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Abstract

In this paper the problem of robust state observer design for a class of Unmanned Aerial Vehicles
(UAV) is addressed. A prototype 4 rotors helicopter robot for indoors and outdoors applications is
considered: the drone is not equipped with GPS related devices, so that we describe a strategy to esti-
mate its translational velocity vector based on acceleration, angles and angular speeds measurements
only. Since the linearized system is non observable at the equilibrium point, a nonlinear observability
veri�cation is performed for persistently exciting trajectories. A global exponential solution to this
open problem is provided in the framework of adaptive observation theory when exact measurements
are available. A modi�ed observer is presented to enhance velocity estimation robustness in the real-
istic case of noisy measurements. The results are compared with a classical estimation strategy based
on the Extended Kalman Filter to test the algorithm's performance.

1 Introduction

The speed estimation problem has an important role in the context of vehicle control. For land mov-
ing robots, the odometry time derivative has a satisfactory performance while for large aerial vehicles
(manned or unmanned) velocity estimations can be obtained via approximate derivation of the successive
measurements from GPS sensors, motivated by the small resulting errors compared to the measured vari-
ables. For fast aircrafts the standard procedure is integrating the acceleration and coupling this result
to the derivative of GPS measurements. In fact, signals (translational acceleration, angles and angular
velocity) delivered by the embedded Inertial Measurement Unit (IMU) can be used to obtain position
information through a double integration process. However, because of sensor drift, such procedure re-
quires high precision IMU. This sensor can't be used for small size UAVs where cost, weight and volume
are the most important constraints.
For such applications, two critical issues arise in an �open loop� strategy like direct acceleration inte-
gration: an unknown constant estimation error is produced even when exact acceleration measurements
are available while a random drift is induced by noisy acceleration estimations. In practice, numerical
integration along with measurement noise induces a very fast growing velocity measurement error.
Reasonable approaches to overcome these problems are represented by sensor fusion techniques, in order
to compensate the lack of precision of low cost IMUs. In that context the information obtained from
the GPS is used to bound the integration error and initial conditions for acceleration integration are
provided by GPS devices [29]. This technique provides bounded errors that are related to the GPS order
of magnitude precision and sample rate. Currently used GPS may assure a precision of 5-10 meters with
a sample rate of 1-2 Hz. The resulting errors are usually small compared to the size of aerial vehicles
and the distance to obstacles. In the same way, the control systems usually applied to these vehicles are
robust enough to accept the residual disturbance on the speed estimation provided by these methods.
Unfortunately, the estimation approach above cannot be implemented on small drones less than 1 meter
wide and �ying at low speed that we consider in this note. This issue is even more relevant in indoors or
simply urban applications as inspecting bridges and industrial facilities which cannot rely on GPS, since
satellite's signals are shaded by the inspected structure.
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A technical solution when no obstacles are present would involve the use of a D-GPS system. These
systems are known as centimetric GPS and have a precision of some centimeters, but they are very
expensive also, heavyweight and low-range operating equipment. In the same way, Doppler measurements
coupled with GPS can actually increase velocity estimation accuracy, but they can only be used in special
conditions of smoothness and continuity of obstacles, as well as a good knowledge of their position and
shape.
In [21], a control law based on computer vision is proposed for quasi-stationary �ights above a planar
structure like bridges to perform inspection tasks. Likewise, estimates of the pose and velocity of a rigid
body can be provided by an algorithm based on IMU data and images provided by a camera (see [5]). The
main drawback of this method is the large amount of computer resources needed. It is still not possible
to apply vision algorithms in the small micro-controllers used in the considered UAV's. Displacing the
image processing algorithms to computers at a land base is hardly implemented for two reasons: �rst, the
time delay induced by remote computing and communication, along with the danger of losing the contact
with the drone could inevitably imply disruptive device instability; a second important drawback is the
sensibility of cameras and vision algorithms to light variations, associated to outdoor drone displacement.
Vision can be used in an hierarchical display where a slow controller gives path planning references to a
fast stabilizing one, as in [17], where an Unscented Kalman Filter is applied to the navigation problem
and a solution for simultaneous localization and mapping when no GPS signal is available is proposed.
The result described in [17] relies on an Inertial Measurement Unit along with a monocular camera only
and possible losses of vision or radio contact do not a�ect the UAV's stability. In the �eld of fusion
techniques, an interesting solution to the problem of estimation of the position and velocity of UAVs is
proposed in [27] and [28]. The algorithm based on Kalman �ltering techniques uses the magnetic �eld
disturbances to improve the estimation error due to the use of low cost IMU; it may be useful for indoor
applications.
In the present paper we consider the problem of translational velocity estimation from measurements of
translational accelerations in the local reference frame, Euler angles in the global reference frame and
angular speeds in the local reference frame. Since translational velocity knowledge is necessary for an
e�cient drone control design, most literature about small �ying robots control assumes that at least
the translational speeds are available (see [9], [10], [15], [24]). This is motivated by the fact that it is
hardly possible for a human pilot (inboard or in tele-operation) to regulate a drone by giving references
and trajectories as inputs based on the sole acceleration measurement. Notice that in the general case,
the reliable estimation of the speed vector is still an open problem. In fact, the acceleration in the local
(body �xed) frame is not a standard measurement from IMU, but even if this information is available the
classical open loop integration using this information would roughly lead to the same results obtained
with the standard acceleration measurement in the global reference frame.
Recently, [4], [29], [30] have proposed observers to be implemented on UAV's. The critical issue in this
domain comes from the fact that the translation velocity is classically known as non observable. A
key contribution of the present work is to show that although the system linearized approximation is
non-observable in the origin, the full nonlinear system may become observable under suitable su�cient
conditions, thus allowing its estimation.
Motivated by the above issues, in this note we describe a novel observation strategy that solves the
problem of the speed estimation of an Unmanned Aerial Vehicle, when the translational acceleration (in
the local reference frame), the angles and the angular speeds (in the global reference frame) are available
for measurement. We focus our analysis on a prototype drone - a 4 rotors helicopter robot shown in Fig.
1 - produced to operate in an urban environment at the Laboratoire IBISC - CNRS, Universite d'Evry,
which is not equipped with GPS related devices (see [25]). We provide a global exponential solution
to this open problem in the light of classical adaptive estimation theory when exact measurements are
available. A modi�ed estimator is presented to enhance robustness in velocity estimation in the case
of noisy acceleration measurements. The simulation results obtained on the model of the real drone
-even in the presence of noise- provide an additional algorithm validation test. The proposed scheme is
relatively simple and this is a key issue since the algorithm has to be implemented in small embedded
micro-controllers without heavy computation burden.



  

Figure 1: Prototype Drone

The results in this paper are inspired by two design principles. The �rst one is that by increasing the use of
model based informations, it is possible to better exploit sensors estimations, which is obviously obtained
via a much larger modeling e�ort and theoretical complexity. Second, by exploiting the reference frame
changes of coordinates, there are new informations that may arise when some rather mild conditions
of persistence of excitation (PE) are ful�lled. This property in turn is satis�ed when the considered
aerial vehicle has decoupled rotational and translational dynamics, since we aim at constructing an
observer which estimates translational states based on rotational information. These design principles
can be implemented on any vehicle such that rotational dynamics can be stabilized independently on
the estimation of translational velocities, like helicopters and Vertical Take O� and Landing (VTOL)
airplanes.
The nonlinear observability study introduced in this paper �nds a natural complement in the design of
an Extended Kalman Filter (EKF) for the considered UAV, which is used in the simulation section to
illustrate and compare the behavior of the proposed adaptive observer. The tests performed show that
the adaptive observer has a better performance in the case of internal and external disturbances like
wind, unmodelled dynamics and measurement noise. Furthermore the proposed observers were designed
based on adaptive theory and as consequence, present a self-tuning behavior much easier to set than the
EKF.
The paper is organized as follows: in Section 2 we describe the drone model and formulate the problem
addressed in this paper, analyzing the observability property of the system. This is guaranteed introducing
a suitable PE assumption which is used in Section 3 to construct the observation algorithms and to prove
that the estimation error converges exponentially to zero. In Section 4 we report some simulations that
illustrate the observer performance and stress the in�uence of some parameters on the observer behavior.
Finally in Section 5 we conclude the note with few remarks along with an outline of our future research
on this topic.

2 Problem formulation

In this section we describe (see [2]) the UAV dynamic model equations and state the problem that we
solve in the next sections. It is important to remark that the considered drone is a modi�ed quadrotor
that presents the interesting feature of swinging two of its motors, similar to a Vertical Take O� and
Landing (VTOL) airplane, that is represented as two additional inputs than the standard quadrotors.
This feature is not used in the present work, since it does not address the UAV's control, but it could be
an interesting feature in a di�erent setting.

Let η1 , [x, y, z]T be the UAV position vector represented in the global reference frame, let η2 ,
[φ, θ, ψ]T be the Euler angles vector represented in the global reference frame (roll pitch and yaw
respectively); we also assume that ν1 , [u, v, w]T is the speed vector represented in the local reference
frame (surge, sway and heave respectively) and ν2 , [p, q, r]T is the angular speed vector represented in



the local reference frame. The UAV model in state space form collects the set of the �rst order di�erential
equations expressing η̇1, η̇2, ν̇1, ν̇2, as a function of η1, η2, ν1, ν2. To be more speci�c, the linear velocity
in the �xed reference frame η̇1 = (ẋ, ẏ, ż)T can be expressed as a function of η2, ν1, via the set of
di�erential equalities

ẋ = cos(θ) cos(ψ) u

+ (sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ)) v

+ (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))w

ẏ = cos(θ) sin(ψ) u

+ (sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ)) v

+ (cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ)) w

ż = − sin(θ) u + sin(φ) cos(θ) v + cos(φ) cos(θ) w (1)

The time derivatives of the Euler angles η̇2 =(φ̇, θ̇, ψ̇) satisfy the following equations :

φ̇ = p+ (sin(φ) q + cos(φ) r) tan(θ)

θ̇ = cos(φ) q − sin(φ) r

ψ̇ = (sin(φ) q + cos(φ) r) cos(θ)−1 (2)

We assume that the UAV four rotors turn respectively at speed ω1, ω2, ω3 and ω4. Support of rotors 1
and 3 can also swivel around their pitch axes (angles ς1 and ς3 represent the orientation of each support).
Theses quantities represent the system's control input functions and are related to the time derivatives
of the speed vectors, respectively ν̇1 = [u̇ v̇ ẇ]T and ν̇2 = [ṗ q̇ ṙ]T which are accelerations in the local
reference frame and comply with the mechanical equations of the UAV. In particular, we have

u̇ = (− q w + r v − g sin(θ))− kT
m (ω2

1 sin(ς1) + ω2
3 sin(ς3))

v̇ = (− r u + p w + g sin(φ) cos(θ))

ẇ = (− p v + q u + g cos(φ) cos(θ))

− kT
m (ω2

1 cos(ς1) + ω2
2 + ω2

3 cos(ς3) + ω2
4)

(3)

where g is the gravity acceleration constant, m is the drone mass, kT is a constant relating the UAV rotor
speeds and resulting thrust. In the angular setting we obtain

Ixx ṗ = − (Izz − Iyy) r q + lb kT (ω2
1 cos(ς1) − ω2

3 cos(ς3))

− q Ir (ω1 cos(ς1) + ω2 + ω3 cos(ς3) + ω4)

− kM (ω2
1 sin(ς1) + ω2

3 sin(ς3))

Iyy q̇ = − (Ixx − Izz) p r − r Ir (ω1 sin(ς1) + ω3 sin(ς3))

+ p Ir (ω1 cos(ς1) + ω2 + ω3 cos(ς3) + ω4)

+ lb kT (ω2
2 − ω2

4) + uG kT (−ω2
1 sin(ς1) + ω2

3 sin(ς3))

Izz ṙ = − (Iyy − Ixx) p q − lb kT (ω2
1 sin(ς1) − ω2

3 sin(ς3))

+ kM (ω2
1 cos(ς1) − ω2

2 + ω2
3 cos(ς3) − ω2

4)

+ q Ir (ω1 sin(ς1) + ω3 sin(ς3)) (4)

where Ixx, Iyy, Izz are the inertia moments, kM is the constant relating rotor speeds and torque, lb is the
length of each drone's arm, and Ir is the rotor's inertia moment constant.

In this paper we assume that the following quantities are available for measurement: orientation (Euler
Angles in the global reference frame), angular velocities (in the local reference frame) and translational
acceleration (in the local reference frame) of the vehicle. The coe�cients kT and kM as well as di�erent
parameters of the model are experimentally identi�ed. In this context 1, de�ning the vectors X = [φ, θ, ψ, p, q, r, u, v, w]T

ym = [φ, θ, ψ, p, q, r, u̇, v̇, ẇ]T

Ω = [ω1, ω2, ω3, ω4, ς1, ς3]T
(5)

1We will not consider position estimation. For this reason, the state vector does not include it.



equations (2)-(4) can be written in a compact notation as{
Ẋ = f(X,Ω), X ∈ R9

ym = h(X,Ω), y ∈ R6 (6)

where f : R9 × R6 → R9
is a smooth function depending on the state and the control input Ω, and

h(X,Ω) is obtained by combining the second equality in (5) along with (3), expressing u̇, v̇, ẇ as functions
of X and Ω.

The paper objective may then be stated as: given system (6), design an observation strategy yielding
exponentially converging estimates of the state X from the measurable output ym, to be eventually included
in any control strategy of system (6).

In practical terms, the observation algorithm focuses on the estimation of the unmeasurable state
variables ν1, based on the measurable variables η2, ν̇1 and ν2 given by the standard sensors embedded in
the drone. We remark that a necessary condition for the synthesis of any observer is the local observability
property to be veri�ed. To this purpose, we recall the following de�nition.

De�nition 1 (see [13], [22]). Let G denote the set of all �nite linear combinations of the Lie derivatives
of h1, . . . , hp with respect to f for various values of u = constant. Let dG denote the set of all their
gradients. If we can �nd n linearly independent vectors within dG, then the system is locally observable.

The observability matrix O 4= dG is given by :

O =

 L0
fh

...

Lp−1f h


The system is locally observable if O has full rank. Thus in the case we consider in this paper, the
estimation strategy has to be coupled with a tracking control algorithm driving the angular speeds
[p, q, r]T to bounded and non vanishing reference trajectories [pr(t), qr(t), rr(t)]

T that guarantee the
rank of matrix O to be di�erent from zero. To be more speci�c, let Φ(t) be the matrix de�ned as

Φ(t) =

 0 r −q
−r 0 p
q −p 0

 (7)

In this paper we assume Φ(t) is persistently exciting (PE), as formally stated below.

Hypothesis 1 The matrix Φ(t) is bounded and persistently exciting (PE), i.e. there are positive integers
T ∗, K∗1 and K∗2 such that

K∗1 I ≥
∫ t+T∗

t

Φ(τ)TΦ(τ)dτ ≥ K∗2 I for all t ∈ R (8)

Claim 1 Hypothesis (H1) is satis�ed for any speed vector represented in the local reference frame ν2 =
[p, q, r]T , which is bounded and PE, i.e. such that

c∗1I ≥
∫ t+T∗

t

ν2(τ)T ν2(τ)dτ ≥ c∗2I for all t ∈ R (9)

for suitable positive integers T ∗, c∗1 and c∗2.

Proof. To prove the Claim we show that any ν2(t) which does not comply with (8) does not comply
with (9) also. In fact, if Φ(t) is not PE, then there exists a nonzero vector s = [s1, s2, s3]T such that

limt→∞ ‖Φ(t)s‖2 = 0. By expanding the term ‖Φ(t)s‖2, recalling (7), we deduce that the limit identity
above implies

s3 lim
t→∞

q(t) = s2 lim
t→∞

r(t); s3 lim
t→∞

p(t) = s1 lim
t→∞

r(t); s2 lim
t→∞

p(t) = s1 lim
t→∞

q(t) (10)



Property (10) can be expressed concisely as ν2(t) = Tr(t)V +ε(t) where V ∈ R3
, V 6= 0 is any non zero

vector, Tr(t) is any scalar time function and ε(t) is any vector function such that limt→∞ ε(t) = 0. It is
straightforward to show that any ν2(t) in the form above does not satisfy (9), and this proves the Claim. �

Remark 1 By virtue of Claim 1, Hypothesis 1 is guaranteed for any angular speed vector ν2(t) that spans
periodically a 3-dimensional surface, for instance a non-vanishing periodic orbit. Besides, the nature of
the vehicle provides vibrations in real applications, that may already give enough persistence of excitation
which relyes on angular speeds (oscillation frequency) rather than angles (oscillation amplitudes).

Remark 2 The necessity of Hypothesis 1 clari�es that our estimation strategy can be implemented on
that set of aerial vehicles satisfying PE condition. All helicopters and quadrotors ful�ll this requirement
because their rotational and translational dynamics are decoupled and the rotational states are available
for measurement with standard sensors (IMU, infrared sensors, magnetometers). For this reason, it is
possible to track a persistently exciting reference independently of estimation results. These could then be
used in an outer loop that may be used to stabilize the translational dynamics.

3 Observer Design

In this section we describe the estimation strategy following the techniques presented in [19] and [20], as
well as an outline of its stability proof. Two di�erent algorithms that estimate the linear velocity of the
system described by equations (2) - (4) are presented. The �rst algorithm considers the ideal case with
no noise on the measurement outputs while the second takes into account additive measurement noise on
the translational accelerations.
The measured output can be expressed as

ym
4
= [y1, y2]T = [φ, θ, ψ, p, q, r︸ ︷︷ ︸

y1

, u̇, v̇, ẇ︸ ︷︷ ︸
y2

]T

where the vector y2 = ν̇1 = [u̇, v̇, ẇ]T is available for measurement, so that equation (3) is re-written as

ν̇1(t) = Φ(t)ν1(t) + Λ(t) (11)

y2 = ν̇1

with the matrix Φ as in (7) and the vector Λ de�ned as

Λ(t) =

 −g sin(θ) − kT
m (ω2

1 sin(ς1) + ω2
3 sin(ς3))

g sin(φ) cos(θ)

g cos(φ) cos(θ) − kT
m (ω2

1 cos(ς1) + ω2
2 + ω2

3 cos(ς3) + ω2
4)


In the following we design a reduced-order observer which estimates the translational velocity of the UAV
recalling that, in order to guarantee that p(t), q(t) and r(t) are di�erent from zero, the control inputs
have to be chosen such that the system oscillates around the equilibrium point.

3.1 Basic algorithm

In this section we construct an algorithm to estimate the time function ν1(t) assuming, by virtue of (11),
that the quantity Y1 , [ν̇1(t)−Λ(t)] = Φ(t)ν1(t) is measurable, recalling that both the time derivative of
the function to be estimated y2 = ν̇1(t) and the regression matrix Φ(t) are available for measurement. We
remark that many adaptive estimation techniques (see [20]) are shown to guarantee exponential function
estimation when the time derivative of the regression matrix is also available for measurement, thus the
�rst step in the estimation strategy is to replace the regression identity Y1 = Φ(t)ν1(t) with another
identity Y2 ,M(t)ν1(t), where M(t) is a matrix (to be de�ned) whose time derivative Ṁ is available for

measurement. To this purpose, let M(t) ∈ R3 ×R3
be the state of the �lter

Ṁ = −αM + Φ(t) (12)

with arbitrary initial condition M(0) ∈ R3 ×R3
, where α ∈ R+

is a positive tuning parameter chosen
by the designer. The matrix M(t) is also PE, as stated below.



Claim 2 The matrix M is persistently exciting, i.e. there exist positive integers K∗M1 and K∗M2 such
that

K∗M1I ≥
∫ t+T∗

t

M(τ)TM(τ)dτ ≥ K∗M2I for all t ∈ R (13)

where T ∗ is the positive real de�ned in Hypothesis H1.

Proof. By contradiction, assume that there exists a vector s ∈ R3
with ‖s‖ = 1 such that limt→∞M(t)s =

0. Then by setting ∆M(t) = M(t + T ∗)s −M(t)s we have that limt→∞∆M(t) = 0. Recalling that by

virtue of (12) ∆M(t) = −α
∫ t+T∗

t
M(τ)sdτ+

∫ t+T∗

t
Φ(τ)sdτ , we deduce that limt→∞

∫ t+T∗

t
Φ(τ)sdτ = 0,

contradicting hypothesis (H1). �
De�ne the system

ρ̇ = −αρ+ ν̇1 − Λ(t) +Mν̇1 = −αρ+ y2 − Λ(t) +My2 (14)

with state ρ ∈ R3
, arbitrary initial condition ρ(0) ∈ R3

. The task of (12) and (14) is to obtain a
measurable estimate ρ of the vector Y2 = Mν1 with M measurable along with its time derivative. In

fact, by setting σ
4
= ρ−Mν1 we have

σ̇ = −α (ρ−Mν1) = −ασ (15)

which implies that σ exponentially converges to zero.
Consider the �lter

Q̇ = −βQ+MTM (16)

with state Q ∈ R3×R3
and any initial condition such that Q(0) > 0, where β ∈ R+

is a positive tuning
parameter chosen by the designer. From (16) by using the arguments in [20] we demonstrate the following
result.

Claim 3 Assume that Q(0) > 0; then the matrix Q(t) is bounded and positive de�nite, i.e. there exists
a positive constant c2 such that Q(t) > c2I for all t ≥ 0.

Proof. Each entry of the matrix Q(t) is the state of a linear asymptotically stable �lter driven by a
bounded input, so that Q(t) is bounded. In order to prove that Q(t) is positive de�nite, from (16) we
have that

Q(t) = e−βtQ(0) +

∫ t

0

e−β(t−τ)M(τ)TM(τ)dτ

Recall that e−βtQ(0) > 0 and
∫ t
0
e−β(t−τ)M(τ)TM(τ)dτ ≥ 0 for all t > 0, thus Q(t) ≥ e−βT

∗
Q(0)

for all 0 ≤ t ≤ T ∗; however from (16) we also infer that Q(T ∗) ≥
∫ T∗

0
e−β(T

∗−τ)M(τ)TM(τ)dτ ≥
e−βT

∗ ∫ T∗

0
M(τ)T

∗
M(τ)dτ, that by virtue of (13) in Claim 2 yields Q(T ∗) ≥ e−βT

∗
K∗M2I. By repeating

iteratively these arguments we have that Q(t) ≥ e−2βT∗
K∗M2I in each interval iT ∗ ≤ t ≤ (i+ 1)T ∗ with

i = 1, 2...∞, concluding that Q(t) ≥ c2I where c2 = min{e−βT∗
Q(0), e−2βT

∗
K∗M2}. �

Thus the idea behind the observation strategy in this note is to seek an estimate

ν̂1 =

 û
v̂
ŵ


of ν1 such that by setting the estimation error variable ν̃1

4
= ν1 − ν̂1, its time derivative can be written

in the form
˙̃ν1 = γ(−Qν̃1 + χ) (17)

where γ ∈ R+
is a positive tuning parameter to be chosen by the designer and χ is a quantity to be

de�ned within the synthesis process. Notice that χ must not be chosen necessarily as a measurable
quantity, rather it has to converge exponentially to zero. If this is the case, then the positive de�niteness
of Q(t) implies that limt→∞ ν̃1(t) = 0 exponentially. Since ν̂1 = ν1 − ν̃1, the computation of ˙̂ν1 along
with (17) yields

˙̂ν1 = γ(−Qν̂1 +Qν1 − χ) + y2. (18)



>From the last expression we infer that χ has to include the non measurable term Qν1 for the dynamics
˙̂ν1 to be implementable. Notice that d (Qν1) /dt = −β(Qν1)+MTMν1 +Qy2; this circumstance suggests
that χ has to be set equal to Qν1 plus the states of some stable linear �lters with eigenvalue −β fed by
terms compensating MTMν1 and Qy2. In particular, de�ning these stable �lters as

δ̇ = −βδ + ρ , −βδ + σ +Mν1 (19)

ξ̇ = −βξ +Qy2 + [αM − Φ(t)]
T
δ , −βξ +Qy2 − ṀT δ (20)

with vector states δ ∈ R3
, ξ ∈ R3

, arbitrary initial conditions δ(0) ∈ R3
ξ(0) ∈ R3

and setting

χ
4
= Qν1 −MT δ − ξ, (21)

by taking into account (19), (20) we obtain

χ̇ = −βχ−MTσ. (22)

>From (22) we infer that χ is the state of a stable �lter driven by the exponentially vanishing input σ,
so that limt→∞ χ(t) = 0 exponentially, which implies that limt→∞ ν̃1(t) = 0 exponentially. Equality (21)
along with (18) yields the dynamics for ν̂1, the estimate of ν1, given by

˙̂ν1 = γ(−Qν̂1 +MT δ + ξ) + y2. (23)

Previous arguments can be summarized as follows.

Proposition 1 Consider the UAV model described by (2)-(4). Assume that the variables η2, ν2, ν̇1
are available for measurement and that Hypothesis 1 holds. Then for all α ∈ R+

, β ∈ R+
, γ ∈ R+

,

the dynamic observer described by (12), (14), (16), (19), (20) and (23) with state M(t) ∈ R3 × R3
,

Q(t) ∈ R3×R3
, ρ(t) ∈ R3

, δ(t) ∈ R3
, ξ(t) ∈ R3

and ν̂1(t) ∈ R3
is such that the vector ν1− ν̂1 converges

to zero globally exponentially for any initial conditions M(0) ∈ R3 ×R3
, Q(0) ∈ R3 ×R3

, ρ(0) ∈ R3
,

δ(0) ∈ R3
, ξ(0) ∈ R3

ν̂1(0) ∈ R3
with Q(0) > 0.

Proof. The result has been already outlined in the previous arguments; a rigorous demonstration
follows from standard Lyapunov theory. In particular, consider the class of Lyapunov functions

V =
1

2
κ1 ‖ν̃1‖2 +

1

2
κ2 ‖χ‖2 +

1

2
κ3 ‖σ‖2 (24)

where κ1, κ2, κ3, are positive real numbers to be de�ned later. By computing the time derivative V̇ and
recalling (15), (22), (17) we obtain

V̇ = −ακ3 ‖σ‖2 − βκ2 ‖χ‖2 − κ2χTMT z̃

−γκ1ν̃T1 Qν̃1 + γκ1ν̃
T
1 χ. (25)

Notice that Hypothesis 1 implies that matrix M(t) is also bounded and persistently exciting. From (16)
by using the arguments in [20] it is shown that if Q(0) > 0, then matrix Q(t) is positive de�nite for all

t ≥ 0. Setting the positive constant c1 = supt∈[0,∞) ‖M(t)‖2, we deduce

κ2χ
TMTσ ≤ κ2β

4
‖χ‖2 +

κ2
β
c21 ‖σ‖

2

γχT ν̃1 ≤ γc2
2
‖ν̃1‖2 +

γ

2c2
‖χ‖2

where c2 is the bound de�ned in Claim 3. The substitution of the previous inequalities in (25) yields

V̇ ≤ −(κ3α−
κ2
β
c21) ‖σ‖2 − (κ2β −

κ2β

4
+
κ1γ

2c2
) ‖χ‖2

−κ1γ(c2 −
c2
2

) ‖ν̃1‖2



By setting κ1 = 1, κ2 =
2γ

βc2
, κ3 =

2κ2c
2
1

βα
=

4γc21
β2αc2

, we �nally obtain

V̇ ≤ −(
γc2
2

) ‖ν̃1‖2 − (
γ

2c2
) ‖χ‖2 − (

2γc21
β2c2

) ‖σ‖2 (26)

Let λ1 = min
{
γc2,

β
2 , α

}
. Previous inequality implies that V̇ ≤ −λ1V, which guarantees the convergence

of all errors exponentially to zero. �

3.2 Extension of the basic algorithm

In this section, the former algorithm is modi�ed in order to quantify the observer performance in case
of measurement noise applied on the velocity and acceleration signals. We assume now that the noisy
acceleration aµ and the noisy velocity matrix Φµ(t) to be available for measurement, given by

aµ =

 u̇+ µ11(t)
v̇ + µ12(t)
ẇ + µ13(t)

 ; Φµ(t) =

 0 r + µ21(t) −q − µ22(t)
−r − µ21(t) 0 p+ µ23(t)
q + µ22(t) −p− µ23(t) 0


where µij(t), i = 1, 2, j = 1, 2, 3 are bounded measurement noises, i.e. are such that

‖µij(t)‖ ≤ µM , for all t > 0, i = 1, 2, j = 1, 2, 3, (27)

with µM ∈ R+
a suitable positive bound. In this framework, the measurement noises play the role

of �small� non vanishing exogenous inputs a�ecting the estimation error dynamics. The observation
strategy in this setting focuses on the synthesis of a �robust� observer, i.e. such that noise in�uence on
estimation error is �small�. To comply with this requirement, extra tuning parameters will be introduced
in the observer design, which also aims at Input-to-State Stability property (see [14] for ISS de�nition):
in practice, the observer estimation error is attracted inside an open ball whose radius depends on the
measurement noise. To adapt ISS property to the design we consider in this note, we recall the following
result, that is demonstrated via standard Lyapunov theory.

Lemma 1 Consider the system
ẋ = A(t)x+B(t)u

with state x(t) ∈ Rn
, arbitrary initial condition x(0) ∈ Rn

and input u(t) ∈ Rm
. Assume that:

(i) there is a positive scalar parameter λm such that vTA(t)v ≤ −λm ‖v‖2 for all t ≥ 0 and for any
v ∈ Rn

;
(ii) there is a positive scalar parameter βM such that ‖B(t)‖2 < βM for all t ≥ 0.

If there are suitable positive constants ku, uM , λu such that ‖u(t)‖2 ≤ ku exp(−λut) + u2M i.e. u(t) is
exponentially attracted to a ball with radius uM , then there are suitable positive constants k1, k2, λx such
that

‖x(t)‖2 ≤ k1 exp(−λxt) + k2u
2
M (28)

i.e. x(t) is also exponentially attracted to a ball whose radius is proportional by a suitable factor k2 to
the bound uM of the input u(t).

Proof. Consider the Lyapunov function V (t) = 1
2 ‖x(t)‖2 . By computing its time derivative, we have

V̇ (t) = xTA(t)x+ xTB(t)u. (29)

By completing the squares, recalling (i), (ii), we obtain xTA(t)x ≤ −λm ‖x‖2 and xTB(t)u ≤
λm
2
‖x(t)‖2 +

βM
2λm

‖u(t)‖2 , which substituted into (29) and recalling the de�nition of V yields

V̇ (t) ≤ −λmV (t) +
βM
2λm

[
ku exp(−λut) + u2M

]
.

Set λ∗ = min{λm
2
, λu}. Previous inequality implies that V (t) ≤ W (t), where W (t) complies with the

di�erential equality

Ẇ (t) = −λmW (t) +
βM
2λm

[
ku exp(−λ∗t) + u2M

]
(30)



with initial condition W (0) = V (0) = 1
2 ‖x(0)‖2. The solution of (30) is

W (t) = W (0) exp(−λmt) +
βM
2λm

[
ku

λm − λ∗
(
e−λ

∗t − e−λmt
)

+
u2M
λm

(
1− e−λmt

)]
.

Neglecting the negative terms in previous equality, we have

W (t) ≤W (0) exp(−λmt) +
βM
2λm

[
ku

λm − λ∗
e−λ

∗t +
u2M
λm

]
;

recalling that 1
2 ‖x(t)‖2 = V (t) ≤ W (t) and W (0) exp(−λmt) ≤ 1

2 ‖x(0)‖2 exp(−λ∗t), we deduce that

(28) is veri�ed by setting λx = λ∗, k1 =
βMku

λm (λm − λ∗)
+ ‖x(0)‖2 and k2 =

βM
λ2m

. �

The �rst step in the estimation strategy is the de�nition of the �lters with states Mµ ∈ R3 × R3
,

ρµ ∈ R3
, whose role is the same of �lters (12), (14) in previous section:

Ṁµ = −
(
α+ k

4

)
Mµ + Φµ(t) (31)

ρ̇µ = −
(
α+

k

4

)
ρµ + aµ − Λ(t) +Mµaµ (32)

with arbitrary initial conditions, where k ∈ R+
, α ∈ R+

, are tuning parameters chosen by the designer.

By setting σµ = ρµ −Mµν1 and µ1(t) = [µ11(t), µ12(t), µ13(t)] ∈ R3
µ2 = [µ21(t), µ22(t), µ23(t)]

T ∈ R3

and

N2(t) =

 −v(t) w(t) 0
u(t) 0 −w(t)

0 −u(t) v(t)


recalling that ν1 , [u, v, w]T is the speed vector represented in the local reference frame, it is straight-
forward to verify that

σ̇µ = −
(
α+

k

4

)
σµ + (Mµ + I)µ1 +N2µ2. (33)

It is shown in the following that the dynamics of σµ(t) in ( 33) comply with the hypotheses of Lemma
1, i.e. σµ(t) is exponentially attracted inside a ball whose radius depends on the bounds of µ1(t) and

µ2(t). Consider the �lter with matrix state Qµ ∈ R3 ×R3
, with initial condition such that |Qµ(0)| > 0,

de�ned as:

Q̇µ = −βQµ −
k

4
QµQ

T
µQµ +MT

µMµ (34)

where β ∈ R+
is a tuning parameter chosen by the designer. The �lter (34) is a generalization of system

(16); by following arguments similar to the ones of previous section we show a result that generalizes
Claim 3.

Claim 4 Assume that Qµ(0) > 0; then the matrix Qµ(t) is bounded and positive de�nite, i.e. Qµ(t) > 0
for all t ≥ 0.

Proof. First, recall that Qµ is bounded. In fact, set xµ = Qµs where s ∈ R3
is any vector such that

‖s‖ = 1. The computation of the time derivative of xµ = Qµs, by virtue of (34) yields

ẋµ = −(βI +
k

4
QµQ

T
µ )xµ +MT

µMµs (35)

>From (35) we infer that xµ complies with Lemma 1 with
[
βI + k

4Qµ(t)QTµ (t)
]
in place of A(t) and

β in place of λm, with MT
µ (t)Mµ(t) in place of B(t) and s ∈ R3

in place of u(t). Thus xµ = Qµs is

exponentially attracted inside a ball whose radius depends on supt∈[0,∞)

∥∥MT
µ (t)Mµ(t)

∥∥ , so that (being

s ∈ R3
arbitrary), we conclude that Qµ is bounded; in particular, there exists cQ ∈ R+

such that

sup
t∈[0,∞)

‖Qµ(t)‖ ≤ cQ (36)



In order to prove that Qµ is positive de�nite, set ηµ = sTQµs, where s ∈ R3
is any vector such that

‖s‖ = 1. The computation of the time derivative of ηµ, by virtue of (34) along with (36) yields

dηµ/dt ≥ −β∗ηµ + ‖Mµs‖2 (37)

where β∗ = β + k
4 c

2
Q. From the inequality above we infer that

ηµ(t) ≥ e−β
∗tηµ(0) +

∫ t

0

e−β
∗(t−τ) ‖Mµ(τ)s‖2 dτ

Recall that e−β
∗tηµ(0) > 0 and

∫ t
0
e−β

∗(t−τ) ‖Mµ(τ)s‖2 dτ ≥ 0 for all t > 0, thus ηµ(t) ≥ e−β
∗tηµ(0) for

all 0 ≤ t ≤ T ∗, where T ∗ is the positive real de�ned in Hypothesis H1. From (16) we have that ηµ(T ∗) ≥∫ T∗

0
e−β

∗(T∗−τ) ‖Mµ(τ)s‖2 dτ ≥ e−β
∗T∗ ∫ T∗

0
‖Mµ(τ)s‖2 dτ . Remark that by following the same argu-

ments in Claim 2 we deduce that Mµ is P.E., in particular there exists a suitable positive bound K∗µ2

such that
∫ T∗

0
‖Mµ(τ)s‖2 dτ ≥ K∗µ2, which implies ηµ(T ∗) ≥ e−β

∗T∗
K∗µ2. By repeating iteratively these

arguments we have that ηµ(t) ≥ e−2β
∗T∗

K∗µ2 in each interval iT ∗ ≤ t ≤ (i+ 1)T ∗ with i = 1, 2...∞, so
that ηµ(t) ≥ qµ, where qµ = min{e−T∗

ηµ(0), e−2T
∗
K∗µ2} and we conclude that ‖Qµ(t)‖ ≥ qµ. �

Consider the two �lters with states δµ ∈ R3
and ξµ ∈ R3

, whose task is analogous to the one of (19),
(20) respectively in previous section,

δ̇µ = −βδµ + ρµ (38)

ξ̇µ = −βξµ −
k

4
QµQ

T
µ ξµ +Qµaµ − Ṁµ

T
δµ −

k

4
QµQ

T
µM

T
µ δµ (39)

with arbitrary initial conditions.
We introduce an estimate of the linear velocity

ν̂1 =

 û
v̂
ŵ


that satisfy the di�erential equations :

˙̂ν1 = γ(−Qµν̂1 +MT
µ δµ + ξµ) + aµ (40)

with γ ∈ R+
tuning parameter to be chosen by the designer.

Under Hypothesis 1, if the variables η2, ν2, aµ are available for measurement, the dynamic observer

described by (31), (32), (34), (38), (39), and (40) with state Mµ(t) ∈ R3 × R3
, ρµ(t) ∈ R3

, Qµ(t) ∈
R3 ×R3

, δµ(t) ∈ R3
, ξµ(t) ∈ R3

and ν̂1(t) ∈ R3
is a generalization of the observer presented in Section

3.1. In fact, by setting the estimation error variables ν̃1
4
= ν1− ν̂1 and χµ

4
= Qν1−MT

µ δµ− ξµ, we obtain:

χ̇µ = −(β +
k

4
QµQ

T
µ )χµ −MT

µ σµ −Qµµ1 (41)

˙̃ν1 = γ(−Qµν̃1 + χµ)− µ1. (42)

The iterative application of Lemma 1 to the systems (33), (41) and (42) leads to the demonstration of the
convergence properties of the estimation scheme introduced above, where the parameter k adds a degree
of freedom to the system and the observer guarantees the exponential convergence of the estimation error
to a region around zero as well as the robustness with respect to the noises µ1 and µ2.

Proposition 2 Consider the UAV model described by (2)-(4). Assume that the variables η2, ν2, aµ are

available for measurement and that Hypothesis 1 holds. Then for all k ∈ R+
, α ∈ R+

, β ∈ R+
, γ ∈ R+

,

the dynamic observer described by (31), (32), (34), (38), (39), and (40) with state Mµ(t) ∈ R3 ×R3
,

ρµ(t) ∈ R3
, Qµ(t) ∈ R3 ×R3

, δµ(t) ∈ R3
, ξµ(t) ∈ R3

and ν̂1(t) ∈ R3
is such that

‖ν1 − ν̂1‖2 ≤ g1 exp(−λ2t) + g2µ
2
M (43)

for suitable positive reals λ2, g1, g2, where µM is given in (27), for any initial conditionsMµ(0) ∈ R3×R3
,

Qµ(0) ∈ R3 ×R3
, ρµ(0) ∈ R3

, δµ(0) ∈ R3
, ν̂1(0) ∈ R3

with Qµ(0) > 0.



Proof. System (33) complies with the hypotheses of Lemma 1 with σµ in place of x and [µ1(t), µ2(t)]
in place of u(t), noting that hypothesis (i) is trivially veri�ed and point (ii) is a consequence of the
boundedness of the matrices Mµ(t) and N2(t). Thus, by (27), σµ is exponentially attracted in a ball
whose radius depends on µM . This property implies that system (41) also complies with Lemma 1 with
χµ in place of x(t) and [σµ(t), µ1(t)] in place of u(t). In fact, (41) complies with hypothesis (i) with
−
[
β + k

4Qµ(t)QTµ (t)
]

in place of A(t) and (ii) follows noting that MT
µ (t) and Qµ(t) are bounded, so

that the vector χµ(t) is exponentially attracted in a ball with radius depending on µM . Notice that from
Claim 4 we have that if Qµ(t) > 0, then matrix Qµ(t) is bounded and positive de�nite for all t ≥ 0.
Hence system (42) veri�es the hypotheses of Lemma 1 with ν̃1(t) in place of x(t) and [χµ(t), µ1(t)] in
place of u(t), leading �nally to inequality (43). �

4 Simulation Results

4.1 Illustration of the adaptive observer performances

In this section we illustrate the observer designed above to estimate the linear velocity of an UAV based
on the measurable angles, angular velocities and linear accelerations. These simulations also illustrate the
e�ect of the tuning parameters α, β and γ on the observer performances. In all simulations the observer
estimations have initial conditions set to zero, while the desired states are time varying (and di�erent
from zero at t = 0). In all simulations both observers track the desired time varying states, with di�erent
performances and noise rejections. We have used the following parameters values :

m = 2.500 kg kT = 10−5 N.s2

lb = 23 cm IR = 100.10−7 kg.m2

Ixx = 22493.10−7 kg.m2 Iyy = 222611.10−7 kg.m2

Izz = 325130.10−7 kg.m2 kM = 9.10−5 N.s2.m

uG = 0.032m

Consider the �rst version of the observer, that does not take into account the measurement noise. In Fig.
2 the angular speeds, the angles, and the accelerations are plotted.
We choose in our simulation an angular speed vector ν2(t) that spans periodically a 3-dimensional surface,
in particular a non-vanishing periodic orbit. By virtue of Claim 1, this choice guarantees that PE
Hypothesis 1 is satis�ed. The time history of the three speeds to be observed is shown in Fig. 3a, and
observer estimates in Fig. 3b, while estimation errors going exponentially to zero are shown in Fig. 3c.



  

Figure 2: (a) Angular Speed, (b) Angles, (c) Acceleration

  

Figure 3: (a) Linear Speed, (b) Speed Estimation, (c) Estimation Error

We have then considered the �rst observer in the case of additive measurement noise. The measured
acceleration is presented in Fig. 4 where the noise µ is 10 percent of the measured acceleration.



  

Figure 4: Acceleration

The simulation is undertaken using the second version of the observer, where the disturbance is attenuated
following the design parameter k. A correct choice of parameter β (which guarantees that c2 = λmin (Qµ)
is su�ciently big) also improve the convergence speed of the observer. One may see in Fig. 5a the velocity
estimated by the observer, while Fig. 5b describes the estimation time history, and Fig. 5c illustrates
the observation error going exponentially to a residual set given by the noise amplitude.

  

Figure 5: (a) Linear Speed, (b) Speed Estimation, (c) Estimation Error



4.2 Comparison with an Extended Kalman Filter

The aim now is to compare the observer proposed in Section 3.2 with an Extended Kalman Filter
(EKF), which is an established benchmark for estimation techniques. The EKF described here is based
on the dynamic model of the UAV given by the continuous-time equations (2)-(4). We considered the
corresponding discrete time model that can be written as{

Xk+1 = f(Xk, Uk,Wk)
Yk = h(Xk, Zk)

(44)

The discrete-time state vector is Xk = [φk, θk, ψk, pk, qk, rk, uk, vk, wk]. Uk is the control input. Wk

and Zk respectively represent process noise and measurement noise at time step k ; they are zero mean
white Gaussian sequences of random variables.
The behavior of the EKF designed to estimate the linear velocity of an UAV based on the measurable
angles, angular velocities and linear accelerations is illustrated by numerical simulation and compared to
the estimate provided by the observer described in Section 3.2. In all simulations, the observer estimations
have initial conditions set to zero, while the desired states are time varying (and di�erent from zero at
t = 0). Model parameters are the same as those presented in Section 4.1 and we have considered additive
measurement noise on the acceleration (see Fig. 5). First, we compare the performance of our estimation
strategy with EKF by setting k = 50, reporting the results in Figure 6.

Figure 6: Comparison of the performances of the EKF and the Adaptive
Observer for k = 50.

They show that the algorithm in Section 3.2 signi�cantly outperforms the EKF, since it guarantees
in steady state condition a much smaller estimation error. Notice in this simulation (with k = 50), the
estimation error convergence of the algorithm in this note is slower than EKF; this is reasonable, since
our strategy involves a cascade of �lters, the transient performance of the entire algorithm being the sum
of transient performances of the �lters in the cascade. However, the total number of tuning parameters
in our estimator is smaller than the number of parameters to be set in the EKF. As a consequence,
the tunning procedure of our algorithms, veri�ed in our simulations, is much more simple than that of
the EKF. This is easily explained �rst by the small number of parameters, btheirut as weel as their
clear e�ect on the convergence (through the analysis of the Lyapunov fonction). Secondly, the several
dynamical variables behave as an automatic gain, this characteristic comming from adaptive theory make
our observers rather self tunning compared to the EKF.



Figure 7: Comparison of the performances of the EKF and the Adaptive
Observer for k = 10.

By decreasing the value of k, in particular by setting k = 10 and performing the simulation for this
setting, we have a faster convergence rate, as displayed in Figure 7. Finally, Figure 8 shows that by
choosing k = 0, we obtain a steady state estimation error increase.

Figure 8: Comparison of the performances of the EKF and the Adaptive
Observer for k = 0.

This phenomenon can be explained as follows: >From expression (34) we infer that the bigger is k,



the smaller is the norm of Qµ; the latter quantity in turn is related, by virtue of (42), to the inverse of
the estimation error convergence rate. Thus by decreasing k we may obtain a faster convergence rate
but may have a greater sensibility to disturbances also; this property is inherently associated with a high
gain estimation strategy.

In conclusion, the simulation tests show that the best performance on the algorithm in Section 3.2
are obtained via a �ne tuning of the parameter k in order to guarantee a small steady state estimation
error outperforming EKF and simultaneously a convergence rate typical of a classic EKF approach.

5 Conclusion

In this work the UAV drone speed estimation problem has been addressed when no GPS related device is
available. This is a realistic feature in many practical applications and has motivated recent works on the
�eld. The results established for the speci�c prototype in this study hold also for the entire class of UAV
such that rotational and translational dynamics may be decoupled, as helicopters and VTOL aircrafts.
In this context, the �rst theoretical issue arises by the fact that the linearized system is non-observable
at the equilibrium point. Thus a nonlinear observability veri�cation is performed for persistently exciting
trajectories so that under some mild su�cient conditions an estimation strategy is shown to guarantee
exponential estimation of the translational speed, by using the tools of adaptive observation theory.
A modi�ed scheme is also proposed in order to obtain enhanced robustness property with respect to
measurement noise. The theoretical results are illustrated via computer simulations, stressing the noise
attenuation features. They also provide useful insight about the parameter tuning e�ect to achieve a
satisfactory observer performance. Furthermore, computer simulations are used to compare the proposed
estimation strategy with the classical Extended Kalman Filter. They show that the adaptive observer
guarantees good performances even in presence of measurement noise, with greater disturbances attenu-
ation with respect to the one provided by the Extended Kalman Filter.
Future research will be dedicated to the design of a simpli�ed algorithm to possibly trade o� noise
immunity against faster convergence along with coupling the proposed observer to a control system
designed to stabilize the 4-rotors helicopter. Additional work will be to implement the considered scheme
in the UAV available at IBISC laboratory and to extend current results to the standard acceleration
measurements provided by low cost IMUs.
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