Neural Networks for Complex Data - Archive ouverte HAL Access content directly
Journal Articles KI - Künstliche Intelligenz Year : 2012

Neural Networks for Complex Data

Abstract

Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Université Paris 1
Fichier principal
Vignette du fichier
non-vector-data.pdf (179.92 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00744929 , version 1 (24-10-2012)

Identifiers

Cite

Marie Cottrell, Madalina Olteanu, Fabrice Rossi, Joseph Rynkiewicz, Nathalie Villa-Vialaneix. Neural Networks for Complex Data. KI - Künstliche Intelligenz, 2012, 26 (4), pp.373-380. ⟨10.1007/s13218-012-0207-2⟩. ⟨hal-00744929⟩
190 View
210 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More