, passing ĝ′ times through S, q̂′ being the
coincidence number of contact points when an isotropic line is multiply tangent. In [18], q̂′ is

defined as the coincidence number of tangents at points ι1, ι2 of P2∨ (corresponding to (IS) and
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(JS)) if these points are multiple points of the image of C by the polar reciprocal transformation
with center S; i.e. q̂′ represents the number of ordinary flexes of C.

When S 6∈ ℓ∞, let us compare terms appearing in our formula (3) with terms of (9) :

• ĝ seems to be equal to g;
• it seems that f̂ = µI + µJ and so

f = f̂ +ΩI(C, (IS)) + ΩJ(C, (JS));
• it seems that f̂ ′ =

∑

m1∈C∩(IS)
Ωm1

(C, (IS)) +∑m1∈C∩(JS)
Ωm1

(C, (JS)) and so

f ′ := f̂ ′ − ΩI(C, (IS)) −ΩJ(C, (JS)) − ΩS(C, (IS)) − ΩS(C, (JS));
• it seems that ĝ′ = µS, therefore

g′ := ĝ′ +ΩS(C, (IS)) + ΩS(C, (JS));
• our definition of q′ appears as an extension of q̂′ (except that we exclude the points
m1 ∈ {I, J, S}).

Observe that these terms coincide with the definition of Brocard and Lemoyne if (IS) and (JS)
are not tangent to C at S, I, J . In particular, if we call BL the right hand side of (9), the first
item Theorem 10 states that, when S is not at infinity we have

mclass(ΣS(C)) = BL+ΩI(C, (IS)) + ΩJ(C, (JS)) + ΩS(C, (IS)) + ΩS(C, (JS)).

5.2. A counterexample to the formula of Brocard and Lemoyne. We consider an
example in which ΩI(C, (IS)) = ΩJ(C, (JS)) = 1, which means that (IS) is tangent to C
at I and (JS) is tangent to C at J . Let us consider the non-singular quartic curve C =
V (2yz3+2z2y2+2zy3+2y4−2z3x+2zyx2+5y2x2+3x4) and S[0 : 0 : 1]. This curve C has degree
d = 4 and class d∨ = 4× 3 = 12, is not tangent to ℓ∞, is tangent to (SI) at I and nowhere else,
is tangent to (SJ) at J and nowhere else; these tangent points are ordinary. S is a non singular
point of C. Therefore, with our definitions, we have g = 0, f = 2+2 = 4, f ′ = 0, g′ = 1+1−1 = 1,
q′ = 0, which gives class(ΣS(C)) = 4+2(12−0)−0−4−1−0 = 23, since in this case δ1(S, C) = 1.

In comparison, the Brocard and Lemoyne formula would give ĝ = 0, f̂ = 1+1 = 2, f̂ ′ = 1+1 = 2,
ĝ′ = 1, q̂′ = 0 and so their formula gives class(ΣS(C)) = 4 + 2(12 − 2) − 0− 2− 1− 0 = 21 but
this is false!

6. Proof of Theorem 10

To compute the degree of TC,S(C), we will use the Fundamental Lemma given in [15]. Let us
first recall the definition of ϕ-polar introduced in [15] and extending the notion of polar.

Definition 13. Let p ≥ 1, q ≥ 1 and let W be a complex vector space of dimension p + 1.
Given ϕ : Pp := P(W) → Pq a rational map defined by ϕ = [ϕ0 : · · · : ϕq] (with ϕ1, . . . , ϕq ∈
Symd(W∨)) and a = [a0 : · · · : aq] ∈ Pq, we define the ϕ-polar at a, denoted by Pϕ,a, the

hypersurface of degree d given by Pϕ,a := V
(

∑q
j=0 ajϕj

)

⊆ Pp.

With this definition, the “classical” polar of a curve C = V (F ) of P2 (for some homogeneous
polynomial F ∈ C[x, y, z]) at a is the δC-polar curve at a, where δC : [x : y : z] 7→ [Fx : Fy : Fz ].

Definition 14. We call reflected polar (or r-polar) of the plane curve C with respect

to S at a the RC,S-polar at a, i.e. the curve P(r)
S,a(C) := PRC,S ,a.
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From a geometric point of view, P(r)
S,a(C) is an algebraic curve such that, for every m ∈

C∩P(r)
S,a(C), Rm contains a (if Rm is well defined), this means that line (am) is tangent to ΣS(C)

at the point m′ = ΦF,S(m) ∈ ΣS(C) associated to m (see picture).

Let us now recall the statement of the fundamental lemma proved in [15].

Lemma 15 (Fundamental lemma [15]). Let W be a complex vector space of dimension p + 1,
let C be an irreducible algebraic curve of Pp := P(W) and ϕ : Pp → Pq be a rational map given
by ϕ = [ϕ0 : · · · : ϕq] with ϕ0, ..., ϕq ∈ Symδ(W∨). Assume that C 6⊆ Base(ϕ) and that ϕ|C has
degree δ1 ∈ N ∪ {∞}. Then, for generic a = [a0 : · · · : aq] ∈ Pq, the following formula holds true

δ1.deg
(

ϕ(C)
)

= δ.deg(C)−
∑

p∈Base(ϕ|C)

ip (C,Pϕ,a) ,

with convention 0.∞ = 0 and deg(ϕ(C)) = 0 if #ϕ(C) < ∞.

Due to this lemma and to Proposition 9, we have

mclass(ΣS(C)) = d(2d − 1)−
∑

m1∈Base(TC,S )

im1
(C,P(r)

S,a(C)). (10)

Now, we enter in the most technical stuff which is the computation of the intersection numbers

im1
(C,P(r)

S,a(C)) of C with its reflected polar at the base points of RC,S . To compute these
intersection numbers, it will be useful to observe the form of the image of RC,S by linear changes
of variable. It is worth noting that RF,S can be rewritten

RF,S = id ∧ [∆IF∆JF · S−∆SF∆IF · J−∆SF∆JF · I] .
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Proposition 16. Let M ∈ GL(V). We have

RF,S ◦M = Com(M) ·R(M−1(I),M−1(J))
F◦M,M−1(S)

,

with Com(M) := det(M) · tM−1 and

R
(A,B)
G,S′ := id ∧

[

∆AG∆BG · S′ −∆S′G∆AG ·B−∆S′G∆BG ·A
]

.

Proof. We use M(u)∧M(v) = (Com(M))(u∧v) and ∆M(u)(F )(M(P)) = ∆u(F ◦M)(P). �

We write Π : V \{0} → P2 for the canonical projection, P0[0 : 0 : 1] ∈ P2 and P0(0, 0, 1) ∈ V.
Let m1 be a base point of C and M ∈ GL(V) be such that Π(M(P0)) = m1 and such that
the tangent cone of V (F ◦ M) at P0 does not contain V (x). Let µm1

be the multiplicity of
m1 in C (m1 is a singular point of C if and only if µm1

> 1). Then, for every a ∈ P2, writing
a′ := M−1(a), we have

im1
(C,P(r)

S,a(C)) = im1
(C, V (〈a,RF,S(·)〉))

= iP0
(V (F ◦M), V (〈a,RF,S ◦M(·)〉))

= iP0
(V (F ◦M), V (〈a′,R(M−1(I),M−1(J))

F◦M,M−1(S)
(·)〉))

=
∑

B∈BranchP0
(V (F◦M))

iP0
(B, V (〈a′,R(M−1(I),M−1(J))

F◦M,M−1(S)
(·)〉)),

where BranchP0
(V (F ◦M)) is the set of branches of V (F ◦M) at P0. The last equality comes

from Proposition 18 proved in appendix (see formula (14)). Let b be the number of such branches.
Of course, b = 1 for non-singular points. Writing eB for the multiplicity of the branch B, we have
µm1

=
∑

B∈BranchP0
(V (F◦M)) eB. Let us write C〈x 1

N 〉 and C〈x 1

N , y〉 for the rings of convergent

power series of x
1

N , y. Let C〈x∗〉 :=
⋃

N≥1 C〈x
1

N 〉 and C〈x∗, y〉 :=
⋃

N≥1 C〈x
1

N , y〉. For every

h =
∑

q∈Q+
aqx

q ∈ C〈x∗〉, we define the valuation of h as follows:

val(h) := valx(h(x)) := min{q ∈ Q+, aq 6= 0}.
Let B be a branch of V (F◦M) at P0. We precise that B0 = M(B) ⊂ P2 is a branch of C atm1. Let
A(xA, yA, zA) := M−1(I), B(xB , yB , zB) := M−1(J) and S′ := M−1(S). Let TB be the tangent
line to B at P0. The branch B can be splitted in eB pro-branches with equations y = gi,B(x) in
the chart z = 1 (for i ∈ {1, ..., eB}) with gi ∈ C〈x∗〉 having (rational) valuation larger than or
equal to 1 (so g′i(0) = 0). For j ∈ {1, ..., eB′}, consider also the equations y = gj,B′(x) (in the
chart z = 1) of the pro-branches Vj,B′ for each branch B′ ∈ BranchP0

(V (F ◦M)). This notion
of pro-branches comes from the combination of the Weierstrass and of the Puiseux theorems.
It has been used namely by Halphen in [13] and by Wall in [21]. One can also see [15]. There
exists a unit U of C〈x, y〉 such that the following equality holds true in C〈x∗, y〉

F (M(x, y, 1)) = U(x, y)
∏

B′∈BranchP0
(V (F◦M))

eB′
∏

j=1

(y − gj,B′(x)).

For a generic a (with a′ := M−1(a)), using (15)), we obtain

iP0
(B, V (〈a′,R(A,B)

F◦M,S′(·)〉)) =
∑

i

valx

(

〈a′,R(A,B)
F◦M,S′(x, gi,B(x), 1)〉

)

=
∑

i

min
j=1,2,3

valx

(

[

R
(A,B)
F◦M,S′(x, gi,B(x), 1)

]

j

)

.
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Hence Formula (10) becomes

mclass(ΣS(C)) := d(2d− 1)−
∑

m1∈C

∑

B

eB
∑

i=1

min
j=1,2,3

valx

(

[

R
(A,B)
F◦M,S′(x,gi,B(x),1)

]

j

)

, (11)

where, for every m1 ∈ C, M depends on m1 and is as above, where the sum is over B ∈
BranchP0

(V (F ◦M)). Due to Lemma 33 of [15], for every P(xP , yP , zP ) ∈ V \ {0}, we have

(∆M(P)F ) ◦M(x, gi,B(x), 1) = ∆P(F ◦M)(x, gi,B(x), 1) = Di,B(x)WP,i,B(x),

with

WP,i,B(x) := yP − g′i,B(x)xP + zP (xg
′
i,B(x)− gi,B(x))

and with Di,B(x) := U(x, gi,B(x))
∏

B′∈BranchP0
(V (F◦M))

∏

j=1,...,eB′:(B′,j)6=(B,i)(gi,B(x) − gj,B′(x)).

Hence we have

R
(A,B)
F◦M,S′(x, gi,B(x), 1) := (Di,B)

2 · R̂i,B(x) (12)

with

R̂i,B(x) :=





x
gi,B(x)

1



∧
[

WA,i,B(x)WB,i,B(x) · S′ −WS′,i,B(x)WA,i,B(x) ·B−WS′,i,B(x)WB,i,B(x) ·A
]

.

First, with the notations of [15] (since U(0, 0) 6= 0), we have

∑

B∈BranchP0
(V (F◦M))

eB
∑

i=1

val(Di,B) = Vm1
,

(which is null if m1 is a nonsingular point of C). Second, writing hm1,i,B := min(val([R̂i,B]j), j =
1, 2, 3), we observe that, due to Proposition 29 and to Remark 34 of [15], the quantity

∑eB
i=1 hm1,i,B

only depends on m1 and on the branch B0 = M(B) of C at m1 (it does not depend on the choice
of M ∈ GL(V) such that Π(M(P0)) = m1 and such that V (x) is not tangent to M−1(B0)).
Hence we write

hm1,B0
:=

eB
∑

i=1

hm1,i,B.

With these notations, due to (12), formula (11) becomes

mclass(ΣS(C)) = 2d(d − 1) + d− 2
∑

m1∈Sing(C)

Vm1
−
∑

m1∈C

∑

B0∈Branchm1
(C)

hm1,B0
.

Moreover, as noticed in [15], we have d(d− 1)−∑m1∈Sing(C)
Vm1

= d∨, where d∨ is the class of

C. Therefore, we get

mclass(ΣS(C)) = 2d∨ + d−
∑

m1∈C

∑

B0∈Branchm1
(C)

hm1,B0
. (13)

Theorem 10 will come directly from the computation of hm1,i,B given in following result.

Lemma 17. Let m1 ∈ C and B0 ∈ Branchm1
(C). Writing Tm1

B0 for the tangent line to B0

at m1, im1
(B0,Tm1

B0) for the intersection number of B0 with Tm1
B0 at m1 and eB0

for the
multiplicity of B0, we have

(1) hm1,B0
= 0 if I, J, S 6∈ Tm1

B0.
(2) hm1,B0

= 0 if #(Tm1
B0 ∩ {I, J, S}) = 1 and m1 6∈ {I, J, S}.

(3) hm1,B0
= eB0

if #(Tm1
B0 ∩ {I, J, S}) = 1 and m1 ∈ {I, J, S}.
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(4) hm1,B0
= im1

(B0,Tm1
B0) + min(im1

(B0,Tm1
B0) − 2eB0

, 0) if Tm1
B0 = (IS), J 6∈ Tm1

B0

and m1 6∈ {I, S}.
hm1,B0

= im1
(B0,Tm1

B0)+min(im1
(B0,Tm1

B0)−2eB0
, 0) if Tm1

B0 = (JS), I 6∈ Tm1
B0

and m1 6∈ {J, S}.
(5) hm1,B0

= im1
(B0,Tm1

B0) if Tm1
B0 = (IS), J 6∈ Tm1

B0 and m1 ∈ {I, S}.
hm1,B0

= im1
(B0,Tm1

B0) if Tm1
B0 = (JS), I 6∈ Tm1

B0 and m1 ∈ {J, S}.
(6) hm1,B0

= im1
(B0,Tm1

B0)− eB0
if Tm1

B0 = (IJ), that S 6∈ Tm1
B0 and m1 6∈ {I, J}.

(7) hm1,B0
= im1

(B0,Tm1
B0) if Tm1

B0 = (IJ), that S 6∈ Tm1
B0 and m1 ∈ {I, J}.

(8) hm1,B0
= 2im1

(B0,Tm1
B0)− 2eB0

if I, J, S ∈ Tm1
B0 and m1 6∈ {I, J, S}.

(9) hm1,B0
= 2im1

(B0,Tm1
B0)− eB0

if I, J, S ∈ Tm1
B0 and m1 ∈ {I, J}.

(10) hm1,B0
= 2im1

(B0,Tm1
B0)− eB0

if I, J, S ∈ Tm1
B0, m1 = S and im1

(B0,Tm1
B0) 6= 2eB0

.
(11) hm1,B0

= eB0
(1 + min(β1, 3)) if I, J, S ∈ Tm1

B0, m1 = S and im1
(B0,Tm1

B0) = 2eB0
,

eB0
β1 = im1

(B0, Oscm1
(B0)), where Oscm1

(B0) is any osculating smooth algebraic curve
to B0 at m1 (the last formula of hm1,B0

holds true if we replace eB0
β1 by the first char-

acteristic exponent of B0 non multiple of eB0
, see [22]).

Proof. We take M such that TB = V (y) (with B = M−1(B0)). To simplify notations, we ommit
indices B in WP,i,B and consider i ∈ {1, ..., eB}.

• Suppose that I, J, S 6∈ Tm1
B0. ThenWB,i(0) = yB 6= 0, WA,i(0) = yA 6= 0 andWS′,i(0) =

yS′ 6= 0 so

R̂i(0) =





0
0
1



 ∧ [yAyB · S′ − yAyS′ ·B− yByS′ ·A]

=





yAyByS′

yAyBxS′ − yAyS′xB − yByS′xA
0



 .

Hence hm1,i,B = 0 and the sum over i = 1, ..., eB of these quantities is equal to 0.
• Suppose I ∈ Tm1

B0, J,S 6∈ Tm1
B0 and m1 6= I. Take M such that S′(0, 1, 0), A(1, 0, 0),

yB 6= 0. We have WB,i(0) = yB, WA,i(0) = 0 and WS′,i(0) = 1 and so R̂i(0) =




0
0
1



 ∧





−yB
0
0



 =





0
−yB
0



 . Hence hm1,i,B = 0 and the sum over i = 1, ..., eB of

these quantities is equal to 0.
• Suppose I ∈ Tm1

B0, J, S 6∈ Tm1
B0 and m1 = I. Take M such that S′(0, 1, 0), A(0, 0, 1),

yB 6= 0. We have WB,i(x) = yB − g′i(x)xB + zB(xg
′
i(x)− gi(x)), WA,i(x) = xg′i(x)− gi(x)

and WS′,i(x) = 1 and so

R̂i(x) =





x
gi(x)
1



 ∧





−(xg′i(x)− gi)xB
(xg′i(x)− gi)(−g′i(x)xB + zB(xg

′
i(x)− gi(x)))

−yB + g′i(x)xB − 2zB(xg
′
i(x)− gi(x))





=





−yBgi(x) + x(g′i(x))
2xB − zB((xg

′
i(x))

2 − (gi(x))
2)

−xB(2xg
′
i(x)− gi(x)) + xyB + 2xzB(xg

′
i(x)− gi(x))

−xB(xg
′
i(x)− gi(x))

2 + zB(xg
′
i(x)− gi(x))



 ,

the valuation of the coordinates of which are larger than or equal to 1 and the valuation
of the second coordinate is 1. Hence hm1,i,B = 1 and the sum over i = 1, ..., eB = eB0

of
these quantities is equal to eB0

.
• Suppose S ∈ Tm1

B0, I, J 6∈ Tm1
B0 and m1 6= S. Take M such that A(0, 1, 0), S′(1, 0, 0),

yB 6= 0. We have WB,i(0) = yB 6= 0, WS′,i(0) = 0 and WA,i(0) = 1 and so R̂i(0) =
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



0
0
1



∧





yB
0
0



 =





0
yB
0



 . Hence hm1,i,B = 0 and the sum over i = 1, ..., eB of these

quantities is equal to 0.
• Suppose m1 = S and I, J 6∈ Tm1

B0. Take M such that S′(0, 0, 1), A(0, 1, 0), yB 6= 0.
We have WB,i(x) = yB − g′i(x)xB + zB(xg

′
i(x) − gi(x)), WS′,i(x) = xg′i(x) − gi(x) and

WA,i(x) = 1 and so

R̂i(x) =





x
gi(x)
1



 ∧





−(xg′i(x)− gi)xB
−(xg′i(x)− gi(x))(2yB − g′i(x)xB + zB(xg

′
i(x)− gi(x)))

yB − g′i(x)xB





=





gi(x)(yB − g′i(x)xB) + (xg′i(x)− gi(x))(2yB − g′i(x)xB + zB(xg
′
i(x)− gi(x)))

−(xg′i(x)− gi(x))xB − x(yB − g′i(x)xB)
−(xg′i(x)− gi(x))(2xyB − g′i(x)xxB + zBx(xg

′
i(x)− gi(x)) + gi(x)(xg

′
i(x)− gi(x))xB)



 ,

the valuation of the coordinates of which are larger than or equal to 1 and the valuation
of the second coordinate is 1. Hence hm1,i,B = 1 and the sum over i = 1, ..., eB of these
quantities is equal to eB0

.
• Suppose Tm1

B0 = (IS), J 6∈ Tm1
B0 and m1 6∈ {I, S}. Take M such that S′(1, 0, 0),

B(0, 1, 0), yA = 0, xA 6= 0, zA 6= 0. We have WS′,i(x) = −g′i(x), WA,i(x) = −g′i(x)xA +
zA(xg

′
i(x)− gi(x)) and WB,i(x) = 1 and so

R̂i(x) =





x
gi(x)
1



 ∧





zA(xg
′
i(x)− gi(x))

−(g′i(x))
2xA + g′i(x)(xg

′
i(x)− gi(x))zA

g′i(x)zA





=





gi(x)g
′
i(x)zA + (g′i(x))

2xA − g′i(x)(xg
′
i(x)− gi(x))zA

−gi(x)zA
−x(g′i(x))

2xA + (xg′i(x)− gi(x))
2zA



 ,

the valuation of the coordinates of which are respectively 2val(gi) − 2, val(gi) and
2val(gi)− 1. Hence hm1,i,B = val(gi) +min(val(gi)− 2, 0) and the sum over i = 1, ..., eB
of these quantities is equal to im1

(B0,Tm1
B0) + min(im1

(B0,Tm1
B0)− 2eB0

, 0).
• Suppose Tm1

B0 = (IS), J 6∈ Tm1
B0 and m1 = I. Take M such that S′(1, 0, 0), B(0, 1, 0),

A(0, 0, 1). We have WS′,i(x) = −g′i(x), WA,i(x) = xg′i(x) − gi(x) and WB,i(x) = 1 and
so

R̂i(x) =





x
gi(x)
1



 ∧





xg′i(x)− gi(x)
g′i(x)(xg

′
i(x)− gi(x))
g′i(x)



 =





g′i(x)(2gi(x)− xg′i(x))
−gi(x)

(xg′i(x)− gi(x))
2



 ,

the valuation of the coordinates of which are larger than or equal to val(gi), the second
coordinate has valuation val(gi). Hence hm1,i,B = val(gi) and the sum over i = 1, ..., eB
of these quantities is equal to im1

(B0,Tm1
B0).

• Suppose Tm1
B0 = (IS), J 6∈ Tm1

B0 and m1 = S. Take M such that A(1, 0, 0), B(0, 1, 0),
S′(0, 0, 1). We have WS′,i(x) = xg′i(x) − gi(x), WA,i(x) = −g′i(x) and WB,i(x) = 1 and
so

R̂i(x) =





x
gi(x)
1



 ∧





−(xg′i(x)− gi(x))
g′i(xg

′
i(x)− gi(x))
−g′i(x)



 =





−x(g′i(x))
2

gi(x)
(xg′i(x))

2 − (gi(x))
2



 ,

the valuation of the coordinates of which being larger than or equal to val(gi) and the
valuation of the second coordinate is equal to val(gi). Hence hm1,i,B = val(gi) and the
sum over i = 1, ..., eB of these quantities is equal to im1

(B0,Tm1
B0).
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• Suppose Tm1
B0 = (IJ), S 6∈ Tm1

B0 and m1 6∈ {I, J}. Take M such that S′(0, 1, 0),
B(1, 0, 0), yA = 0, xA 6= 0, zA 6= 0. We have WB,i(x) = −g′i(x), WA,i(x) = −g′i(x)xA +
zA(xg

′
i(x)− gi(x)) and WS′,i(x) = 1 and so

R̂i(x) =





x
gi(x)
1



 ∧





2g′i(x)xA − zA(xg
′
i(x)− gi(x))

(g′i(x))
2xA − g′i(x)(xg

′
i(x)− gi(x))zA

g′i(x)zA





=





(g′i(x))
2(xzA − xA)

2g′i(x)xA − zA(2xg
′
i(x)− gi(x))

−zA(xg
′
i(x)− gi(x))

2 + xAg
′
i(x)(xg

′
i(x)− 2gi(x))



 ,

the valuation of the coordinates of which are respectively 2val(gi) − 2, val(gi) − 1 and
larger than val(gi). Hence hm1,i,B = val(gi) − 1 and the sum over i = 1, ..., eB of these
quantities is equal to im1

(B0,Tm1
B0)− eB0

.
• Suppose that Tm1

B0 = (IJ), that S 6∈ Tm1
B0 and m1 = I. Take M such that

S′(0, 1, 0), B(1, 0, 0), A(0, 0, 1). We have WB,i(x) = −g′i(x), WA,i(x) = xg′i(x) − gi(x)
and WS′,i(x) = 1 and so

R̂i(x) =





x
gi(x)
1



 ∧





−(xg′i(x)− gi(x))
−g′i(x)(xg

′
i(x)− gi(x))

g′i(x)



 =





x(g′i(x))
2

−(2xg′i(x)− gi(x))
−(xg′i(x)− gi(x))

2



 ,

the valuation of the coordinates of which being larger than or equal to val(gi) and the
valuation of the second coordinate is equal to val(gi). Hence hm1,i,B = val(gi) and the
sum over i = 1, ..., eB of these quantities is equal to im1

(B0,Tm1
B0).

• Suppose that I, J, S ∈ Tm1
B0 and m1 6∈ {I, J, S}. Take M such that S′(1, 0, 0), yA =

yB = 0, xA 6= 0, zA 6= 0, xB 6= 0, zB 6= 0, xAzB 6= xBzA. We have WS′,i(x) = −g′i(x),
WA,i(x) = −g′i(x)xA + zA(xg

′
i(x)− gi(x)) and WB,i(x) = −g′i(x)xB + zB(xg

′
i(x)− gi(x))

and so

R̂i(x) =





x
gi(x)
1



 ∧





−xA(g
′
i(x))

2xB + zAzB(xg
′
i(x)− gi(x))

2

0
−(g′i(x))

2(xzB + xBzA)A + 2zAzBg
′
i(x)(xg

′
i(x)− gi(x))





=





−gi(x)(g
′
i(x))

2(xzB + xBzA)A + 2zAzBgi(x)g
′
i(x)(xg

′
i(x)− gi(x))

−xA(g
′
i(x))

2xB + zAzB(xg
′
i(x)− gi(x))

2 − x[....]
xAgi(x)(g

′
i(x))

2xB − zAzBgi(x)(xg
′
i(x)− gi(x))

2



 ,

the valuation of the coordinates of which are larger than or equal to 2val(gi) − 2, the
valuation of the second coodinate is 2val(gi) − 2. Hence hm1,i,B = 2val(gi) − 2 and the
sum over i = 1, ..., eB of these quantities is equal to 2im1

(B0,Tm1
B0)− 2eB0

.
• Suppose that I, J, S ∈ Tm1

B0 and m1 = J . Take M such that B(0, 0, 1), S′(1, 0, 0),
yA = 0, xA 6= 0 and zA 6= 0. We have WS′,i(x) = −g′i(x), WA,i(x) = −g′i(x)xA +
zA(xg

′
i(x)− gi(x)) and WB,i(x) = xg′i(x)− gi(x) and so

R̂i(x) =





x
gi(x)
1



 ∧





zA(xg
′
i(x)− gi(x))

2

0
−xA(g

′
i(x))

2 + 2zA(xg
′
i(x)− gi(x))g

′
i(x)





=





gi(x)g
′
i(x)(−g′i(x)xA + 2zA(xg

′
i(x)− gi(x)))

zA(xg
′
i(x)− gi(x))

2 − xg′i(x)(−g′i(x)xA + 2zA(xg
′
i(x)− gi(x)))

−gi(x)zA(xg
′
i(x)− gi(x))

2



 ,

the valuation of the coordinates of which are larger than or equal to 2val(gi)−1 and the
valuation of the second coordinate is 2val(gi)− 1. Hence hm1,i,B = 2val(gi)− 1 and the
sum over i = 1, ..., eB of these quantities is equal to 2im1

(B0,Tm1
B0)− eB0

.
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• Suppose that I, J, S ∈ Tm1
B0 and m1 = S. Take M such that S′(0, 0, 1), B(1, 0, 0),

yA = 0, xA 6= 0 and zA 6= 0. We have WB,i(x) = −g′i(x), WA,i(x) = −g′i(x)xA +
zA(xg

′
i(x)− gi(x)) and WS′,i(x) = xg′i(x)− gi(x) and so

R̂i(x) =





x
gi(x)
1



 ∧





2xAg
′
i(x)(xg

′
i(x)− gi(x))− zA(xg

′
i(x)− gi(x))

2

0
(g′i(x))

2xA





=





gi(x)(g
′
i(x))

2xA
xAg

′
i(x)(xg

′
i(x)− 2gi(x)) − zA(xg

′
i(x)− gi(x))

2

−2xAgi(x)g
′
i(x)(xg

′
i(x)− gi(x)) + zAgi(x)(xg

′
i(x)− gi(x))

2



 .

The valuation of the first coordinate is 3val(gi) − 2 is smaller than or equal to the
valuation of the third coordinate.

If val(gi) 6= 2, the valuation of the second coordinate is 2val(gi)− 1; hence hm1,i,B =
2val(gi)−1 and the sum over i = 1, ..., eB of these quantities is equal to 2im1

(B0,Tm1
B0)−

eB0
.
Suppose now that val(gi) = 2, then 3val(gi) − 2 = 4 and there exist α,α1 ∈ C and

β1 > 2 such that gi(x) = αx2+α1x
β1+ .... Then, the second coordinate has the following

form (xA2α(β1 − 2)xβ1+1 + ...) + x4(...). Therefore hm1,i,B = min(β1 +1, 4) and the sum
over i = 1, ..., eB of these quantities is equal to eB0

(1 + min(β1, 3)).

�

Proof of Theorem 10. Recall that (13) says

mclass(ΣS(C)) = 2d∨ + d−
∑

m1∈C

∑

B0∈Branchm1
(C)

hm1,B0

and that the values of hm1,B0
have been given in Lemma 17.

• Assume first S 6∈ ℓ∞. Then we have to sum the hm1,B0
coming from Items 3, 4, 5, 6 and

7 of Lemma 17.
The sum of the hm1,B0

coming from Items 3 and 5 applied with m1 = S gives directly
g′.

The sum of the hm1,B0
coming from Items 3, 5 and 7 applied with m1 ∈ {I, J} gives

f +ΩI(C, ℓ∞) + ΩJ(C, ℓ∞).
The sum of the hm1,B0

coming from Item 6 gives g −ΩI(C, ℓ∞)− ΩJ(C, ℓ∞).
The sum of the hm1,B0

coming from Item 4 gives 2f ′ − q′ (notice that hm1,B0
=

2(im1
(B0,Tm1

B0)− eB0
)− (im1

(B0,Tm1
B0)− 2eB0

)1im1
(B0,Tm1

B0)≥2eB0
).

• Assume first S 6∈ ℓ∞. Then we have to sum the hm1,B0
coming from Items 3, 8, 9, 10

and 11 of Lemma 17.
The sum of the hm1,B0

coming from Items 3 (withm1 = S), 10 and 11 gives 2ΩS(C, ℓ∞)+
µS + c′(S).

The sum of the hm1,B0
coming from Items 3 and 9 applied with m1 ∈ {I, J} gives

2(ΩI(C, ℓ∞) + ΩJ(C, ℓ∞)) + µI + µJ .
The sum of the hm1,B0

coming from Item 8 gives 2(g − ΩI(C, ℓ∞) − ΩJ(C, ℓ∞) −
ΩS(C, ℓ∞)).

�
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Appendix A. Intersection numbers of curves and pro-branches

The following result expresses the classical intersection number im1
(C, C′) defined in [14, p.

54] thanks to the use of probranches.

Proposition 18. Let m ∈ P2. Let C = V (F ) and C′ = V (F ′) be two algebraic plane curves
containing m, with homogeneous polynomials F,F ′ ∈ C[X,Y,Z]. Let M ∈ GL(C3) be such that
Π(M(P0)) = m and such that the tangent cones of V (F ◦M) and of V (F ′ ◦M) do not contain
X = 0.

Assume that V (F ◦M) admits b branches at P0 and that its β-th branch Bβ has multiplicity eβ.
Assume that V (F ′ ◦M) admits b′ branches at P0 and that its β′-th branch B′

β′ has multiplicity

e′β′.

Then we have

im(C, C′) =

b
∑

β=1

eβ−1
∑

j=0

b′
∑

β′=1

e′
β′−1
∑

j′=0

valx[hβ(ζ
jx

1

eβ )− h′β′(ζ ′
j′
x

1

e′
β′ )],

with y = hβ(ζ
jx

1

eβ ) ∈ C〈x∗〉 an equation of the j-th probranch of Bβ at P0, y = h′β′(ζ ′
j′x

1

e′
β′ ) ∈

C〈x∗〉 an equation of the k′-th probranch of B′
β′ at P0, with ζ := e

2iπ
eβ and ζ ′ := e

2iπ
e′
β′ .

With the notations of Proposition 18, we get

im(C, C′) =

b
∑

β=1

iP0
(Bβ, V (F ′)), (14)

with the usual definition given in [21] of intersection number of a branch with a curve

iP0
(Bβ , V (F ′ ◦M)) =

eβ−1
∑

j=0

valx(F
′ ◦M(x, hj,β(ζ

jx
1

eβ ))). (15)

Proof of Proposition 18. By definition, the intersection number is defined by

im(C, C′) = iP0
(V (F ◦M,F ′ ◦M) = length

(

(

C[X,Y,Z]

(F ◦M,F ′ ◦M)

)

(X,Y,Z)

)

where ( C[X,Y,Z]
(F◦M,F ′◦M))(X,Y,Z) is the local ring in the maximal ideal (X,Y,Z) of P0 [14, p. 53].

According to [12], we have

im(C, C′) = dimC

(

(

C[X,Y,Z]

(F ◦M,F ′ ◦M)

)

(X,Y,Z)

)

Let f, f ′ be defined by f(x, y) = F ◦M(x, y, 1), f ′(x, y) = F ′ ◦M(x, y, 1). We get

im(C, C′) = dimC

(

(

C[x, y]

(f, f ′)

)

(x,y)

)

= dimC

C〈x, y〉
(f, f ′)

.

Recall that, according to the Weierstrass preparation theorem, there exist two units U and U ′

of C〈x, y〉 and f1, ..., fb, f
′
1, ..., f

′
b′ ∈ C〈x〉[y] monic irreducible such that

f = U

b
∏

β=1

fβ and f ′ = U ′
b′
∏

β′=1

f ′
β′ ,
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fβ = 0 being an equation of Bβ and f ′
β′ = 0 being an equation of B′

β′ . According to the Puiseux

theorem, Bβ (resp. B′
β′) admits a parametrization

{

x = teβ

x = hβ(t) ∈ C〈t〉 (resp.

{

x = t
e′
β′

x = h′β′(t) ∈ C〈t〉 ).

We know that, for every β ∈ {1, .., b} and every j ∈ {0, .., eβ}, hβ(ζjx
1

eβ ) ∈ C〈x
1

eβ 〉 are the

y-roots of fβ (resp. hβ′(ζ ′j
′

x

1

e′
β′ ) ∈ C〈x

1

e′
β′ 〉 are the y-roots of f ′

β′). In particular, we have

fβ(x, y) =

eβ−1
∏

j=0

(y − hβ(ζ
jx

1

eβ )) and f ′
β′(x, y) =

e′
β′−1
∏

j′=0

(y − h′β′(ζ ′
j′
x

1

e′
β′ )).

Therefore we have the following sequence of C-algebra-isomorphisms:

C〈x, y〉
(f, f ′)

=
C〈x, y〉

(
∏b

β=1 fβ(x, y), f
′(x, y))

∼=
b
∏

β=1

Aβ,

where Aβ := C〈x,y〉
(fβ(x,y),f ′(x,y)) . Let β ∈ {1, ..., b}. We observe that we have

Aβ =

eβ−1
∏

j=0

C〈x〉
(f ′(x, hβ(ξjx

1

e β )))
.

On another hand, we have

Dβ :=
C〈x

1

eβ , y〉
(fβ(x, y), f ′(x, y))

=
C〈x

1

eβ , y〉
(
∏eβ−1

j=0 (y − hβ(ζjx
1

eβ )), f ′(x, y))

∼=
eβ−1
∏

j=0

C〈x
1

eβ , y〉
(y − hβ(ζjx

1

eβ ), f ′(x, y))

∼=
eβ−1
∏

j=0

Dβ,j

with

Dβ,j :=
C〈x

1

eβ 〉
(f ′(x, hβ(ζjx

1

eβ )))
.

We consider now the natural extension of rings iβ : Aβ,j →֒ Dβ,j such that

∀g ∈ Aβ , val
x
1/eβ ((iβ(g))(x)) = eβvalx(g(x)).

We have

Dβ
∼=

eβ−1
∏

j=0

C〈x
1

eβ 〉
(xvβ )

,

where vβ is the valuation in x
1

eβ of (f ′(x, hβ(ζ
jx

1

eβ ))), i.e.

vβ := valt(f
′(teβ , hβ(ζ

jt))) = eβ valx(f
′(x, hβ(ζ

jx
1

eβ ))).
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We get

im(C, C′) =

b
∑

β=1

dimC Aβ =

b
∑

β=1

eβ−1
∑

j=0

1

eβ
valt(f

′(teβ , hβ(ζ
jt)))

=

b
∑

β=1

eβ−1
∑

j=0

valx(f
′(x, hβ(ζ

jx
1

eβ ))) =

b
∑

β=1

eβ−1
∑

j=0

b′
∑

β′=1

valx(f
′
β′(x, hβ(ζ

jx
1

eβ ))).

Observe now that

valx(f
′
β′(x, hβ(ζ

jx
1

eβ ))) ∈ 1

eβ
N

and that

f ′
β′(x, hβ(ζ

jx
1

eβ )) ≡ Res(f ′
β′ , fβ; y) ≡

e′
β′−1
∏

j′=0

(h′β′(ζ ′
j′
x

1

e′
β′ )− hβ(ζ

jx
1

eβ )),

where Res denotes the resultant and where ≡ means ”up to a non zero scalar”. Finally, we get

im(C, C′) =

b
∑

β=1

eβ−1
∑

j=0

b′
∑

β′=1

e′
β′−1
∑

j′=0

valx[h
′
β′(ζ ′

j′
x

1

e′
β′ )− hβ(ζ

jx
1

eβ )].

�
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