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Abstract—Pattern discovery plays an important part in the
graph analysis process. Good examples are the detection of
communities in social networks or the clustering into pathways
of metabolic networks.

However, elements may be shared by several clusters, mak-
ing the patterns entangled. When mining such data, experts
are usually interested in both each individual cluster and
their overlaps. Dedicated visualization methods are therefore
necessary to efficiently support their exploration process.

In this article, we propose a new method that emphasizes
patterns in a node-link diagram representation and allows to
easily identify overlaps between these patterns as well. Our
technique combines graph topology and embedding to compute
concave hulls with holes surrounding the patterns of interest.
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I. MOTIVATION

Analyzing large data sets often relies on the discovering of

different patterns. It is the case with discrete data structures

such as graphs which are essential to the study of relational

data. A popular example of pattern discovery in graph

analysis is the detection of communities, which corresponds

to a partition of the nodes of the graph in highly connected

sub-graphs. Community structure is an important compo-

nent of social networks, web graphs or protein interactions

networks[1]. Revealing this structure provides a better under-

standing of its dynamic. One can for example consider nodes

having links with other different communities as mediators

in the network. Community detection has then been very

investigated over the last few years[2].

However, partitioning may be a simplistic way to analyze

networks. For example, a person can be part of several

groups such as those formed by their family or their co-

workers and those relationships should be accessed by

community detection methods. However, a simple graph

partition is not likely to capture this hidden multi-modality

that often appears in social networks. Many procedures[3],

[4], [5] allow then to discover overlapping communities

where a node can be shared between several clusters.

The visualization of such overlapping sets has been widely

investigated in the past few years. One method is to create a

spatial layout of the elements according to set membership.

Simonetto et al. [6] use such an approach for generating

topologically Euler-like diagrams where sets are then em-

phasized through the use of possibly concave, colored and

textured hulls. Riche and Dwyer [7] also generate such kind

of diagrams, arranged using a constraint-based graph layout

technique, that only uses convex rectangular shapes for

representing the sets. Their technique also address the issue

of improving the readability of set intersections through

dedicated visual encodings. But these techniques can not be

applied when the set elements have a semantically spatial

organization, for instance a geolocalized layout. Methods

have also been proposed to represent sets over existing visu-

alizations and thus avoiding any layout adjustments. Collins

et al. [8] use continuous, possibly concave, isocontours to

delimit set memberships. Another visual metaphor is used

by Alper et al. [9] where they generate a curve connecting

all the elements of a set.

Concerning the visualization of clusters in node-link dia-

grams, the common and simple approach is to surrounding

them with convex hulls ([10], [11]). However, this method

can lead to ambiguities as items that are not set members

can lie in the corresponding convex region. Techniques

introduced in [7] and [9] can be used but they only focus

on representing a secondary relationship on the nodes of a

network. Consequently they are not adequate for visualiz-

ing the intersections of clusters defined by connected sub-

graphs. Only the method in [8] could be used to fulfill that

task but it does not scale well where there is a large number

of overlapping clusters as it can be tedious to distinguish

the multiple generated set boundaries.

We present here a new method of complex patterns

visualization in node-link diagrams. Our technique provides

both the ability to have a good overview of the different

patterns over the network as well as an effective detailed

analysis. Moreover this technique does not modify the actual

layout given to the graph.

The paper is organized as follows : a quick overview of

our method is given in Section II. In Section III we provide

precise computational details. We present applications to real

world examples in Section IV. Finally, we give conclusion

and suggestions for future work in Section V.



Figure 1: Illustration of the method pipeline: starting from a prescribed fuzzy clustering, we compute distinguishable hulls.

II. METHOD OVERVIEW

Figure 1 shows the main steps of our technique. On the

left, one can see the co-occurrence network of the characters

of Les Misérables[12] written by V. Hugo where the patterns

of interest have been computed by the Link Communities

algorithm[5].

First of all, a dependence graph such as defined in [13]

is computed to model how the clusters or patterns to

visualize overlap. In such graph, each node corresponds to a

cluster/pattern in the original graph and two nodes are linked

by an edge if and only if the corresponding clusters overlap.

Then, a dedicated graph coloring algorithm is applied to

the dependence graph to assign to each cluster a positive

value. When computing the concave hulls, that value is used

to determine the distance in the plan between the cluster

elements (nodes and edges) and its surrounding hull. By

applying the coloring algorithm on the dependence graph,

we can ensure that the hulls of overlapping clusters will

be distinguishable by rendering them in decreasing order of

their coloring value.

Even if our technique allows to visualize efficiently over-

lapping clusters in a network, due to the prescribed layout

of the graph some ambiguities can remain. Indeed, when

a cluster is dense and its layout implies a lot of edge

crossings, it can be tedious to determine if a node lying

in its hull really belongs to it. To solve these ambiguous

cases, we had some simple interaction techniques. The first

one consists in clicking on an element of the network and

then displaying only the hulls associated to the clusters the

element belongs to. The second one only displays the hull

of a particular cluster after clicking on it. Figure 3 illustrates

these techniques.

III. HULLS COMPUTATION

A. Coloring the patterns

As mentioned above, we need to assign to each cluster a

positive value so that two overlapping clusters have different

values.

The first step is to compute a dependence graph corre-

sponding to the original network and the prescribed fuzzy

clusters (that may not cover the whole network). Running a

node proper coloring algorithm on the dependence graph is

clearly equivalent to assigning positive values to each cluster.

Therefore any (node proper) coloring algorithm can solve

this issue.

However, to ease the visualization of overlapping clusters

but also to enable the visualization of nested clusters, a ded-

icated coloring algorithm is needed. For instance consider

two nested clusters, to easily identify that one of the cluster

is contained into the second, its hull must also be contained

in the second hull (see Figure 2).

(a)

(b)

Figure 2: Illustration of nested clusters. (a) The value

assigned to the deepest cluster is higher than the value of the

second cluster. Thus the hull of the deepest cluster is larger

than the other one making harder its identification. (b) When

the deepest cluster has a lower value, containment of hulls

shows clearly that one cluster is contained into the other.



(a) (b) (c)

Figure 3: Illustration of simple interaction techniques to solve possible ambiguous cases. (a) Original clusters visualization.

On that example, it is hard to say if the ”Montparnasse” node belongs to the green cluster. (b) After clicking on the

”Montparnasse” node, only the hulls associated to the clusters it belongs to are displayed. We are now sure that the node

belongs to the green cluster. (c) After clicking on the green hull, only it is displayed. We can see that the previous ambiguity

is due to the density of cluster edges induced by the layout.

This is achieved by adapting the coloring algorithm so

that the order induced by the coloring respects the order

induced by the complexity of the clusters. In our case, we

used the number of nodes to evaluate how complex a cluster

is.

Given dependence graph G = (V,E) and a node weight

function P (here, P (u) is the number of elements in the

cluster corresponding to node u), the following algorithm

provides a coloring C such that ∀(u, v) ∈ E if P (u) < P (v)
then C(u) < C(v).

This algorithm is based on a breadth first search (BFS)

procedure and then runs in linear time.

1) Start with ∀u ∈ V,C(u) = P (u).
2) Do a BFS from an unvisited node u adding in the

queue only nodes v having P (v) = P (u). During this

phase keep track of:

• σ(u) which is the connected component (maximal

under inclusion) formed by u and all nodes v ∈ V

having P (u) as weight.

• maxL (resp. minG) which is the maximum value

of C lower than C(u) (resp. the minimum value of

C greater than C(u)) in the direct neighborhood

of σ(u)

3) Assign to all nodes of σ(u) different real values in the

range ]maxL,minG[ if minG 6= maxL, in the range

[1, |σ(u)|] otherwise.

4) Mark all the nodes v ∈ σ(u) as visited.

5) Repeat Step 2 until all nodes are marked as visited.

B. Building a hull from graph topology and embedding

To visualize the different clusters in the global network

context, we generate concave hulls that will surround them.

As previously explained, the width of each hull has to be

modulated with respect to the value given by the coloring

algorithm described in the previous subsection.

Consequently, we need a hull generation method that can

take precisely into account a spacing value between the

skeleton of a cluster, defined by the layout of its nodes and

edges, and the outer border of the hull. We first investigate

the technique proposed in [8], which computes concave hulls

through iso-surfaces extraction in an image. If that method

can effectively produce aesthetic hulls, it does not fulfill our

requirement as there is a lack of flexibility for modulating

precisely the width of a hull.

Our solution is based on polygon clipping and works in

the topological space. The idea is to compute the union

of polygons built from the layout of the nodes and edges

belonging to the subgraph to emphasize. The polygon asso-

ciated to a node can be for instance a circle whose center

is the node position and radius is defined from the node

bounding box and the desired width of the hull to compute.

The polygon associated to an edge consists in the extrusion

of the polyline representing it parametrized by the desired

hull width. We then compute the union of all these polygons

through the help of the Clipper library [14], an efficient

implementation of the Vatti polygon clipping algorithm [15].

Illustrations of that process are introduced Figure 4.



(a) (b) (c)

Figure 4: Illustration of the process for generating a concave hull that will surround a sub-graph. (a) Sub-graph to surround

with concave hull. (b) Set of polygons on which to compute the union. Red circles are the polygons computed from the

nodes layout, blue quads the polygons computed from the edges layout. (c) Resulting concave hull obtained after the process.

IV. CASE STUDY

In this section, we present two real world examples. All

the figures have been created using the Tulip framework[16].

A. Co-occurrence network

Here we show the relevance of our visualization method

to extract information from a fuzzy clustering of a co-

occurrence network. We study the subgraphs created by the

algorithm of [5] applied to the network Les Misérables[12]

introduced earlier.

The algorithm of [5] does not only produce dense con-

nected subgraphs as many clustering algorithms focus on.

Here, we classify the subgraphs into three categories:

• Densely connected subgraphs: subsets of nodes hav-

ing a high amount of edges between them.

• Bipartite subgraphs: subsets of nodes connecting

densely connected subgraphs.

• Tree subgraphs: subset of nodes forming a tree, can

also connect densely connected subgraphs.

Using our method we can display this classification by

simply assigning a color to the hull according to the category

the subgraph they surround falls into.

The results are shown in Figure 5. At a larger scale (see

Figure 5(a)), we are able to visualize smaller subgraphs

that overlap with bigger subgraphs. The different densely

connected subgraphs (in blue) or tree subgraphs (in green)

are visible. We can see for example that nodes belong to at

most one densely connected cluster.

The center of the layout in Figure 5(a) is harder to visual-

ize. It gathers several highly connected nodes belonging to

bipartite subgraphs. We make a zoom on this area in Figure

5(b). Remember that adjacent subgraphs (having at least one

node in common) are represented using hulls with different

spacing. The different categories of subgraphs for each node

are then visible. For example, we can see that both ”Valjean”

and ”Javert” belong to four bipartite subgraphs: they play

an important role of mediators in the network. We can also

see that ”MmeThenardier” belongs to the same clusters as

”Thenardier” (his husband in the novel).

B. Metabolic networks

The metabolism is the set of biochemical reactions that

occur in a living system. Each reaction transforms a set

of molecules (or metabolites) called substrates into other

molecules called products. When interested to metabolism,

one can consider different scales that vary according to the

data and the biological questions. For instance, toxicologists

often follow the degradation of a given molecule; in that

case they focus only on a very small number of reactions.

At a larger scale, biologists studying particular biological

functions will focus on few sets of biochemical reactions,

called metabolic pathway, each of them allowing the or-

ganism to perform one of these specific function. Finally

the metabolic network results from the integration of all the

metabolic pathways of an organism into a single network.

Figure 6 shows the yeast metabolic network drawn with

the algorithm of Lambert et al. [17] with all the pathways

emphasized using our method. That network originally con-

tained 838 nodes (423 metabolites, 415 reactions) and 938
edges spread over 164 pathways and all elements belonging

to more than 3 pathways have been duplicated resulting in

a network of 1360 nodes and 1430 edges. The interest of

our pattern visualization technique on that network is that a

large number of metabolites/reactions nodes and the edges

connecting them are shared by several pathways. One can

see in the zoomed view of the Figure that each pathway and

their common elements can be clearly identified.



(a) Global View (b) Zoom on a dense area

Figure 5: Application of our method to the co-occurrence network Les Misérables[12] to illustrate the fuzzy clustering given

by the algorithm of [5]. The different subgraphs are divided into three categories : the dense subgraphs (blue), the star

subgraphs (green) and the bipartite subgraphs (red).

Figure 6: Yeast metabolic network where each of the 165 pathways have been emphasized. In the zoomed view, one can

identify the different pathways and the common elements.



V. CONCLUSION AND FUTURE DIRECTIONS

In this paper we introduced a novel technique to visualize

complex patterns in a node-link diagram view. It produces a

layer of distinguishable hulls without modifying the actual

layout of the studied network. Real world examples illustrate

the effectiveness for our method to extract information at

several levels of details. We believe this method to be of

great interest for experts in domains where the layout of

the network has a semantic value such as geography or

biology. Hulls may overlap heavily if the graph layout is

very compact. We proposed simple interaction techniques

to address this issue.

Our approach is simple and the procedure is easy to

implement. The computation time is relatively short thanks

to the effectiveness of the Clipper library. Nevertheless,

it could be further improved by the use of multi-threading

since the computation is done independently for each subset

of nodes.

As future work, we plan to conduct an experimental

study to compare our method to the other existing ones and

validate its effectiveness. Finally, other definitions of cluster

complexity could be investigated with respect to domain

experts’ knowledge in order to tune the hulls coloration step.
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