
HAL Id: hal-00744893
https://hal.science/hal-00744893v1

Submitted on 30 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tableau Based Decision Procedure for an Expressive
Fragment of Hybrid Logic with Binders, Converse and

Global Modalities
Serenella Cerrito, Marta Cialdea Mayer

To cite this version:
Serenella Cerrito, Marta Cialdea Mayer. A Tableau Based Decision Procedure for an Expressive
Fragment of Hybrid Logic with Binders, Converse and Global Modalities. Journal of Automated
Reasoning, 2013, 51 (2), pp.197–239. �10.1007/s10817-012-9257-2�. �hal-00744893�

https://hal.science/hal-00744893v1
https://hal.archives-ouvertes.fr


A Tableau Based Decision Procedure for

an Expressive Fragment of Hybrid Logic

with Binders, Converse and Global

Modalities

Serenella Cerrito Marta Cialdea Mayer

Lab. Ibisc Dipart. Informatica e Automazione

Université d’Evry Val d’Essonne, Università di Roma Tre

France Italy

This is a draft version of a paper appearing on the Journal of Au-
tomated Reasoning. It should not be cited, quoted or reproduced.

Abstract

In this paper we provide the first (as far as we know) direct calculus
deciding satisfiability of formulae in negation normal form in the fragment
of FHL (full hybrid logic with the binder, including the global and converse
modalities), where no occurrence of a universal operator is in the scope of
a binder. By means of a satisfiability preserving translation of formulae,
the calculus can be turned into a satisfiability decision procedure for the
fragment FHL \ ✷↓✷, i.e. formulae in negation normal form where no
occurrence of the binder is both in the scope of and contains in its scope
a universal operator.

The calculus is based on tableaux and termination is achieved by
means of a form of anywhere blocking with indirect blocking. Direct
blocking is a relation between nodes in a tableau branch, holding when-
ever the respective labels (formulae) are equal up to (a proper form of)
nominal renaming. Indirect blocking is based on a partial order on the
nodes of a tableau branch, which arranges them into a tree-like structure.

1 Introduction

Hybrid logic is an extension of modal (propositional, possibly multi-modal) logic
K by means of three constructs: nominals (propositions which hold in exactly
one state of the model), the satisfaction operator @ (allowing one to state that
a given formula holds at the state named by a given nominal), and the binder ↓,
accompanied by state variables, which allows one to give a name to the current
state (see [2] for an overview of the subject). The notation HL(Op1, . . . , Opn)
is commonly used to denote the extension of the modal logic K by means of
the operators Op1, . . . , Opn. In particular, HL(@, ↓,E,✸−) and HL(@,E,✸−)
include the existential global modality E (and its dual A) and the converse

1



operator ✸− (and its dual ✷−). In the following, HL(@, ↓,E,✸−) will be called
full hybrid logic (like in [15]), abbreviated by FHL.

The satisfiability problem for formulae of hybrid logic without the binder is
decidable, even in the presence of the global and converse modalities. But an
unrestricted addition of the binder causes a loss of decidability [1, 3].1

However, similarly to what happens for first order logic, one can obtain
decidable fragments of hybrid logic with the binder by imposing syntactic re-
strictions on the way formulae are built. Restricted uses of the binder are of
interest also in the context of description logics [11, 13], formalisms that are
widely used for knowledge representation, in particular as a basis of ontology
languages. Beyond nominals, “binder and state variables are another feature
from hybrid logic that would clearly be useful in an ontology language” [11].

Some decidability results are proved in [15]. In particular, it is proved that
the source of undecidability is the occurrence of a specific modal pattern in
formulae in negation normal form (NNF). A pattern π is a sequence of operators,
and a formula is a π-formula, where π = Op1 . . . Opn, if it is in NNF and contains
some occurrence of Op1 with an occurrence of Op2 in its scope, that in turn has
an occurrence of Op3 in its scope, etc. For simplicity, when the ✷ operator is
used in a pattern, it actually stands for any universal operator, i.e. one of the
modalities ✷,✷− or A. In particular, a ↓✷-formula is a hybrid formula in NNF
where some occurrence of a universal operator is in the scope of a binder; and
a ✷↓✷-formula is a hybrid formula in NNF containing a universal operator in
the scope of a binder, which in turn occurs in the scope of a universal operator.
Finally, if π is a pattern, the fragment HL(Op1, . . . , Opk) \ π is constituted by
the class of NNF hybrid formulae in HL(Op1, . . . , Opk) excluding π-formulae.

An important decidability result proved in [15] is the following:

(⋆) The satisfiability problem for FHL \✷↓✷ is decidable.

This result is tight, in the sense that there is no pattern π that contains ✷↓✷
as a subsequence and such that the satisfiability problem for FHL \ π is still
decidable. Therefore, the fragment FHL \ ✷↓✷ is particularly interesting. The
expressive power of the considered fragment, though obviously weaker than FHL,
allows one to represent interesting graph properties. For instance, A↓x.✸x forces
any structure satisfying it to be reflexive, and A↓x.✸−

✸¬x is true in structures
where any state has at least a sibling. The formula ↓x.✷✸x represents a “local
symmetry” property: it holds in a state which is the origin of symmetric edges
only. Anagously, ↓x.✷✷✸−x expresses “local transitivity”, and ↓x.✸✸✷

−¬x
holds in a state whenever it can access another state in two steps, but not
directly (a simplified form of the stepmother relation described in [13]).

For the aim of the present work, it is important to recall how result (⋆) is
proved in [15]: there exists a polynomial satisfiability preserving translation of
formulae in FHL \✷↓✷ into FHL \↓✷. The standard translation ST of FHL into
first order classical logic [1, 15] maps, in turn, formulae in the latter fragment
into universally guarded formulae (in polynomial time), that have a decidable
satisfiability problem [8].

Thus, the above sketched approach to proving result (⋆) shows also that any
decision procedure for formulae in FHL \↓✷ can easily be turned into a decision

1The cited works prove a stronger result: even in the absence of nominals and @, HL(↓) is
undecidable.

2



procedure for formulae in the largest fragment FHL \ ✷↓✷, by preprocessing
formulae. In particular, satisfiability of formulae in the fragment FHL \ ✷↓✷
can be tested by translation [8, 14, 15],2 by use of any calculus for the guarded
fragment, such as the tableau calculi defined in [9, 10], or the resolution based
decision procedure for guarded clauses with equality given in [7]. Though the
translation can be obtained in polynomial time, translation based proof methods
do not have the possibility to exploit the specificity of the hybrid language, since
guarded logic is strictly more expressive than the considered fragment of HL.

This work provides the first (as far as we know) direct calculus deciding
satisfiability of formulae in FHL \ ↓✷. A preprocessing step, rewriting formulae
into equisatisfiable ones, turns the calculus into a decision procedure for sat-
isfiability of FHL \ ✷↓✷. This paper revises and extends [6], where only the
fragment HL(@, ↓) \ ✷↓✷ is considered. Moreover, it includes full proofs, that
are only sketched in [6]. The work is organized as follows. In Section 2 we recall
the syntax and semantics of FHL. In Section 3 we define the tableau system for
HL(@, ↓,✸−), which is extended to the global modalities in Section 4. Section 5
proves that the full calculus terminates and is complete with respect to unsatis-
fiability, under the assumption that the input formula is in FHL \ ↓✷. Section 6
concludes the paper pointing out differences and similarities with related works.

2 Hybrid Logic

In this work, for the sake of simplicity, we consider only uni-modal logic, but
the extension to the multi-modal case is immediate.

Let PROP (the set of propositional letters) and NOM (the set of nominals)
be disjoint sets of symbols. Let VAR be a set of state variables. Hybrid formulae
F in FHL are defined by the following grammar:

F := p | a | x | ¬F | F ∧ F | F ∨ F | ✸F | ✷F
| ✸

−F | ✷
−F | EF | AF | a:F | x:F | ↓x.F

where p ∈ PROP, a ∈ NOM and x ∈ VAR. In this work, the notation t:F is used
(for t ∈ NOM∪VAR) rather than the more usual one @tF . We use metavariables
a, b, c, d, possibly with subscripts, for nominals, while x, y, z are used for state
variables.

A formula of the form a:F is called a satisfaction statement, whose outermost
nominal is a, F is its body, and the satisfaction symbol applied to a and F is
the outermost satisfaction symbol of the statement. The operators ✸, ✸− and
E are called existential modalities, and ✷, ✷− and A are universal modalities.
Formulae of the form ✸F , ✸−F and EF are existential formulae, while ✷F ,
✷

−F and AF are universal formulae. The operator ↓ is a binder for state
variables. A variable x is free in a formula if it does not occur in the scope of a
↓x. A formula is ground if it contains no free variables.

A subformula of a formula F is a substring of F (possibly F itself) that is
itself a formula. An instance of a formula F is an expression obtained by uni-
formly replacing every free variable of F with some nominal. A subformula may
contain free variables, while an instance is always a ground formula. Obviously,

2After applying the standard translation, universally guarded formulae must be rewritten
into equisatisfiable guarded ones. Furthermore, constants deriving from nominals must be
eliminated, since the cited decision procedures apply to constant-free formulae.

3



if a subformula F of G does not contain any free variable, then F is both a
subformula of G and an instance of a subformula of G.

If F is a formula and a a nominal, the notation F [a/x] is used to denote
the formula that is obtained from F replacing a for every free occurrence of the
variable x. Analogously, if a and b are nominals, F [b/a] is the formula obtained
from F replacing b for every occurrence of a.

An interpretation M is a tuple 〈W,R,N, I〉 where W is a non-empty set
(whose elements are the states of the interpretation), R ⊆ W ×W is a binary
relation on W (the accessibility relation), N is a function NOM → W and I a
function W → 2PROP. We shall write wRw′ as a shorthand for 〈w,w′〉 ∈ R.

A variable assignment σ for M is a function VAR → W . If x ∈ VAR and
w ∈ W , the notation σw

x stands for the variable assignment σ′ such that: σ′(y) =
σ(y) if y 6= x and σ′(x) = w.

If M = 〈W,R,N, I〉 is an interpretation, w ∈ W , σ is a variable assignment
for M and F is a formula, the relation Mw, σ |= F is inductively defined as
follows:

1. Mw, σ |= p if p ∈ I(w), for p ∈ PROP.

2. Mw, σ |= a if N(a) = w, for a ∈ NOM.

3. Mw, σ |= x if σ(x) = w, for x ∈ VAR.

4. Mw, σ |= ¬F if Mw, σ 6|= F .

5. Mw, σ |= F ∧G if Mw, σ |= F and Mw, σ |= G.

6. Mw, σ |= F ∨G if either Mw, σ |= F or Mw, σ |= G.

7. Mw, σ |= a:F if MN(a), σ |= F , for a ∈ NOM.

8. Mw, σ |= x:F if Mσ(x), σ |= F , for x ∈ VAR.

9. Mw, σ |= ↓x.F if Mw, σ
w
x |= F .

10. Mw, σ |= ✷F if for every w′ such that wRw′, Mw′ , σ |= F .

11. Mw, σ |= ✸F if there exists w′ such that wRw′ and Mw′ , σ |= F .

12. Mw, σ |= ✷
−F if for every w′ such that w′Rw, Mw′ , σ |= F .

13. Mw, σ |= ✸
−F if there exists w′ such that w′Rw and Mw′ , σ |= F .

14. Mw, σ |= AF if Mw′ , σ |= F for all w′ ∈ W .

15. Mw, σ |= EF if Mw′ , σ |= F for some w′ ∈ W .

A formula F is satisfiable if there exist an interpretation M, a variable
assignment σ for M and a state w of M, such that Mw, σ |= F . Two formulae
F and G are logically equivalent (F ≡ G) when, for every interpretation M,
assignment σ and state w of M, Mw, σ |= F if and only if Mw, σ |= G. A
formula F holds in a state w of a model M (Mw |= F ) iff Mw, σ |= F for every
variable assignment σ.

It is worth pointing out that, if t ∈ VAR ∪ NOM and F is a formula:

¬(t:F ) ≡ t:¬F ¬↓x.F ≡ ↓x.¬F ¬✸F ≡ ✷¬F ¬✷F ≡ ✸¬F
¬✸−F ≡ ✷

−¬F ¬✷−F ≡ ✸
−¬F ¬EF ≡ A¬F ¬AF ≡ E¬F

4



Therefore, considering only formulae in negation normal form (NNF – where
negation appears only in front of atoms) does not restrict the expressive power
of the language.

3 Tableaux for HL(@, ↓,✸−)

3.1 The Expansion Rules

A tableau branch is a sequence of nodes n0, n1, . . . , where each node is labelled
by a ground satisfaction statement, and a tableau is a set of branches. If n
occurs before m in a branch, we shall write n < m. The label of the node n will
be denoted by label(n). The notation (n) a:F will be used to denote the node
n, and simultaneously say that its label is a:F .

A tableau for a formula F is initialized with a single branch, constituted by
the single node (n0) a0:F , where a0 is a new nominal. The formula a0:F is the
initial formula of the tableau, which is assumed to be ground and in NNF.

A tableau is expanded by application of the rules in Table 1, which are
applied to a given branch. The rules are standard, and their reading is standard
too: a rule is applicable if the branch contains a node (two nodes) labelled by
the formula(e) shown as premiss(es) of the rules. The rule ∨ replaces the current
branch B with two branches, each of which is obtained by adding B a new node,
labelled, respectively, by the formulae shown on the left and right below the
inference line. The equality rule (=) does not add any node to the branch, but
modifies the labels of its nodes. The schematic formulation of this rule in Table
1 indicates that it can be fired whenever a branch B contains a nominal equality
of the form a: b (with a 6= b); as a result of the application of the rule, every
node label F in B is replaced by F [b/a]. All the other rules extend the branch
with the addition of one or two nodes, labelled by the conclusion(s).

Since we assume that the initial formula of a tableau is ground and in NNF,
an easy inspection of the expansion rules shows that node labels in any branch
are always ground formulae in NNF.

The ✷ and ✷
− rules are called universal rules. They have two premisses,

which must both occur in the branch, in any order. Their leftmost premiss
is called the major premiss, the rightmost one the minor premiss. The minor
premiss is a relational formula, i.e. a satisfaction statement of the form a:✸b
(where b is a nominal).

The ✸ and ✸
− rules are called blockable rules, formulae of the form a:✸F ,

where F is not a nominal, and a:✸−F are blockable formulae and a node labelled
by a blockable formula is a blockable node.

The first node of a branch B is called the top node and its label the top
formula of B. Nominals occurring in the top formula are called top nominals.
If the top node of B is n0, the branch is said to be rooted at n0. The notion of
top nominal is relative to a tableau branch, because applications of the equality
rule may change the top formula, hence the set of top nominals.

If a node n is added to a branch B by application of the rule R to the node
m, then we write m ❀

R n. In the case of rules with two conclusions, we write
m ❀

R (n, k), or, sometimes, m ❀
R n and m ❀

R k. If R is a two-premiss rule
we write (m, k) ❀R n.

The application of the equality rule does not change nodes, but only their

5



a: (F ∧G)

a:F
a:G

(∧) a: (F ∨G)

a:F | a:G
(∨)

a: b:F
b:F

(@)
a: ↓x.F

a:F [a/x]
(↓)

[B]
a: b

B[b/a]
(=)

(not applicable if a = b)

a:✷F a:✸b
b:F

(✷)

a:✸F

a:✸b
b:F

(✸)

where b is a fresh nominal
(not applicable if F is a nominal)

a:✷−F b:✸a
b:F

(✷−)

a:✸−F

b:✸a
b:F

(✸−)

where b is a fresh nominal

Table 1: Expansion rules

labels, therefore it does not change the relation ❀
R between nodes. In general,

the relation ❀
R is static: if a branch B′ is obtained by application of an expan-

sion rule to B, then, for every pair of nodes n,m ∈ B, n ❀
R m in B′ if and only

if n ❀
R m in B. This justifies the fact that the current branch is left implicit

in the notation.
A formula a:F is said to occur in a tableau branch B (or a:F ∈ B) if for

some node n of the branch, label(n) = a:F . Similarly, a nominal occurs in a
branch B if it occurs in the label of some node of B. Finally, a nominal a labels
a formula F in B if a:F ∈ B.

3.2 Restrictions on Rule Application

Termination is achieved by means of a loop-checking mechanism using nominal
renaming. The need for nominal renaming is due to the fact that, in the presence
of the binder, non-top nominals may occur in the body of any node label, which
therefore is not necessarily a subformula of the top formula. In order to define
this mechanism, some preliminary definitions are needed.

Definition 1 (Nominal compatibility). If B is a tableau branch and a is a
nominal occurring in B, then

ΦB(a) = {p | p ∈ PROP and a: p ∈ B} ∪ {✷F | a:✷F ∈ B}
∪{✷−F | a:✷−F ∈ B}

If a and b are nominals occurring in a tableau branch B, then a and b are
compatible in B if ΦB(a) = ΦB(b), i.e. if they label the same propositions in
PROP and the same formulae of the form ∇F , for ∇ ∈ {✷,✷−}.

6



Definition 2 (Mappings). A mapping π for a branch B is an injective function
from non-top nominals to non-top nominals such that for all a, a and π(a) are
compatible in B.

Mappings are extended to act on formulas in the obvious way: if π is a
mapping and F a formula, π(F ) is the formula obtained by substituting π(a) for
a in F , for every nominal a.

A mapping π for B maps a formula F to a formula G if:

1. π(F ) = G;

2. π is the identity for all nominals which do not occur in F .

A formula F can be mapped to a formula G in B if there exists a mapping π for
B mapping F to G.

Since a mapping π is the identity almost everywhere, it can be represented
by a finite set of pairs of the form {b1/a1, . . . , bn/an} where ai 6= bi, whenever
π(ai) = bi and π(c) = c for all c 6∈ {a1, . . . , an}.

The application of the blockable rules is restricted by blocking conditions: a
direct blocking condition, which forbids the application of a blockable rule to a
node n, whenever the label of a previous node can be mapped to label(n); and
also an indirect blocking condition. The latter is necessary because, since a node
may be (directly) blocked in a branch after it has already been expanded, all the
nodes which, in some sense, depend from such an expansion must be blocked
too. So, a notion of indirect blocking is needed, which in turn requires a new
partial order on nodes. The following definition introduces a binary relation on
nodes, which organizes them into a family of trees.

Definition 3. Let B be a tableau branch. The relation n ≺B m between nodes
of B is inductively defined as follows:

Base case. If R is a blockable rule and n ❀
R (m, k), then n ≺B m and

n ≺B k;

Inductive cases. If m ≺B n, then:

1. if n ❀
R k, where R ∈ {∨,@, ↓,∧}, then m ≺B k;

2. if label(n) is a relational formula and for some n′, (n′, n) ❀
R k,

where R is a universal rule, then m ≺B k.

If m ≺B n then n is said to be a child of m w.r.t. ≺B, and m the parent of n.
A node n in B is called a root node if it has no parent. Two nodes n and k are
called siblings if either both of them are root nodes, or, for some m, m ≺B n
and m ≺B k.

The relation ≺+
B is the transitive closure of ≺B. If n ≺+

B m, then n is an
ancestor of m and m a descendant of n w.r.t. ≺B.

In other terms, when a blockable rule is applied to a node n, a first pair
of children of n w.r.t. ≺B is generated. The application of non-blockable rules
generates siblings, where, in the case of the two universal rules, it is the minor
premiss which is added a sibling. Intuitively, when n ≺B m, n is the node
which is taken to be the main “responsible” of the presence of m in the branch:
the first “children” of a node n are nodes obtained from n by application of a

7



blockable rule. And, if a node m is obtained from m′ (as the minor premiss, in
the case of the universal rules) by means of a non-blockable rule, then they are
siblings w.r.t. ≺B.

Example 1. As an example, consider the tableau branch for

F = a: (✸p ∧✷↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y))

represented in Figure 1. Node numbering reflects the order in which nodes are
added to the branch. The right column reports the ❀

R relation justifying the
addition of the corresponding node to the branch. W.r.t. the relation ≺B, 0, 1
and 3 are root nodes with no children; 2 is also a root node, with children 4, 5, 6
and 7; nodes 8–17 are all children of 7 (see Figure 2).

(0) a0: a: (✸p ∧ ✷↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y))
(1) a: (✸p ∧ ✷↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y)) 0 ❀

@ 1
(2) a:✸p 1 ❀

∧ 2
(3) a:✷↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y) 1 ❀

∧ 3
(4) a:✸b 2 ❀

✸ 4
(5) b: p 2 ❀

✸ 5
(6) b: ↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y) (3, 4) ❀✷ 6

(7) b:✸−(p ∧ ¬b ∧ ↓y.a:✸y) 6 ❀
↓ 7

(8) c:✸b 7 ❀
✸

−

8

(9) c: p ∧ ¬b ∧ ↓y.a:✸y 7 ❀
✸

−

9
(10) c: p ∧ ¬b 9 ❀

∧ 10
(11) c: ↓y.a:✸y 9 ❀

∧ 11
(12) c: p 10 ❀

∧ 12
(13) c:¬b 10 ❀

∧ 13
(14) c: a:✸c 11 ❀

↓ 14
(15) a:✸c 14 ❀

@ 15
(16) c: ↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y) (3, 15) ❀✷ 16
(17) c:✸−(p ∧ ¬c ∧ ↓y.a:✸y) 16 ❀

↓ 17

Figure 1: A tableau branch for a: (✸p ∧✷↓x.✸−(p ∧ ¬x ∧ ↓y.a:✸y))

Before defining the blocking conditions we prove some properties of ≺B:
i.e. that any node has at most one parent and only blockable nodes may have
children. Consequently, ≺B arranges the nodes of a branch into a forest of trees,
where non-terminal nodes are blockable nodes. For instance, the nodes of the
tableau branch B of Example 1 are arranged into four trees: three of them
consist of a single node (respectively: 0, 1 and 3), while the fourth one is rooted
at 2 and is shown in Figure 2.

2

4 5 6 7

8 . . . 17

Figure 2: One of the trees induced by the ≺B relation on the nodes of the branch
in Figure 1

8



Lemma 1. Let B be a tableau branch.

1. For each node n in B, there exists at most one node m such that m ≺B n.
Therefore, there is exactly one maximal chain

n1 ≺B n2 ≺B . . . ≺B nk = n

where n1 is a root node.

2. If for some n, m ≺B n, then m is a blockable node. Therefore, for any
chain

n1 ≺B n2 ≺B . . . ≺B nk ≺B nk+1

n1, . . . , nk are all blockable nodes.

Proof. The first item can easily be proved by induction on the definition of ≺B.
The second follows directly from the definition.

As a further remark on the relation ≺B, it is worth pointing out that two
siblings are not necessarily labelled by satisfaction statements whose outermost
nominal is the same (because, for instance, of the ✸ rule, like nodes 4–7 of Figure
1, or the @ rule, like nodes 14 and 15 of the same figure), and, vice-versa, not all
nodes labelled by formulae of the form b:F for a given nominal b are necessarily
siblings. In particular, this fact can be caused by applications of the equality
rule. For example, let us assume that, in a given branch B, n1 ≺B (m) a:F and
n2 ≺B (k) b:G; if then the equality rule replaces a with b, we still have, in the
new branch n1 ≺B (m) b:F and n2 ≺B (k) b:G. So, if n1 6= n2, m and k are not
siblings, although the outermost nominal of their labels is the same.

The notions of direct and indirect blocking can now be defined.

Definition 4 (Direct and indirect blocking). Let B be a tableau branch. The
set of directly and indirectly blocked nodes in B is defined by induction on the
(total) order < on the nodes of B:

• n is blocked if it is either directly or indirectly blocked.

• n is directly blocked by m if n is a blockable node, m < n, m is not blocked
and label(m) can be mapped to label(n) in B; n is directly blocked in B if
it is directly blocked by some m in B.

• n is indirectly blocked if it is not directly blocked and it has an ancestor
w.r.t. ≺B which is blocked.

An indirectly blocked node is called a phantom node (or, simply, a phantom).

The tableau branch B represented in Figure 1 represents a blocking case:
node 17 is directly blocked by 7, because b and c are compatible in B (ΦB(b) =
ΦB(c) = {p}).

The blocking relation is dynamic, i.e. blockings are not established forever,
since they are relative to a tableau branch, and can be undone when expanding
the branch. What may happen is that a node may be blocked in a branch B and
then unblocked after expanding B, because the addition of new nodes or changes
in node labels may destroy nominal compatibility. Similarly, when the equality
rule affects either the label of a blocked node n or that of its blocking node, n

9



is not automatically kept blocked. Possibly, a new blocking can be introduced
(but compatibilities must be checked again), by means of a different mapping.

It is worth pointing out that, in the presence of the binder, termination
requires indirect blocking, even when the input formula contains no converse
modalities (see Example 5 in Section 3.3).

The application of the expansion rules is restricted by the following condi-
tions:

Definition 5 (Restrictions on the expansion rules). The expansion of a tableau
branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B;

R2. a node n labelled by a:✸F (or a:✸−F ) cannot be expanded if B contains
non-phantom nodes labelled by a:✸b (b:✸a) and b:F for some nominal b.

R3. a phantom node cannot be expanded by means of a single-premiss rule
(including the equality rule), nor can it be used as the minor premiss of
the universal rules;

R4. a blockable node n cannot be expanded if it is directly blocked in B.

Restriction R1 amounts to saying that:

1. a node n (or pair of nodes n,m) cannot be expanded in B if the expansion
of n (and m) would produce a single node, whose label would be a formula
which already occurs in B as the label of a non-phantom node;

2. the ∧ rule cannot be applied to a node (n) a:F ∧ G whenever both a:F
and a:G are already the labels of non-phantom nodes in B;

3. if a node (n) a:F ∧ G can be expanded, but a:F (or a:G, but not both)
is already the label of a non-phantom node, then only one new node is
added to the branch, with label a:G (or a:F );

4. if label(n) = a:F ∧ F , then, when n is expanded, a single node is added
to the branch, labelled by a:F .

It is worth pointing out, moreover, that:

• an effect of the equality rule is that siblings may share the same label,
notwithstanding restriction R1. This is shown by Example 2 below.

• Restriction R3 does not forbid firing the universal rules with a non-
phantom minor premiss, even if the major premiss is a phantom node.

• The interplay among restrictions R2, R3 and R4 ensures that any block-
able node n can be expanded at most once in a tableau (see Lemma 2 in
Section 4).

• Termination would not be guaranteed if restriction R1 were replaced by
the condition that a node (or pair of nodes) is never expanded more than
once in the branch. This is shown by Example 3, given below.

10



B
(0) a: ↓x.✸(p ∧ ↓y.x: (p ∧ y))
(1) a:✸(p ∧ ↓y.a: (p ∧ y)) 0 ❀

↓ 1
(2) a:✸b 1 ❀

✸ 2
(3) b: (p ∧ ↓y.a: (p ∧ y)) 1 ❀

✸ 3
(4) b: p 3 ❀

∧ 4
(5) b: ↓y.a: (p ∧ y) 3 ❀

∧ 5
(6) b: a: (p ∧ b) 5 ❀

↓ 6
(7) a: (p ∧ b) 6 ❀

@ 7
(8) a: p 7 ❀

∧ 8
(9) a: b 7 ❀

∧ 9

B′

(0) b: ↓x.✸(p ∧ ↓y.x: (p ∧ y))
(1) b:✸(p ∧ ↓y.b: (p ∧ y)) 0 ❀

↓ 1
(2) b:✸b 1 ❀

✸ 2
(3) b: (p ∧ ↓y.b: (p ∧ y)) 1 ❀

✸ 3
(4) b: p 3 ❀

∧ 4
(5) b: ↓y.b: (p ∧ y) 3 ❀

∧ 5
(6) b: b: (p ∧ b) 5 ❀

↓ 6
(7) b: (p ∧ b) 6 ❀

@ 7
(8) b: p 7 ❀

∧ 8
(9) b: b 7 ❀

∧ 9

Figure 3: Example 2

Example 2. Figure 3 represents a one-branch tableau for the formula ↓x.✸(p∧
↓y.x: (p ∧ y)). The example shows that, notwithstanding Restriction R1, a
tableau branch may contain different nodes with the same label, because of the
presence of the equality rule.

The branch B′ on the right is obtained from the branch B, shown on the left,
by application of the equality rule to node 9. The two nodes labelled by the same
formula, 4 and 8, are siblings w.r.t. the relation ≺B.

Example 3. The construction of the tableau branch for the formula a: (✸b ∧
✷a:✸b), in Figure 4 satisfies the requirement that no node or pair of nodes is
ever expanded more than once, but violates restriction R1. Obviously, tableau
construction does not terminate.

(0) a0: a: (✸b ∧✷(a:✸b))
(1) a: (✸b ∧✷(a:✸b)) 0 ❀

@ 1
(2) a:✸b 1 ❀

∧ 2
(3) a:✷(a:✸b) 1 ❀

∧ 3
(4) b: a:✸b (3, 2) ❀✷ 4

(5) a:✸b 4 ❀
@ 5

(6) b: a:✸b (3, 5) ❀✷ 6
(7) a:✸b 6 ❀

@ 7
. . .

Figure 4: Example 3

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n) a: p, (m) a:¬p for some p ∈ PROP, or a node (n) a:¬a. As usual, we
assume that a closed branch is never expanded further on. A branch which is
not closed is open. A branch is complete when it cannot be further expanded.
For instance, the tableau branch represented in Figure 1 is complete and open.

3.3 Examples

This section concludes with some further examples. In each of them, B denotes
the considered branch, and the notation Bn is used to denote the branch segment
up to node n, while Φn abbreviates ΦBn

.

Example 4. This example illustrates the dynamic nature of the blocking rela-
tion, even without any application of the equality rule. Figure 5 represents a

11



closed one-branch tableau for

F = (✸↓x.✸(x: p)) ∧ (✸↓y.✸(y:¬p)) ∧ (✸↓z.(✸(z: p) ∧✸(z:¬p)))

where the first applications of the ∧-rule are collapsed into one.

(0) a0:F
(1) a0:✸↓x.✸x: p 0 ❀

∧ 1
(2) a0:✸↓y.✸y:¬p 0 ❀

∧ 2
(3) a0:✸↓z.(✸z: p

∧✸z:¬p) 0 ❀
∧ 3

(4) a0:✸a 1 ❀
✸ 4

(5) a: ↓x.✸x: p 1 ❀
✸ 5

(6) a:✸a: p 5 ❀
↓ 6

(7) a:✸a1 6 ❀
✸ 7

(8) a1: a: p 6 ❀
✸ 8

(9) a: p 8 ❀
@ 9

(10) a0:✸b 2 ❀
✸ 10

(11) b: ↓y.✸y:¬p 2 ❀
✸ 11

(12) b:✸b:¬p 11 ❀
↓ 12

(13) b:✸b1 12 ❀
✸ 13

(14) b1: b:¬p 12 ❀
✸ 14

(15) b:¬p 14 ❀
@ 15

(16) a0:✸c 3 ❀
✸ 16

(17) c: ↓z.(✸z: p
∧✸z:¬p) 3 ❀

✸ 17
(18) c:✸c: p ∧✸c:¬p 17 ❀

↓ 18
(19) c:✸c: p 18 ❀

∧ 19
(20) c:✸c:¬p 18 ❀

∧ 20
(21) c:✸c1 19 ❀

✸ 21
(22) c1: c: p 19 ❀

✸ 22
(23) c: p 22 ❀

@ 23
(24) c:✸c2 20 ❀

✸ 24
(25) c2: c:¬p 20 ❀

✸ 25
(26) c:¬p 25 ❀

@ 26

Figure 5: Example 4

The relation ≺B in this branch can be represented by the trees in Figure 6,
and the single-node tree 0.

1

4 5 6

7 8 9

2

10 11 12

13 14 15
3

16 17 18 19

21 22 23

20

24 25 26

Figure 6: The relation ≺B on the nodes of the branch in Figure 5

The branch is closed because of nodes 23 and 26. In B20, node 19 is not
blocked by 6, since a:✸a: p cannot be mapped to c:✸c: p because c and a are
not compatible in B20 (Φ20(c) = Ø 6= {p} = Φ20(a)); therefore, node 19 can be
expanded. In the same branch segment, on the contrary, node 20 is blocked by
12, because Φ20(c) = Ø = Φ20(b).

When the construction proceeds, expanding the non-blocked node 19, and
nodes 21–23 are added to the branch, c and b are no more compatible (Φ23(c) =
{p} while Φ23(b) is still empty), so node 20 is unblocked and it is expanded,
producing 24–26 and the branch closes.

After the addition of node 23, a and c become compatible, so that in B23 node
19 is blocked by 6, and 21–23 are phantom nodes. Since 20 is not a descendant
of 19 w.r.t. ≺B, it is not a phantom, thus it can be expanded.

12



Example 5. This example shows the need of indirect blocking (restriction R3)
to ensure termination (even in the absence of the converse modalities). Let

F = a: ((✷↓x.✸↓y.(x: p ∧ a:✸y)) ∧✸q)

Figure 7 shows a complete branch in a tableau for F .

(1) a0:F
(2) a: ((✷↓x.✸↓y.

(x: p ∧ a:✸y)) ∧✸q) 1 ❀
@ 2

(3) a:✷↓x.✸↓y.
(x: p ∧ a:✸y) 2 ❀

∧ 3
(4) a:✸q 2 ❀

∧ 4
(5) a:✸b 4 ❀

✸ 5
(6) b: q 4 ❀

✸ 6
(7) b: ↓x.✸↓y.

(x: p ∧ a:✸y) (3, 5) ❀✷ 7
(8) b:✸↓y.(b: p ∧ a:✸y) 7 ❀

↓ 8
(9) b:✸b1 8 ❀

✸ 9
(10) b1: ↓y.(b: p ∧ a:✸y) 8 ❀

✸ 10
(11) b1: (b: p ∧ a:✸b1) 10 ❀

↓ 11
(12) b1: b: p 11 ❀

∧ 12
(13) b1: a:✸b1 11 ❀

∧ 13
(14) b: p 12 ❀

@ 14
(15) a:✸b1 13 ❀

@ 15
(16) b1: ↓x.✸↓y.

(x: p ∧ a:✸y) (3, 15) ❀✷ 16

(17) b1:✸↓y.(b1: p ∧ a:✸y) 16 ❀
↓ 17

(18) b1:✸b2 17 ❀
✸ 18

(19) b2: ↓y.(b1: p ∧ a:✸y) 17 ❀
✸ 19

(20) b2: (b1: p ∧ a:✸b2) 19 ❀
↓ 20

(21) b2: b1: p 20 ❀
∧ 21

(22) b2: a:✸b2 20 ❀
∧ 22

(23) b1: p 21 ❀
@ 23

(24) a:✸b2 22 ❀
@ 24

(25) b2: ↓x.✸↓y.
(x: p ∧ a:✸y) (3, 24) ❀✷ 25

(26) b2:✸↓y.(b2: p ∧ a:✸y) 25 ❀
↓ 26

(27) b2:✸b3 26 ❀
✸ 27

(28) b3: ↓y.(b2: p ∧ a:✸y) 26 ❀
✸ 28

(29) b3: (b2: p ∧ a:✸b3) 28 ❀
↓ 29

(30) b3: b2: p 29 ❀
∧ 30

(31) b3: a:✸b3 29 ❀
∧ 31

(32) b2: p 30 ❀
@ 32

(33) a:✸b3 31 ❀
@ 33

Figure 7: Example 5.

The relation ≺B in this branch can be described as follows: the root nodes
are 1–4, 4 ≺B {5, . . . , 8}, 8 ≺B {9, . . . , 17}, 17 ≺B {18, . . . , 26} and 26 ≺B

{27, . . . , 33}.3

In B17, node 17 is not blocked by 8 because Φ17(b) = {q, p} 6= Ø = Φ17(b1).
And it is not blocked by 8 in Bn for any n ≥ 23 either, where Φn(b) = {q, p} 6=
{p} = Φn(b1). Moreover, in B26, node 26 is blocked neither by 8 nor by 17,
because Φ26(b) = {q, p}, Φ26(b1) = {p}, and Φ26(b2) = Ø.

But in B33, node 26 is blocked by 17, because Φ33(b1) = {p} = Φ33(b2).
Therefore its children w.r.t. ≺B33

, i.e. 27–33, are all phantom nodes, and, in
particular, node 33 cannot participate, with node 3, to an expansion via the ✷

rule.
Without restriction R3, the construction of the branch would go on forever,

since the following nodes could be added:

(34) b3: ↓x.✸↓y.(x: p ∧ a:✸y) (3, 33) ❀✷ 34
(35) b3:✸↓y.(b3: p ∧ a:✸y) 34 ❀

↓ 35

In B35, node 35 would not be blocked, because Φ35(b3) = Ø, while Φ35(b1) =
Φ35(b2) = {p}. So a sequence of new nodes could be added, with labels obtained
from the labels of 27–34, by renaming b2 with b3 and b3 with a new nominal b4.
A neverending story . . .

3The notation n ≺B {m1, . . . ,mk} abbreviates n ≺B m1 and . . .n ≺B mk.

13



4 The Global Modalities

This section shows how to extend the calculus defined in Section 3 to the global
modalities A and E, obtaining a terminating and complete system for the frag-
ment FHL \ ↓✷, i.e. formulae in NNF of HL(@, ↓,E,✸−) where no universal
modality (✷, ✷− and A) occurs in the scope of a binder.

Table 2 shows the new expansion rules that are added to the calculus. Block-
able rules now include the E rule. Moreover, formulae of the form a:EF are
among the blockable formulae, and nodes labelled by such formulae are among
the blockable nodes. The A rule is a universal rule. When the A rule is applied
to produce a node labelled by b:F , we say that it focuses on the nominal b and
b is the focused nominal of the expansion.

a:AF
b:F

(A) a:EF
b:F

(E)

where b occurs in the branch where b is a fresh nominal

Table 2: The expansion rules for the global modalities

The definitions of nominal compatibility and mappings (Definitions 1 and 2)
do not change. In particular, though A is a universal modality like ✷ and ✷

−,
the sets ΦB(a) do not include formulae of the form AF .

The rules A and E are quite natural and standard. The extension of restric-
tion R2 to the new blockable rule is also straightforward, and will be given later
on; restriction R4 already applies also to the E rule, since it is included among
the blockable ones. Actually, the blocking condition for the E rule could be
made more general, establishing that, in order for (m) b:EG to block (n) a:EF
directly in Bi, it is sufficient that G can be mapped to F in Bi (i.e. the out-
ermost nominal might be ignored). The completeness argument in Section 5.2
would however need the addition of corresponding distinguishing cases in many
points, which would make it heavier.

What is less obvious is how to extend the relation ≺B, so as to preserve
the main properties which ensure termination, and to define its interplay with
restrictions on the application of the A rule, while preserving the properties
needed to show completeness.

In order to give a better understanding of the definitions that follow, it may
be useful to summarize the main guidelines of the termination and completeness
proofs (whose details are given in Section 5).

Termination is proved by showing that the nodes of a branch B are arranged
by ≺B into a bounded sized set of trees, each of which has bounded width and
bounded depth. Hence any tableau branch B has a number of nodes that is
bounded by a function of the size of the initial formula.

In order to prove completeness, it is shown how to extend a subset N 0 of
any complete and open branch B in such a way that every directly blocked node
is added a suitable “witness”. The label of each newly added node is obtained
from a node in N 0 by suitably renaming non-top nominals. A model of the
initial formula can then be extracted from such an extension. The set N 0 is
the union of the non-phantom nodes in B and the nodes of the form (n) a:F

14



for F ∈ Cmp(B) and a occurring in some non-phantom node in B. It is shown
to enjoy a form of saturation property for non-phantom nodes: it is consistent
(there are no labels of the form a:¬a, or both a: p and a:¬p), it does not contain
non-trivial equalities, and, for any node or pair of nodes in N 0 that could be the
premiss(es) of some expansion rule other than blockable ones, its expansion(s)
are also in N 0.

For the aims of the present section, what is important to point out is that
the following two properties must be guaranteed. The first of them is needed to
prove termination, and the second is the saturation property for non-phantom
nodes used to prove completeness.

1. The number of siblings of any node n is bounded by a function of the
size of the initial formula. It is worth pointing out that in order for such
a property to hold, it is essential that the conclusions of the ✷ and ✷

−

rules are siblings of the respective minor premisses, and not the major
one, because the latter (labelled by a universal formula) can in principle
be used to produce an infinite number of expansions.

2. Let B be a complete and open branch. Then for any node or pair of nodes
that could be the premiss(es) of some expansion rule other than blockable
rules (without violating R3), its expansion(s) is (are) the label(s) of non-
phantom node(s) in B. Considering in particular the A rule, this means
that, whenever B contains a non-phantom node whose label has the form
a:AF , then, for any nominal b occurring in some non-phantom node of B,
the branch also contain a non-phantom node labelled by b:F .

So, the main subtlety in the extension to the global modalities is the defi-
nition of ≺B. Like in the case of the other universal modalities, when a node
(n) a:AF is expanded generating (m) b:F , it cannot be established that m and n
are siblings w.r.t. ≺B. Otherwise, it could not be ensured that a universal node
has a bounded number of siblings (property 1 above). But, contrarily to the ✷

and ✷
− rules, the A rule lacks a minor premiss, to play the role of “producer”

of the conclusion.
We cannot simply take the first node where the focused nominal occurs, to

play the role of “minor premiss” of the A rule, for two reasons. Let us assume
that a node n is expanded via the A rule producing the new node (m) b:F , and
let k be the first node in the branch where b occurs. If k is the minor premiss
of the inference, then m and k are siblings; this implies that if k is a phantom,
then m is a phantom too, so that:

• restriction R1 does not prevent firing the A rule again and again on n
focusing on the same nominal b;

• if b also occurs in a non-phantom node in the branch, the branch would
not contain a non-phantom node labelled by b:F , while this is necessary
in order to prove completeness (property 2 above).

The leading intuition in determining which node plays the same role for the
A rule as the minor premisses of the ✷ and ✷

− rules, is to take it as the first
non-phantom node containing the focused nominal, in the branch where the rule
is applied (i.e. just before the addition of the new node).

15



Although this is quite a simple and intuitive idea, its formal definition is
rather intricate, because the notion of “the first non-phantom node containing
the focused nominal” depends on the notion of phantom node, which is in turn
defined in terms of ≺B. Luckily, there is no true circularity here, since, when
properly defined, the relation ≺B does not depend on the phantom nodes in B
itself, but on the phantom nodes in the branch B′ from which B is obtained
by application of an expansion rule. Such a proper definition requires several
notions to be defined simultaneously by induction on the sequence of branches
B0,B1, . . . built during tableau construction.

Definition 6. Let B0,B1, . . . ,Bi be a sequence of branches such that B0 is the
initial single-node tableau and for all j = 1, . . . , i, Bj is obtained by application of
an expansion rule to Bj−1. Then the notion of minor premiss of an application
of the A rule, the relation ≺Bi

, and the set of directly and indirectly blocked
nodes in Bi are defined by induction on i as follows:

(i = 0) The relation ≺B0
is empty, no nodes are blocked in B0, and, obviously,

there are no minor premisses of applications of the A rule.

(i > 0) Let ≺Bi−1
, the set of directly and indirectly blocked nodes in Bi−1, and

the minor premisses of applications of the A rule up to Bi−1 be defined.
Then:

1. Each minor premiss of an application of the A rule in Bi−1 is also
the minor premiss of the same application of the A rule in Bi.

Moreover, if Bi is obtained from Bi−1 by means of an application of
the A rule focusing on the nominal b, and if b occurs in some node
which is non-phantom in Bi−1, then the minor premiss of the new
application of the A rule in Bi is the first non-phantom node in Bi−1

where b occurs. Otherwise, if b occurs only in phantom nodes of Bi−1,
such an application of the A rule has no minor premiss.4

2. For any pair of nodes n,m in Bi, n ≺Bi
m if either n ≺Bi−1

m, or
one of the following cases applies:

(a) Bi is obtained from Bi−1 by application of a blockable rule to
n, which causes the addition of the node(s) m0 (and m1), and
m = mi (i = 0, 1).

(b) for some k, n ≺Bi−1
k and Bi is obtained from Bi−1 by appli-

cation of an expansion rule R ∈ {∨,@, ↓,∧} to k, causing the
addition of m to Bi;

(c) for some k, n ≺Bi−1
k and Bi is obtained from Bi−1 by applica-

tion of an expansion rule R ∈ {✷,✷−} whose minor premiss is
k, and causing the addition of m to Bi;

(d) for some k, n ≺Bi−1
k and Bi is obtained from Bi−1 by applica-

tion of the A rule causing the addition of m to Bi and k is the
minor premiss of the A inference in Bi.

4An application of the A rule with no minor premiss generates a top node. If such expan-
sions were allowed, the forest of nodes induced by ≺B would possibly be made of an unbounded
number of trees. However, this is actually not going to be a problem, as it will be taken care
of by restriction R6, stated later on.

16



3. The set of blocked nodes in Bi is defined by induction on < as follows:

• n is blocked in Bi if it is either directly or indirectly blocked in
Bi.

• n is directly blocked by m in Bi if it is a blockable node, m < n,
m is not blocked in Bi and label(m) can be mapped to label(n)
in Bi; n is directly blocked in Bi if it is directly blocked by some
m in Bi.

• n is indirectly blocked (a phantom) if it is not directly blocked in
Bi and it has an ancestor w.r.t. ≺Bi

which is blocked in Bi.

The relation of being the minor premiss of an application of the A rule is
static: if n is the minor premiss of a given application of the A rule in the branch
Bi, it stays the minor premiss of that rule application in Bi+1, even if n becomes
a phantom in Bi+1 (see Example 6 below). Consequently, the relation ≺B is
static: if a node is produced by an application of the A rule, its parent w.r.t.
≺B is established according to the phantom/non-phantom status of the nodes
in the branch just before the application of the rule. In particular, if n ❀

A m
and the focused nominal of the A inference is a top nominal when the rule is
applied, then m is a root node, since the minor premiss of the inference is the
top node of the branch. The use of an auxiliary induction on < in item 3 of
Definition 6 is required by the fact that blocks may change when a branch is
expanded, therefore they must be determined again starting from the top node;
also this fact is illustrated by Example 6.

With Definition 6, Lemma 1 still holds: ≺B arranges the nodes of a branch
B into a forest of trees, where any non-terminal node is a blockable node.

The application of the expansion rules are restricted by R1–R4 as before
(keeping in mind that a node (n) a:EF is a blockable node). Moreover, the
following restrictions are added:

R5. a node (n) a:EF cannot be expanded in a branch B, if it already contains
a non-phantom node labelled by b:F for some nominal b;

R6. the A rule cannot focus on a nominal which only occurs in phantom nodes
in the branch.

Example 6. The following example shows how minor premisses of the A rule
are computed, and the fact that the notion of minor premiss and the relation
≺B are static, contrarily to direct and indirect blocks. It also shows that it may
happen that the A rule is applied more than once to the same node, focusing on
the same nominal.

Figure 8 shows the development of a (still incomplete) one-branch tableau
for the formula

F = a: (A↓x.a:x ∧ Ap ∧ A✸q)

The first application of the @ rule is not shown in the figure, and the two ap-
plications of the ∧ rule that follow are collapsed into one. In the example, the
same notational conventions as in Section 3.3 are used. Moreover, when a node
k is obtained by application of the A rule to a node n, with minor premiss m,
we write (n,m) ❀A k.

The branch B′ on the right is obtained from the branch B on the left by
application of the equality rule to node 17, replacing b3 for a, and then expanded
further on with the addition of the last two nodes.

17



B
(0) a0:F
(1) a:A↓x.a:x 0 ❀

@,∧ 1
(2) a:Ap 0 ❀

@,∧ 2
(3) a:A✸q 0 ❀

@,∧ 3
(4) a:✸q (3, 0) ❀A 4
(5) a:✸b1 4 ❀

✸ 5
(6) b1: q 4 ❀

✸ 6
(7) b1: p (2, 5) ❀A 7
(8) b1:✸q (3, 5) ❀A 8
(9) b1:✸b2 8 ❀

✸ 9
(10) b2: q 8 ❀

✸ 10
(11) b2:✸q (3, 9) ❀A 11
(12) b2:✸b3 11 ❀

✸ 12
(13) b3: q 11 ❀

✸ 13
(14) b3:✸q (3, 12) ❀A 14
(15) b3: ↓x.a:x (1, 12) ❀A 15
(16) b3: a: b3 15 ❀

↓ 16
(17) a: b3 16 ❀

@ 17

B′

(0) a0:F [b3/a]
(1) b3:A↓x.x: b3 0 ❀

@,∧ 1
(2) b3:Ap 0 ❀

@,∧ 2
(3) b3:A✸q 0 ❀

@,∧ 3
(4) b3:✸q (3, 0) ❀A 4
(5) b3:✸b1 4 ❀

✸ 5
(6) b1: q 4 ❀

✸ 6
(7) b1: p (2, 5) ❀A 7
(8) b1:✸q (3, 5) ❀A 8
(9) b1:✸b2 8 ❀

✸ 9
(10) b2: q 8 ❀

✸ 10
(11) b2:✸q (3, 9) ❀A 11
(12) b2:✸b3 11 ❀

✸ 12
(13) b3: q 11 ❀

✸ 13
(14) b3:✸q (3, 12) ❀A 14
(15) b3: ↓x.x: b3 (1, 12) ❀A 15
(16) b3: b3: b3 15 ❀

↓ 16
(17) b3: b3 16 ❀

@ 17
(18) b2: p (2, 9) ❀A 18
(19) b3:✸q (3, 0) ❀A 19

Figure 8: Construction of a tableau branch for a: (A↓x.a:x ∧ Ap ∧ A✸q).

The focused nominal of the first application of the A rule in B is a, and the
top node is the first non-phantom node where a occurs, so 0 is the minor premiss
of the inference. Since 0 is a root node, 4 is also a root node. So, 0–4 are root
nodes (both in B and B′). When 4 is expanded, 4 ≺B {5, 6} (and the relation
remains the same in B′: 4 ≺B′ {5, 6}).

The minor premiss of the application of the A rule producing node 7 is the
first non-phantom node where b1 occurs in B6, i.e. 5. Node 5 is also the minor
premiss of the application of the A rule producing 8, therefore also 4 ≺B {7, 8}.

In the branch B, none of the blockable nodes 8, 11 and, later on, 14 are
ever blocked by 4, because a is a top nominal in B. So, in particular, node 8
can be expanded, producing 9 and 10, and 8 ≺B {9, 10}. Since 9 is the first
non-phantom node where b2 occurs in B10, the minor premiss of the A inference
producing 11 is 9, and 8 ≺B 11.

Node 11 is not blocked by 8 in B11 because b1 and b2 are not compatible in
B11: Φ11(b1) = {p, q} 6= {q} = Φ11(b2). So, 11 can be expanded, generating 12
and 13, and 11 ≺B {12, 13}.

In B13, the first non-phantom node where b3 occurs is 12, that is therefore
the minor premiss of the A inference producing 14. Consequently, 11 ≺B 14. In
B14, node 14 is blocked by 11 because Φ14(b2) = Φ14(b3) = {q}.

Since B14 has no phantoms, the A rule can expand node 1, focusing on b3,
and producing node 15 with minor premiss 12. Therefore 11 ≺B 15. Since 11
is not blocked, 15 can be expanded, and its siblings 16 and then 17 are added to
the branch: 11 ≺B {16, 17}.

Now, the application of the (=) rule to node 17 replaces b3 for a in the
node labels, so that the branch becomes B′

17. The relation ≺B′ is the same
as ≺B: 0–4 are root nodes, 4 ≺B′ {5, 6, 7, 8}, 8 ≺B′ {9, 10, 11} and 11 ≺B′

{12, 13, 14, 15, 16, 17}. However the status of nodes w.r.t. blocks changes: since

18



b3 is a top nominal in B′, 11 does not block 14 any longer.
The next inference adds node 18 by an application of the A rule with 9 as

the minor premiss (so 8 ≺B′ 18). Now b1 and b2 are compatible in B′
18 because

Φ18(b1) = Φ18(b2) = {p, q}. As a consequence, 8 blocks 11 and its descendants,
12–17, are phantoms in B′

18.
Since, in B′

18, b3 occurs in some non-phantom nodes, 3 is not a phantom
and 14 is a phantom (so, there are no non-phantom nodes labelled by b3:✸q);
the A rule can be fired on 3 focusing again on b3, and producing 19. The minor
premiss of the inference is the top node, therefore 19 is a root node.

In general, with the exception of the A rule, every node (or pair of nodes) can
be expanded at most once in a branch. And a node cannot be expanded more
than once by the A rule with the same minor premiss and the same focused
nominal. What will be needed, in the sequel, is, however, only the one-time
expandability property for blockable nodes, which was already pointed out in
Section 3:

Lemma 2. A blockable node is expanded at most once in a branch.

Proof. Let n be any blockable node. If either n ❀
∇ (k1, k2), for ∇ ∈ {✸,✸−},

or n ❀
E k1 (i.e. n has already been expanded), then also n ≺B ki (for i = 1, 2

or i = 1). A new expansion of n would not violate restrictions R2 and R5
only if ki is a phantom in the current branch (for i = 1, 2 or i = 1). But if ki
is a phantom, then n is necessarily blocked, so that it cannot be expanded by
either restriction R3 or R4. If, later on, n becomes non blocked again, then ki
becomes non-phantom (for i = 1, 2 or i = 1), so that, again, either R2 or R5
forbids a second application of the blockable rule to n.

Thanks to restriction R6, any application of the A rule has a minor premiss.
The necessity of this restriction to ensure termination is shown by the following
example.

Example 7. Figure 9 shows a complete and open one-branch tableau for F =
A↓x.Ex: p. In this branch B, 0, 1 and 2 are root nodes, 2 ≺B {3, 4, 5, 6},
6 ≺B {7, 8, 9, 10}, and 10 ≺B {11, 12}. In particular, the minor premiss of
the application of the A rule producing node 1 is 0, which is a root node, there-
fore 1 is a root node too. The minor premiss of the inference producing node 5
is the first non-phantom node where a1 (the focused nominal) occurs, i.e. node
3; since 2 ≺B 3, 2 is also the parent of 5. Anagously, the minor premiss of the
A inference producing 9 is node 7 (the first non-phantom node where a2 occurs),
therefore 6 ≺B 9 because 6 ≺B 7.

(0) a0:A↓x.Ex: p
(1) a0: ↓x.Ex: p (0, 0) ❀A 1
(2) a0:Ea0: p 1 ❀

↓ 2
(3) a1: a0: p 2 ❀

E 3
(4) a0: p 3 ❀

@ 4
(5) a1: ↓x.Ex: p (0, 3) ❀A 5
(6) a1:Ea1: p 5 ❀

↓ 6

(7) a2: a1: p 6 ❀
E 7

(8) a1: p 7 ❀
@ 8

(9) a2: ↓x.Ex: p (0, 7) ❀A 9
(10) a2:Ea2: p 9 ❀

↓ 10
(11) a3: a2: p 9 ❀

E 11
(12) a2: p 11 ❀

@ 12

Figure 9: A complete tableau for A↓x.Ex: p.

19



Nodes 6 and 10 are never blocked by 2 because a0 is a top nominal and
mappings do not act on top nominals. In B10, node 10 is not blocked by 6,
because a1 and a2 are not compatible in B10: Φ10(a1) = {p} 6= ∅ = Φ10(a2).
Therefore 10 can be expanded.

But in B12, Φ12(a1) = {p} = Φ12(a2), i.e. a1 and a2 are compatible, therefore
10 is now blocked by 6, and its descendants w.r.t. the ≺B relation, 11 and 12
become phantoms.

Since a3 occurs only in phantom nodes in B12, the A rule cannot focus on
it, by restriction R6. So the branch is complete.

In the absence of restriction R6, the A rule could be applied producing a new
node labelled by a3: ↓x.Ex: p (node 13 below). Such an application of the A rule
would lack a minor premiss (because a3 does not occur in non-phantom nodes),
therefore the new node would have no parents, i.e. it would be a root node. And
the construction could go on as shown below.

(13) a3: ↓x.Ex: p 0 ❀
A 13

(14) a3:Ea3: p 13 ❀
↓ 14

(15) a4: a3: p 14 ❀
E 15

(16) a3: p 15 ❀
@ 16

(17) a4: ↓x.Ex: p 0 ❀
A 17

(18) a4:Ea4: p 17 ❀
↓ 18

(19) a4: a4: p 18 ❀
E 19

(20) a4: p 19 ❀
@ 20

.

.

.

Node 14 (a sibling of 13) is also a root node. Before the addition of node 16,
a3 is not compatible with either a1 or a2, therefore 14 can be expanded, and
its children 15 and 16 are generated. Now (in B16) 14 is blocked by 6, so 15
and 16 become phantoms. But, again, without restriction R6, the A rule could
be applied with no minor premiss, and the new root node 17 could be added to
the branch. Another neverending story, where nodes 13, 17 and all the infinitely
many nodes generated by further applications of the A rule would be root nodes.

The following last example shows what may happen outside the decidable
fragment FHL \✷↓✷.

Example 8. The expressive power of FHL allows for formulae whose models
are necessarily infinite, such as, for instance:

A✸p ∧ A↓x.✷✷✸−x ∧ A↓x.✷¬x

(every state has at least one successor, and the accessibility relation is transitive
and irreflexive). Such a formula has no finite and complete tableau. Figure 10
shows a one-branch tableau for its subformula F = A✸p ∧ A↓x.✷✷✸−x.

When node 15 is expanded, it produces nodes (16) c:✸b1 and (17) c: a. The
equality rule, applied to 17, replaces everywhere c with a. Since c occurs only
in nodes 16 and 17, we have shown the changed labels to the right of such nodes
only.

Branch construction never terminates because there is an infinite number
of formulae of the form bi:✷F occurring in the branch. In particular, every
nominal bi labels different instances of ✷✷✸−x and ✷✸

−x, therefore, if i 6= j,
bi is not compatible with bj. Consequently, no node labeled by bi:✸p is ever
blocked.

In this case, the infinite construction could be avoided by a smarter form of
loop checking, realizing that actually all nominals could denote the same state.
But any complete branch for F ∧ A↓x.✷¬x would also contain, for all i, nodes
labelled by bi:¬a and bi:¬bj for all j < i.

20



(0) F
(1) a:A✸p 0 ❀

∧ 1
(2) a:A↓x.✷✷✸

−x 0 ❀
∧ 2

(3) a:✸p (1, 0) ❀A 3
(4) a: ↓x.✷✷✸

−x (2, 0) ❀A 4
(5) a:✸b0 3 ❀

✸ 5
(6) b0: p 3 ❀

✸ 6
(7) a:✷✷✸

−a 4 ❀
↓ 7

(8) b0:✷✸
−a (7, 5) ❀✷ 8

(9) b0:✸p (1, 5) ❀A 9
(10) b0: ↓x.✷✷✸

−x (2, 5) ❀A 10

(11) b0:✷✷✸
−b0 10 ❀

↓ 11
(12) b0:✸b1 9 ❀

✸ 12
(13) b1: p 9 ❀

✸ 13
(14) b1:✷✸

−b0 (11, 12) ❀✷ 14
(15) b1:✸−a (8, 12) ❀✷ 15
(16) c:✸b1 ⇒= a:✸b1 15 ❀

✸ 16
(17) c: a ⇒= a: a 15 ❀

✸ 17
(18) b1:✸p (1, 12) ❀A 18
(19) b1: ↓x.✷✷✸

−x (2, 12) ❀A 19
(20) b1:✷✷✸

−b1 19 ❀
↓ 20

. . . . . .

Figure 10: Outside the fragment

We conclude this section formalizing two simple properties that will be used
later on.

Lemma 3. For any branch B:

1. if n ≺B m and n ≺B m′, then m is a phantom in B if and only if m′ is a
phantom in B;

2. if B is a complete and open branch containing a non-phantom node (n) a:AF
and if b occurs in some non-phantom node in B, then there exists a non-
phantom node (m) b:F in B.

Proof. 1. Let us assume that n ≺B m and n ≺B m′. If either n is directly
blocked or is a phantom in B, then both m and m′ are phantom in B.
Otherwise none of them is a phantom.

2. Let B be a complete and open branch containing a non-pantom node
(n) a:AF , and let b occur in some non-phantom node k in B. Then an
application of the A rule on n focusing on b in B would violate neither
restriction R3 nor restriction R6. Therefore, the only reason why B can
be complete is that an application of the A rule on n focusing on b would
violate restrictionR1, i.e. B already contains a non phantom node labelled
by b:F .

It is worth remarking that the first item of the above lemma holds, in par-
ticular, when either m or m′ is added by an application of the A rule: if k is the
minor premiss of the inference leading to the addition of m (or m′), then also
n ≺B k, and k has the same phantom/non-phantom status in B as m and m′.

5 Termination and Completeness

The tableau calculus defined in Sections 3 and 4 is trivially sound. This section
shows that the calculus terminates and is complete, provided that the initial
formula is in the fragment FHL \ ↓✷, i.e. is a NNF formula where no universal
operator (✷, ✷− and A) occurs in the scope of a binder. In this section we
always assume that the initial formula is a ground formula in such a fragment.

For the purposes of proving termination and completeness, the main property
of the considered fragment is that, if a universal formula is a subformula of the

21



initial formula, then it contains no free variables, because it is not in the scope
of a binder. As a consequence, for any node label of the form a:G where G is a
universal formula, the only nominals occurring in G are top nominals. The first
result proved below establishes this fact, along with the standard subformula
property.

Definition 7. Let B be a tableau branch and a0:F0 its top formula. Then
Subf(B) is the set of the subformulae of F0 and

Cmp(B) = (Subf(B) ∩ PROP) ∪ {✷G | ✷G ∈ Subf(B)}
∪{✷−G | ✷−G ∈ Subf(B)}

Lemma 4 (Subformula properties). For any formula a:F occurring in a branch
B which is not a relational formula, F is an instance of a formula in Subf(B).

Moreover, if F is a universal formula, then F ∈ Subf(B). Therefore, in
particular, for any nominal a, ΦB(a) = {F | a:F ∈ B} ∩ Cmp(B).

Proof. The proof is an induction on the construction of B, which simultaneously
proves the following strongest versions of the two properties: if (n) a:F is a node
in B and a:F is not a relational formula, then for any subformula F ′ of F :

(α) F ′ is an instance of a formula in Subf(B), and

(β) if F ′ is a universal formula, then F ′ ∈ Subf(B).

The one-node branch constituting the initial tableau trivially enjoys the
required properties. Below, we show that they are preserved by the expansion
rules, assuming that B is obtained from B′ by application of the rule R. We
consider different cases according to the rule R, restricting our attention to the
node labels which are either added or modified by R.

1. R is one of the rules ∧,∨,@,E, applied to (m) b:H, and the node (n) a:F
is added to the branch. Then F is a subformula of H, for which α and β
hold by the inductive hypothesis; therefore α and β hold for F too, since
any subformula of F is also a subformula of H.

2. R = ↓, and the node (n) a:F , where F = G[a/x], is added as the expansion
of (m) a: ↓x.G. By the inductive hypothesis, ↓x.G is an instance of some
formula ↓x.G′ ∈ Subf(B). Therefore G[a/x] is an instance of G′, which
belongs to Subf(B), too. So, α holds for F . Moreover, in the fragment
FHL \ ↓✷, F has no universal subformula, so that β is vacuously true.

3. R = ✸ and the nodes (k) b:✸a and (n) a:F are added as expansions of
(m) b:✸F . The label of k is a relational formula, so only the node n has
to be considered. The same reasoning as in case 1 shows that α and β
hold for F .

4. If R = ✸
−, the reasoning is the same as in 3, modulo replacement of

label(m) by b:✸−F and label(k) by a:✸b.

5. R = ✷, and the rule is applied to (m) b:✷F and (k) b:✸a, generating the
node (n) a:F . By the inductive hypothesis, ✷F ∈ Subf(B), hence also all
the subformulae of ✷F (including F and its subformulae) are in Subf(B).
So, α and β hold for F .

22



6. If R = ✷
−, the reasoning is the same as in 5, but for the fact that

label(m) = b:✷−F , label(k) = a:✸b, and the inductive hypothesis ensures
that ✷−F ∈ Subf(B).

7. R = A, and the rule is applied to (m) b:AF , generating the node (n) a:F .
By the inductive hypothesis, AF ∈ Subf(B), hence also all its subformulae
are in Subf(B). So, α and β hold for F .

8. Finally, let us consider the case where the equality rule is applied to B′,
replacing the nominal c with b, and let a0:F0 be the top formula of B′.
The top formula of B is therefore a0[b/c]:F0[b/c].

Let us consider the label a:F of any node n in B′, which is not a relational
formula. The label of n in B is a[b/c]:F [b/c]. Any subformula of F [b/c] is
obtained from a subformula F ′ of F by replacing c with b, i.e. it has
the form F ′[b/c]. By the inductive hypothesis F ′ is an instance of a
subformula G of F0, consequently F ′[b/c] is an instance of G[b/c], which
is a subformula of F0[b/c].

Moreover, by the inductive hypothesis, if F ′ is a universal formula, then
it is a subformula of F0. Therefore, F

′[b/c] is a subformula of F0[b/c].

If B is any branch in a tableau for F0(a1, . . . an), i.e. a tableau initialized with
(n0) a0:F0(a1, . . . an), then the label of n0 in B has the form b0:F0(b1, . . . bn),
where bi is either ai or a nominal replacing it. Lemma 4 establishes that any
universal formula H occurring in B is a subformula of b0:F0(b1, . . . bn), and
its nominals are top nominals in B, i.e. they occur in b0:F0(b1, . . . bn). As a
consequence, the number of universal formulae occurring in B is bounded by
the number of subformulae of F0(a1, . . . an).

It is worth pointing out that the use of substitution to treat nominal equal-
ities is essential for this key property to hold. If some kind of “copy rule” were
used instead, any complete branch containing an equality a: b and a node la-
belled by a formula of the form c:✷F (a), would contain also c:✷F (b), and, in
general, F (b) cannot be ensured to be a subformula of the top formula. Since
(at this stage of the proof) the number of nominals occurring in the branch is
unbounded, a branch might contain an unbounded number of equalities a : bi,
thus an unbounded number of labels of the form c:✷F (bi).

5.1 Termination

In order to prove termination, we first show that, in the forest of trees induced
by ≺B on the nodes of a branch B, any node has a bounded number of siblings.
Let us observe that it would not suffice to show that the number of formulae
that can label the siblings of a given node is bounded, because, in principle, a
given formula might be the label of an infinite number of nodes (a branch is not
a set of formulae), notwithstanding restriction R1. This could happen when
distinct node labels become equal by effect of substitution, as already remarked
in Section 3 (Example 2).

The relation ✄, which is defined next, introduces an order on the siblings of
a given node.

Definition 8. Let n, m and k be nodes in B.

23



• If n ❀
R m, for R = ∧,∨,@, ↓, then n✄m;

• if (m,n) ❀
R k, where R ∈ {✷,✷−}, and n is the minor premiss of the

inference, then n✄ k;

• if k ❀
A m and n is the minor premiss of the inference, then n✄m.

✄
∗ is the reflexive and transitive closure of ✄. If n✄∗m, we say that n produces

m.

In what follows, |F | is the size of the formula F , counted as the number
of symbols in F . Below, we tacitly exploit the trivial fact that the size of the
top formula of any branch is the same as the size of the initial formula of the
tableau.

The proof of next lemma, which bounds the number of nodes produced by
a given node, makes use of the following definition.

Definition 9. Let M be a set of nominals, F a formula (possibly containing
free variables) and ∆ a set of formulae.

1. Clo(∆) (the closure of ∆) is the set containing all the subformulae of every
formula in ∆.

2. An M -instance of F is a ground formula that can be obtained from F by
replacing its free variables with elements of M .

3. The set ∆M is the set containing all the M -instances of every element of
∆.

For instance, if ∆ = {x:✸y, z: p} and M = {a, b}, then:

∆M = {a:✸a, a:✸b, b:✸b, b:✸a, a: p, b: p}
Clo(∆M ) = (Clo(∆))M = ∆M ∪ {✸a,✸b, a, b, p}

Lemma 5. Let n be a node in a branch B of a tableau for a formula F , and
let N = |F |. Then the cardinality of Σ(n) = {m | n ✄

∗ m} is bounded by an
exponential function Ew(N).

Proof. As already remarked, Σ(n) may contain nodes labelled by the same for-
mula, so the reasoning is not as simple as it would be if dealing with sets of
formulae. However, as shown below, the label of any node in Σ(n) has a ma-
trix taken from a bounded stock of formulae, that is built in the language of
the branch at the time n is added to it. Node labels with the same matrix are
always equal, at any construction stage of the branch, so that the cardinality of
Σ(n) is bounded by the number of such possible matrices.

Any branch B in a tableau is the last element of a sequence of branches,
where the first one is the initial tableau, and each of the others is obtained from
the previous one by application of an expansion rule. Such a sequence will be
called the sequence of branches leading to B.

Let n be any fixed node in a tableau branch B. We shall use the following
notations:

1. B1 is the first branch where n occurs, in the sequence of branches leading
to B, and the sequence B1,B2, . . . ,Bp = B denotes the subsequence of the
sequences of branches leading to B which starts from B1.

24



2. labelBi
(k) is the label of the node k in the branch Bi. This allows one to

refer to node labels in different branches.

3. For 1 ≤ i ≤ p, σi is the composition of the sequence of substitutions
applied in the sequence B1, . . . ,Bp, by means of the equality rule, up to
Bi included. Consequently, for each i > 0, labelBi

(n) = σi(labelB1
(n)).

4. Mn is the set containing all the nominals occurring in labelB1
(n) and all

the top nominals in B1.

5. Γn, ∆n and Sn are the sets of formulae defined as follows:

Γn = {F | F is a universal subformula of the top formula of B1}
∆n = {labelB1

(n)} ∪ Γn

Sn = (Clo(∆n))
Mn

i.e. Sn contains all the Mn-instances of every formula in the closure of
∆n.

6. Fn = {a:F | a ∈ Mn and F ∈ Sn} ∪ {a:✸b | a, b ∈ Mn}. Any element of
Fn will be called a matrix. Note that only nominals in Mn may occur in
a matrix.

7. N is the size of the top formula of B, which is obviously equal to the size
of the initial formula of the tableau.

It is easy to see that |Mn| ≤ N . This holds because, if a0:F0 is the top
formula of B1, |Mn| cannot exceed 1 (for the outermost nominal in labelB1

(n))
+ the sum of the number of top nominals and the number of variables occurring
in a0:F0 (by Lemma 4). Such a sum is not greater than N − 1 (the number of
symbols in F0) plus 1 for the outermost nominal a0.

Moreover, |Sn| ≤ NN+2. This holds because the cardinality of ∆n is not
greater than N , since |Γn| < N (the top formula of B1 is not a universal formula,
but a satisfaction statement). The size of each element of Γn is bounded by N ,
and the same holds for labelB1

(n), by Lemma 4. Therefore the set Clo(∆n) has
no more than N2 elements. Each element of Clo(∆n) has no more than N free
variables, and each free variable can be instantiated with elements of Mn in no
more than N different ways. Therefore, every element of Clo(∆n) has no more
than NN Mn-instances, so that the cardinality of Sn is bounded by NN+2.

Consequently, |Fn| ≤ Ew(N) = N2 + NN+3: for each formula a:H with
a ∈ Mn and H ∈ Sn there are no more than N choices for the nominal a
and no more than NN+2 choices for the formula H; therefore the cardinality of
{a:H | a ∈ Mn and H ∈ Sn} is bounded by NN+3. And formulae of the form
a:✸b with a, b ∈ Mn can be built in at most N2 different ways.

Let m be any node in Σ(n), i.e. n ✄
∗ m. An element F of Fn is called a

matrix of m in Bi if labelBi
(m) = σi(F ); and F is a matrix of m if it is a matrix

of m in all Bi where m occurs, for i = 1, . . . , p. If two nodes m1 and m2 have a
same matrix, then obviously for all i = 1, . . . , p such that both m1 and m2 are
in Bi, labelBi

(m1) = labelBi
(m2).

We first prove that:

(α) the label of any node in Σ(n) has a matrix in Fn. I.e. if m ∈ Σ(n),
then there exists F ∈ Fn such that for all i = 1, . . . , p, if m ∈ Bi then
labelBi

(m) = σi(F ).

25



The proof is by induction on i. If i = 1 then necessarily m = n, σ1 = Ø and
labelB1

(n) ∈ Fn. Otherwise, if i > 1, we consider different cases according to
the rule applied to obtain Bi from Bi−1. Note that in all cases, except for the
first one, σi = σi−1 and labelBi

(m) = labelBi−1
(m) for any node m occurring

in Bi−1. Therefore, in all but the first case, a matrix of any node m occurring
in Bi−1 is still a matrix of m in Bi. Therefore, the thesis must be proved only
for the newly added nodes; since such nodes do not occur in Bj for j < i, it is
sufficient to show that they have a matrix in Bi. In the treatment of such cases
we assume that m is any node in Bi which does not belong to Bi−1.

(=) Let m be any node in Σ(n), and let Bi be obtained from Bi−1 by an
application of the equality rule. By the induction hypothesis, there is a
formula F ∈ Fn such that labelBj

(m) = σj(F ) for all j = 1, . . . , i−1 such
that m ∈ Bj . We show that any matrix of m in Bi−1 is also a matrix of
m in Bi, so any matrix of m in B1, . . .Bi−1, is also a matrix of m in Bi.

If Bi−1 is expanded by means of the equality rule replacing a with b, then
labelBi

(m) = (σi−1(F ))[a/b]. Since σi = σi−1◦{a/b}, labelBi
(m) = σi(F ),

therefore F is still a matrix of m in Bi.

(∧,∨) Let n✄
∗ k ❀

R m, for R ∈ {∧,∨}, with labelBi
(k) = a:F ′

1 ⋆ F
′
2 (for ⋆ ∈

{∧,∨}), and labelBi
(m) = a:F ′

j (j = 1, 2). By the induction hypothesis,
since k occurs in Bi−1, a:F ′

1 ⋆ F ′
2 = σi−1(c:F1 ⋆ F2) = σi(c:F1 ⋆ F2)

for some c:F1 ⋆ F2 ∈ Fn, i.e. c ∈ Mn and F1 ⋆ F2 ∈ Sn. Since Sn

is closed w.r.t. subformulae, Fj ∈ Sn, therefore c:Fj ∈ Fn. Finally,
labelBi

(m) = a:F ′
j = σi(c:Fj), therefore c:Fj is a matrix of m in Bi.

(@) Let n✄∗k ❀
@ m, with labelBi−1

(k) = labelBi
(k) = a: b:F ′ and labelBi

(m) =
b:F ′. By the induction hypothesis, a: b:F ′ = σi−1(c: d:F ) = σi(c: d:F ) for
some c: d:F ∈ Fn. Since d:F ∈ Sn, d ∈ Mn and F ∈ Sn. Therefore also
d:F ∈ Fn. So, since labelBi

(m) = b:F ′ = σi(d:F ), d:F is a matrix of m
in Bi.

(↓) Let n ✄
∗ k ❀

↓ m, with labelBi
(k) = a: ↓x.F ′ and labelBi

(m) = a:F ′[a/x].
By the induction hypothesis, a: ↓x.F ′ = σi−1(c: ↓x.F ) = σi(c: ↓x.F ) for
some c: ↓x.F ∈ Fn. Since ↓x.F ∈ Sn, any instance of F replacing x with
a nominal in Mn is in Sn. In particular F [c/x] ∈ Sn. Moreover c ∈ Mn

and a:F ′[a/x] = σi(c:F [c/x]), therefore c:F [c/x] is a matrix of m in Bi.

(✷) Let n ✄
∗ k and (k′, k) ❀

✷ m, with labelBi−1
(k′) = labelBi

(k′) = a:✷G,
labelBi−1

(k) = labelBi
(k) = a:✸b and labelBi

(m) = b:G. By Lemma 4,
✷G ∈ Sn. Therefore also G ∈ Sn. By the induction hypothesis, a:✸b =
σi(c:✸d) for some c:✸d ∈ Fn, i.e. b = σi(d) for d ∈ Mn. Therefore
d:G ∈ Fn and, since b:G = σi(d:G), d:G is a matrix of m in Bi.

(✷−) The reasoning is the same as in the previous case, with the obvious re-
placement of node labels.

(A) Let n✄
∗ k and let (m) b:G be added to Bi by an application of the A rule

whose minor premiss is k, so that k ✄m. By Lemma 4, G ∈ Sn. By the
induction hypothesis, since b occurs in labelBi−1

(k), b = σi(d) for some
d ∈ Mn. Therefore d:G ∈ Fn and, since b:G = σi(d:G), d:G is a matrix
of m in Bi.

26



Next we observe that:

(β) for any pair of nodes m, k and any branch B, if m✄k then m is a phantom
node in B if and only if k is a phantom in B. Consequently, also if m✄

∗ k
then m is a phantom in B if and only if k is a phantom in B. And, for any
branch B, either all elements of Σ(n) are phantom nodes in B or none of
them is a phantom in B.

This holds because, if m✄ k, then either m and k are both root nodes (and
they are both non-phantom) or they are children, w.r.t. ≺B, of a same node. In
the latter case, m and k have the same phantom/non-phantom status (by item
1 of Lemma 3).

We can now prove that the cardinality of Σ(n) is bounded by Ew(N), where
Ew(N) is the cardinality of Fn. Let us assume, by reductio ad absurdum,
that Σ(n) has more than Ew(N) elements. Then, by α, there are at least two
distinct elements m1 and m2 in Σ(n) which have the same matrix F . We may
assume w.l.g. that n ≤ m1 < m2. Let Bk be the first branch in the sequence
B1, . . . ,Bp where m2 occurs. Since n < m2, there is a node k ∈ Σ(n) such
that n ✄

∗ k ✄m2. Given that k produces a node, it is not the major premiss
of a universal rule. Moreover, it is not a phantom in Bk−1: a phantom node
cannot be the minor premiss of an application of the A rule producing m2, nor
can it be expanded by one of the other rules without violating restriction R3.
Consequently, by β, m1 is not a phantom in Bk−1 either. But labelBk

(m2) =
σk(F ) = σk−1(F ) = labelBk−1

(m1) (σk = σk−1 because, clearly, Bk−1 has not
been expanded by means of the equality rule, which does not add new nodes to
the branch). Therefore, the addition of m2 to Bk−1 violates restriction R1.

The next result states that the forest of trees induced by ≺B on any branch
B has a bounded number of trees, and each tree has bounded width.

Lemma 6. Let B be a branch in a tableau for F , and let Ew(N), where N = |F |,
be the bound given by Lemma 5.

• The number of root nodes in B is bounded by Ew(N).

• For any node n of B, the cardinality of the set of the children of n, i.e. the
set ΓB(n) = {m | n ≺B m}, is bounded by 2× Ew(N).

Proof. The first item follows from Lemma 5, since all root nodes are produced
by the top node n0, i.e. n is a root node only if n0✄

∗n. This is due to restriction
R6, which guarantees that every application of the A rule has a minor premiss,
so that an application of this rule produces a root node only if its minor premiss
is a root node.

The second item also follows from Lemma 5, using Lemma 2. The relation
n ≺B m holds if and only if either n ❀

R m, where R is a blockable rule or else
there is a node s such that n ≺B s and s ✄ m. Equivalently, n ≺B m if and
only if for some node k: n ❀

R k, where R is a blockable rule, and k ✄
∗ m. By

Lemma 2, there are at most two nodes k1 and k2 such that n ❀
R ki (i.e. n is

expanded at most once in the branch). By Lemma 5, each of them has at most
Ew(N) siblings, so that the number of children of n is bounded by 2×Ew(N).

27



Next, we show that any tree in the forest induced by ≺B on the nodes of
B has a bounded depth. To this aim, we define an equivalence relation among
node labels.

Definition 10. Let F be a ground formula containing exactly the non-top nom-
inals a1, .., an. Let W = {w1, w2, . . . , wn} be a set of fresh variables, and let µ
be a bijection from {a1, .., an} onto W . A skeleton FS for F is the formula
obtained from F by replacing every nominal aj by µ(aj).

Since a skeleton for a given formula is unique up to free variable renaming,
we shall speak of “the skeleton” of a formula, and we consider two skeletons
identical if they only differ for the choice of free variable names.

Example 9. The formulae a1:✸↓x.(✷x ∧ ¬a1) and a2:✸↓x.(✷x ∧ ¬a2) have
the same skeleton w1:✸↓x.(✷x ∧ ¬w1) (assuming that neither a1 nor a2 is a
top nominal). However, a1:✸↓x.(✷x ∧ ¬a2) has a different skeleton, that is
w1:✸↓x.(✷x∧¬w2). Moreover, if a3 is a top-nominal, then a1:✸↓x.(✷x∧¬a3)
has yet another skeleton, namely w1:✸↓x.(✷x ∧ ¬a3).

Definition 11. Let B be a tableau branch, and F1, F2 two node labels in B.
Then F1 ≈B F2 if and only if:

1. F1 and F2 have the same skeleton FS(w1, . . . , wn);

2. if µi (i = 1, 2) is the bijection from the non-top nominals in Fi onto
{w1, . . . , wn} establishing that FS is the skeleton of Fi, then for all j =
1, . . . , n, µ−

1 (wj) and µ−
2 (wj) are compatible in B.

The relation ≈B is obviously an equivalence relation on the (ground) formu-
lae occurring as node labels in B.

The next result establishes a bound on the number of possible skeletons for
node labels in a tableau branch.

Lemma 7. Let B be a branch whose top formula is F0, and N = |F0|. The
number of distinct possible skeletons for blockable node labels in B is bounded by
NN+1.

Proof. By Lemma 4, the body of any blockable node label is an instance of a
subformula of F0 (because relational formulae are not blockable).5

Let {a1, . . . , an} be the set of the top nominals of the branch and {x1, . . . , xm}
the set of the variables occurring in F0. Clearly, n + m < N . Let moreover
{w0, . . . , wm} be a set of fresh variables.

Any skeleton of a blockable node of B is obtained from an expression of the
form x0:F , where F is a subformula of F0 and x0 is a new variable, by replacing
the variables x0, x1, . . . , xm with elements of the set V = {a1, . . . , an, w0, . . . , wm}.
Since |V | ≤ N , there are no more than NN distinct sequences of length N made
up of elements of V . Moreover, the number of variables in the formula x0:F is
not greater than N , therefore there are at most NN skeletons for node labels
having an instance of F as their body.

Since the number of subformulae of F0 is bounded by N , the number of
skeletons for blockable nodes of B is bounded by N ×NN .

5Let us recall that a : ✸−b is blockable, since it is not a relational formula.

28



Lemma 8. Let B be a branch and N the size of its top formula. The maximal
number of equivalence classes w.r.t. ≈B of blockable node labels is bounded by
an exponential function Ed(N).

Therefore the size of any set S of blockable formulae which may occur in a
tableau branch B, and such that for any pair of its elements F,G ∈ S, F is not
blocked by G in B, is bounded by Ed(N).

Proof. Let Fs(w1, . . . , wk) be the skeleton of a node label in B, and ν the cardi-
nality of Cmp(B) (see Definition 7). Clearly, k ≤ N and ν ≤ N . By Lemma 4,
for any nominal a occuring in B, ΦB(a) = {F | a:F ∈ B}∩Cmp(B). Therefore,
for each of the (at most) k nominals a1, . . . , ak replacing the variables w1, . . . , wk

in Fs(w1, . . . , wk), there are at most 2ν possible sets ΦB(ai), so that there are

at most 2k×ν ≤ 2N
2

node labels in B sharing the same skeleton Fs(w1, . . . , wk)
but pairwise not equivalent w.r.t. ≈B. By Lemma 7, the number of different
skeletons for blockable node labels in B is NN+1. Therefore, the number of
equivalences classes w.r.t. ≈B of blockable node labels, and consequently the
cardinality of the set S, is bounded by Ed(N) = NN+1 × 2N

2

.

Definition 12. A chain in a branch B is a sequence of nodes n1, n2 . . . such
that for all i:ni ≺B ni+1. If a chain n1, . . . , nk is finite and n1 is a root node,
we say that it is the maximal chain leading to nk.

We recall that, by Lemma 1.1, for any given node n there is exactly one
maximal chain leading to n.

Lemma 9. Let B be a tableau branch and N the size of its top formula. Then
for any chain

n1 ≺B n2 ≺B . . . ≺B nk

k ≤ Ed(N) + 1, where Ed(N) is the bound given by Lemma 8.

Proof. We note beforehand that if n ≺B m, then:

• n < m in the branch;

• n is a blockable node. Therefore in any chain n1 ≺B n2 ≺B . . . ≺B nk, for
all i = 1, . . . , k − 1, ni is a blockable node (Lemma 1.2).

Let us assume that a branch B contains a chain n1 ≺B n2 ≺B . . . ≺B nK ≺B

nEd(N)+1. We show that such a chain cannot be extended.
If nEd(N)+1 is not a blockable node, the chain cannot be extended, by defi-

nition of ≺B.
Otherwise, for all i = 1, . . . , Ed(N)+1, the label of ni is a blockable formula,

so, by Lemma 8, there are at least two indexes 1 ≤ i < j ≤ Ed(N) + 1 such
that ni blocks nj in B. If j = Ed(N) + 1, then nEd(N)+1 is directly blocked
and cannot be expanded, by restriction R4. Otherwise, if j ≤ Ed(N), then
nj is directly blocked by ni; so, nEd(N)+1 is a phantom in B and it cannot be
expanded either, by restriction R3. Hence, in any case, no node nEd(N)+2 such
that nEd(N)+1 ≺ nEd(N)+2 can be generated.

Theorem 1 (Termination). Every tableau branch has a bounded depth and
tableau construction always terminates.

29



Proof. By Lemmas 1.1, 6 and 9, the nodes of a branch B are arranged by ≺B

in a bounded sized set of trees, each of which has bounded width and bounded
depth. Hence any tableau branch B has a number of nodes that is bounded by
the size of the initial formula.

Since every rule (except for the equality rule) adds some node to the current
branch, the only reason why tableau construction might not terminate is that
the equality rule is applied an infinite number of times. But this is absurd, since
every application of such a rule reduces the number of nominals occurring in
the branch.

The considerations underlying the termination argument establish a bound
on the number of nodes in a tableau branch in function of the size N of its
top formula. The nodes are arranged by ≺B in at most Ew(N) trees, each of
which has a width bounded by Ew(N) (Lemma 6) and a depth bounded by
Ed(N) (Lemma 9). The functions Ew and Ed are exponential in the size of the
input formula, therefore the number of nodes in a single branch is bounded by a
doubly exponential function. As a consequence, according to the bounds given
above, the decision procedure defined in this paper is not worst-case optimal,
since the satisfiability problem for FHL \ ↓✷ is in 2ExpTime [15].

As a matter of fact, the worst-case complexity of the calculus has the same
order of magnitude as that which can be inferred from the termination proofs of
other calculi for binder-free Hybrid Logic with the converse and global modal-
ities, based on ancestor nominal blocking with indirect blocking (such as the
systems defined in [4, 5, 12]). Whenever (i) the argument showing finiteness
of tableau branches relies on a tree-like ordering of elements (either nodes or
nominals), (ii) blocking requires comparison of some sets of formulae associated
to elements of the same chain, and (iii) the elements of such sets are taken from
the set S of the subformulae of the initial formula, tree depth may reach, in
general, the number of subsets of S. Therefore the trees can be exponential in
depth and doubly exponential in total.

This is the case also for the calculus presented in this paper, so that re-
striction to binder-free formulae does not decrease the order of magnitude of its
worst-case complexity. Although the width of the trees induced by ≺B becomes
polynomial in the size of the initial formula, their depth stays exponential. The
smaller bound for tree width is due to the fact that, without variables, the only
instance of a formula F is F itself, therefore the cardinality of the set Sn defined
in Lemma 5 is polynomial. However, there still may be an exponential number
of nominals pairwise incompatible, thus an exponential number of unblocked
nodes in a ≺B chain.

We conclude the above considerations on complexity with a brief compar-
ison with the tableau calculus for the clique guarded fragment proposed in [9]
(some features shared by that calculus and ours will be pointed out in Section
6). Contrarily to the resolution method for guarded clauses defined in [7], the
tableau system given in [9] is not worst-case optimal either. The system non-
deterministically builds a tree (called completion tree), whose nodes are labelled
by sets of formulae. In order to block a node, its whole content must be com-
pared with the content of the blocking node. The bound given in the paper to
the branching factor of a completion tree (and the cardinality of each node) is
exponential in the size of the initial formula – like the width of our ≺B trees –
while tree depth is bounded by a doubly exponential function. Therefore, the

30



bound on the number of nodes in a completion tree established by the termi-
nation proof given in [9] is exponentially higher than the maximum number of
nodes in a branch of our tableaux.

5.2 Completeness

Completeness will be proved in the standard way, by showing how to define a
model of the initial formula from a complete and open tableau branch. However,
for the calculus introduced in this work, the fact that the labels of blocked and
blocking nodes are not identical must be taken into account. This means that
the “witness” (see Definition 13 below) of the blocking node cannot be taken as
a witness of the blocked one, and, in general, the branch may contain no nominal
that could be used as a witness of the blocked node. Nor can a model be simply
built from a set of states consisting of equivalence classes of nominals, where
two nominals are in the same class whenever some blocking mapping maps one
to the other. Consider, for instance, Example 1 in Section 3, where node 17,
labelled by a formula of the form c:✸−F (c) is blocked by (7) b:✸−F (b). The
branch is open and complete, but a model cannot directly be extracted from
it, making b and c denote the same state: although c and b are in some sense
identified by the mapping used to block node 17, they cannot denote the same
state in the model, because the presence of node (13) c:¬b forces them to denote
distinct states.

Thus, we follow a different approach, showing that a (possibly infinite) model
can be built out of a complete and open branch B by means of a preliminary
infinitary extension N∞

B of a subset of B.
Let C be the set containing all the nodes of B whose label have the form

a:F , for a occurring in some non-phantom node in B and F ∈ Cmp(B) (see
Definition 7), and N 0 be the union of C and the set of the non-phantom nodes
of B. We inductively construct an infinite sequence of finite extensions of N 0:
N 0 ⊆ N 1 ⊆ N 2, . . . . Each N i is associated an order <i and a set of triples Bi,
that will be called the blocking relation forN i. At each stage in the construction,
new nodes can be added to obtain N i+1 from N i. Each of them “corresponds”
to some node n ∈ N 0 (its label is a renaming of label(n)). If some node added
at stage i corresponds to the node n ∈ N 0, it will be denoted by ni. For the
sake of generality, a node n ∈ N 0 is identified with n0. Moreover, each stage
i > 0 introduces at most one new nominal, for which the meta-notation bi

will be used. For any i, each triple in the blocking relation Bi for N i has the
form (nq,m, π), where nq and m are distinct nodes in N i and π is an injective
function from non-top nominals occurring in m to non-top nominals occurring
in nq.

The following definition introduces the notion of witness of a blockable node
occurring in a set N i.

Definition 13 (Witness). A nominal b is a witness in N i of a blockable node
n ∈ N i if one of the following cases holds:

1. label(n) = a:✸F and N i contains nodes labelled, respectively, by a:✸b
and b:F ;

2. label(n) = a:✸−F and N i contains nodes labelled, respectively, by b:✸a
and b:F ;

31



3. label(n) = a:EF and N i contains a node labelled by b:F .

The next subsection details the construction of the sets N i and the corre-
sponding relations <i and Bi, while Subsection 5.2.2 establishes some important
properties of these sets and uses them in order to build the required model.

5.2.1 Unravelling the blockings

Let B be a complete and open tableau branch. Below, we show how to construct
the sequence of sets of nodes SB : N 0 ⊆ N 1 ⊆ N 2 . . . and the associated order
<i and relation Bi, where N 0 includes the top node of B. The construction also
shows that the following invariants are satisfied, for any i:

1. if (nq,m, π) ∈ Bi (q ≥ 0), then:

(a) m ∈ N 0 and m is not blocked in B (neither directly nor indirectly);

(b) π is an injective mapping from non-top nominals to non-top nominals
modifying only nominals occurring in the label of m;

(c) the formulae labelling nq andm are blockable formulae and π(label(m)) =
label(nq);

2. for any node nq ∈ N i, if n
q has no witness in N i, then (nq,m, π) ∈ Bi,

for some m and π.

The elements N i of SB, and the associated relations <i and Bi, are defined
inductively as follows. The proof that the above stated invariants hold goes
along with the inductive construction of the sets.

Base: i = 0. N 0 is the union of the set of non-phantom nodes in B and the set

C = {n ∈ B | label(n) = a:F, a occurs in some non-phantom node in B
and F ∈ Cmp(B)}

The relation <0 is <, i.e. the total order on nodes in the sequence B, and

B0 = {(n,m, π) | n is directly blocked by m in B via the mapping π}

It is worth recalling that, according to definition 6, a node n cannot be both
directly blocked and a phantom; therefore, if n is directly blocked in B, then it
belongs to N 0. Obviously, all the invariants hold here.

Inductive Step (i > 0). We assume that the invariants hold for i− 1.

(Case 1.) If Bi−1 = Ø then N i = N i−1, Bi = Ø = Bi−1 and <i=<i−1.

(Case 2.) Otherwise, let np be the first node in N i−1, according to the order
<i−1, such that (np,m, π) ∈ Bi−1 for some m ∈ N 0 and mapping π. Let

label(np) = a0:∇F (a1, . . . , ak)

where ∇ ∈ {✸,✸−,E} and a1, . . . , ak are all the non-top nominals occurring in
F .

By the invariant 1a, m ∈ N 0 and it is not blocked in B, and by the invariants
1b and 1c, label(m) has the form c0:∇F (c1, . . . , ck) where for j = 0, . . . , k,

32



π(cj) = aj . I.e. , π is a subset of {a0/c0, . . . , ak/ck}. By an abuse of notation,
we shall however denote π by {a0/c0, . . . , ak/ck} itself, although, possibly, for
some ai, ai = ci.

Since m is not blocked in B and B is complete, B contains a non-phantom
node k2 such that label(k2) = b:F (c1, . . . , ck) and, if ∇ ∈ {✸,✸−}, also a non-
phantom node k1 labelled by either c0:✸b or b:✸c0, according to the case. Since
k2 is non-phantom, it belongs to N 0, thus to N i−1 ⊇ N 0; similarly for k1.

Let bi be a fresh nominal. A mapping θi, that will guide the construction of
the new nodes of N i, is then defined as follows:

• θi(cj) = π(cj);

• If b 6∈ {c0, . . . , ck}, then θi(b) = bi.

• θi(d) = d if d 6∈ {b, c0, . . . , ck}

In other words:

θi =

{

{a0/c0, . . . , ak/ck} if b ∈ {c0, . . . , ck}
{a0/c0, . . . , ak/ck, b

i/b} otherwise

Clearly, the mapping θi is injective, and the nominal b is a witness of m.
If b was created by a blockable rule, at the time of its first appearance it was
obviously fresh w.r.t. to the current branch, but it may subsequently have been
replaced by some ci by the equality rule.

N i is defined as the union of N i−1 with

{(ki) θi(G) | (k)G ∈ N 0 and no node in N i−1 labels θi(G)}

N i is thus obtained from N i−1 by addition of a finite number of nodes ki, where
each ki corresponds to a node k in N 0 (its label is a “copy” of label(k) modulo
the renaming θi).

In particular, N i contains, for some nominal d and some j ≥ 0 (possibly, j =
i): (kj2) d:F (a1, . . . , ak) (where either d = bi is a fresh nominal or d = aq for some

q), and, if ∇ 6= E, it contains also either (kj1) a0:✸d or (kj1) d:✸a0, according to
the form of label(np). Hence, N i has a witness for (np) a0:∇F (a1, . . . , ak).

The order <i on nodes in N i is the extension of <i−1 where nj <i mi if
j < i, and ni <i m

i if n <0 m.
Next, the set Bi is defined, representing the blocking relation in N i. In the

sequel, if F is a formula and γ is a mapping from nominals to nominals, the
restriction of γ to the nominals occurring in F , γ |F , is:

γ |F (a) =

{

γ(a) if a occurs in F
a otherwise

The notation G(d1, . . . , dn) will sometimes be used to denote a formula G
where some of the non-top nominals d1, . . . , dn may occur (beyond other nom-
inals). If π is a mapping that is the identity for nominals not in {d1, . . . , dn},
the application of π to G will be denoted by G(π(d1), . . . , π(dn)).

Now, let S be the set of all the new nodes

(qi) θi(G(c0, c1, . . . , ck, b)) = (qi)G(a0, a1, . . . , ak, θi(b))

33



added at stage i and such that G is a blockable formula with no witness in N i.
For any node qi ∈ S, a blocking node βqi and blocking mapping µqi are

defined. Let us consider any qi ∈ S, with label θi(G(c0, c1, . . . , ck, b)). Since
qi is added at stage i, there is a node k ∈ N 0 labelled by G(c0, c1, . . . , ck, b),
such that qi corresponds to k. The node k has no witness in N 0: let us assume
that label(k) = G(c0, c1, . . . , ck, b) has the form d:∇F , where ∇ ∈ {✸,✸−,E}.
If k had a witness d′ in N 0, then N 0 would contain a node labelled by d′:F
and, if ∇ 6= E, a node labelled by d:✸d′ (or d′:✸d). As a consequence, N i

would contain nodes labelled by θi(d
′): θi(F ) and, if ∇ 6= E, θi(d):✸θi(d

′) (or
θi(d

′):✸θi(d)). Since label(qi) = θi(G(c0, c1, . . . , ck, b)) = θi(d):∇θi(F ), then
θi(d

′) would be a witness for qi in N i, contradicting the initial hypothesis that
qi has no witness in N i.

Since k has no witness in N 0, k is blocked in B, thus B0 contains a triple
of the form (k, k′, σ). Consequently, σ(label(k′)) = label(k) and θi(label(k)) =
label(qi).

Then we set:

• βqi = k′;

• µqi = (θi ◦ σ) |label(k′) (see Figure 11).

k′

k

qi

σ θi

µqi

Figure 11: The construction of the substitution µqi mapping k′ = βqi to qi.

Since the invariants 1a, 1b and 1c hold for N i−1, it follows that:

1a) k′ = βqi is not blocked in B.

1b) Since both θi and σ are injective, µqi is injective too. Moreover, µqi

modifies only nominals occurring in label(βqi) by construction.

1c) label(qi) is a blockable formula, and (µqi)(label(βqi)) = (µqi)(label(k
′)) =

(θi ◦ σ)(label(k
′)) = θi(σ(label(k

′))) = θi(label(k)) = label(qi).

We then define:

Bi = (Bi−1 \ {(np,m, π)}) ∪ {(qi, βqi , µqi) | q
i ∈ S}

In other words, Bi is obtained from Bi−1 by eliminating the triple (np,m, π)
(since np has a witness in N i), and adding the triple (qi, βqi , µqi) for any new
node qi without witness in N i.

The three invariants 1a, 1b and 1c still hold for N i, by the previous obser-
vations, and invariant 2 holds by construction.

Finally, if B is a complete and open branch, the possibly infinite set of nodes
N∞

B is defined by:

N∞
B =

⋃

i∈IN

N i

Clearly,
⋂

i∈IN

Bi = Ø, because of the fairness of the choice of the “blocked” nodes

leading the construction of the sets N i, for which a witness is added at the i-th
stage. Therefore, by invariant 2, every blockable node has a witness in N∞

B .

34



5.2.2 Model construction

The proof that if B is a complete and open tableau branch for F then F is
satisfiable, exploits the construction of a model of N∞

B . In order to build such
a model, some properties of the sets N i and their associated relations are first
proved.

In what follows, we shall sometimes write a:F ∈ N i to mean that N i (i.e.
an element of the sequence SB) contains some node labelled by a:F . We recall
moreover that any mapping θi (guiding the construction of N i as defined above)
is injective, hence its inverse θ−i is defined.

Lemma 10. If a nominal b occurs in N 0, then it occurs in some non-phantom
node in B.

Proof. Let us assume that b occurs in N 0 and, by reductio ad absurdum, that
it only occurs in phantom nodes in B. Then the nodes of N 0 where b occurs
are all in C, i.e. b only occurs in node labels of the form c:H where c occurs in
some non-phantom node in B and H ∈ Cmp(B). Since we are assuming that
every node in B where b occurs is a phantom, no node in C can be labelled by
b:H. Therefore b occurs in some node of the form c:∇G where ∇ ∈ {✷,✷−}
and c 6= b. i.e. b occurs in G. By Lemma 4, b is a top nominal: it occurs in the
top node. But the top node cannot be a phantom in B, so the hypothesis that
b occurs only in phantom nodes in B is absurd.

Lemma 11. Let B be a complete and open branch. For each set N i belonging
to SB:

1. If i > 0 and d is a nominal occurring in N i−1, then no new node ni

added at stage i has a label of the form d: p for p ∈ PROP, or d:∇G for
∇ ∈ {✷,✷−}. As a consequence, if two nominals occurring in N i−1 are
compatible in N i−1, for any i > 0, they stay compatible in N i (and in
N∞

B ).

2. If i > 0 and θi is the mapping used to extend N i−1 to N i, then for every
nominal d occurring in N i, d and θi(d) are compatible in N i.

3. For every triple (n,m, π) ∈ Bi and for every nominal d occurring in N i,
d and π(d) are compatible in N i.

Proof. The three items are proved simultaneously by induction on i.
If i = 0, item 1 and 2 are vacuously true. In order to prove 3, let us

assume that d occurs in N 0. By Lemma 10, d occurs in some non-phantom
node in B and, obviously, π(d) also occurs in some non-phantom node in B
(if d 6= π(d), then π(d) occurs in the label of n ∈ N 0). As a consequence, N 0

contains all the nodes of B labelled by formulae of the form d:H and π(d):H, for
H ∈ Cmp(B). Therefore, since d and π(d) are compatible in B by the properties
of the mappings (definition 2), they stay compatible in N 0.

For the induction step, let us assume that 1, 2 and 3 hold for i− 1.

1. Let d:H be the label of any node ni added at stage i, where either H is a
propositional letter in PROP or it has the form ∇G for ∇ ∈ {✷,✷−}. We
prove that d = bi, where bi is the new nominal added at stage i. Since H
contains only top nominals (Lemma 4), θ−i (H) = H and d:H = θi(d

′):H

35



for some d′, i.e. d′:H is the label of the node n ∈ N 0. Since (ni) d:H has
been added at stage i, no node in N i−1 ⊇ N 0 is labelled by d:H; therefore
d 6= d′. Let θi be either {a0/c0, . . . , ak/ck} or {a0/c0, . . . , ak/ck, b

i/b}.
Since d 6= d′, d′ ∈ {c0, c1, . . . , ck, b}. If it were d

′ = cj for some j = 0, . . . , k,
then the label of ni would be aj :H; consequently, since no node labelled by
a formula already occurring in N i−1 is added to N i, aj :H wouldn’t be the
label of any node inN i−1; but this is impossible, because, by the induction
hypothesis (item 2) aj and cj are compatible in N i−1. Therefore, we are
left with the only possibility that d = bi.

2. Let θi be either {a0/c0, . . . , ak/ck} or {a0/c0, . . . , ak/ck, b
i/b}, where {a0/c0, . . . ,

ak/ck} is the injective mapping π of some triple (n,m, π) ∈ Bi−1. By the
inductive hypothesis (item 3), aj and cj are compatible in N i−1, and, by
item 1 (which has already been proved for N i), they stay compatible in
N i. Thus, let us assume that b 6= cj , so that θi(b) = bi where bi is the
fresh nominal added at stage i, and let H be any propositional letter in
PROP or formula of the form ∇G for ∇ ∈ {✷,✷−}. We have:

• If b:H ∈ N i then bi:H ∈ N i. This holds because, if b:H ∈ N i then
b:H ∈ N 0 (by item 1), therefore bi:H ∈ N i by construction (for all
b:H ∈ N 0, θi(b):H ∈ N i).

• If bi:H ∈ N i then b:H ∈ N i, because for all bi:H ∈ N i, b:H ∈
N 0 ⊆ N i.

3. Let (n,m, π) be a new triple added to Bi at stage i. Then for some m′

and σ, (m′,m, σ) ∈ B0, and π = (θi ◦ σ) |label(m). Let d be any nominal.
By the induction hypothesis, d and σ(d), which are compatible in N 0, are
compatible also in N i, by item 1 (which has already been proved for N i).
By item 2 (already proved for N i, too), σ(d) and θi(σ(d)) are compatible
in N i. Therefore d and π(d) are compatible N i.

The next important property of the sets N i is a kind of saturation property.

Definition 14. Let B be a complete and open branch, let N i be an element of
SB, and Bi the corresponding blocking relation for N i. The set N i is pseudo-
saturated with respect to Bi if it satisfies the following properties:

1. no node in N i is labelled by a formula of the form a:¬a;

2. there are no pairs of nodes labelled by formulae of the form a: p and a:¬p,
for p ∈ PROP;

3. if any node in N i is labelled by a formula of the form a: d (where a and d
are nominals), then a = d;

4. if (n) a:F ∧G ∈ N i then, for some m and k, (m) a:F ∈ N i and (k) a:G ∈
N i;

5. if (n) a:F ∨G ∈ N i then, for some m, either (m) a:F ∈ N i or (m) a:G ∈
N i;

6. if (n) a: d:F ∈ N i then, for some m, (m) d:F ∈ N i;

7. if (n) a: ↓x.F ∈ N i then, for some m, (m) a:F [a/x] ∈ N i;

36



8. if (n) a:✸F ∈ N i, F is not a nominal, and Bi contains no triple of the
form (n, n′, π), then, for some nominal d and some m and k, (m) a:✸d ∈
N i and (k) d:F ∈ N i (i.e.. n has a witness in N i);

9. if (n) a:✷F ∈ N i and (m) a:✸d ∈ N i then, for some k, (k) d:F ∈ N i.

10. if (n) a:✸−F ∈ N i and Bi contains no triple of the form (n, n′, π), then,
for some nominal d and some m and k, (m) d:✸a ∈ N i and (k) d:F ∈ N i

(i.e.. n has a witness in N i);

11. if (n) a:✷−F ∈ N i and (m) d:✸a ∈ N i then, for some k, (k) d:F ∈ N i.

12. if (n) a:EF ∈ N i and Bi contains no triple of the form (n, n′, π), then,
for some nominal d and some m, (m) d:F ∈ N i (i.e.. n has a witness in
N i);

13. if (n) a:AF ∈ N i and d occurs in N i, then, for some k, (k) d:F ∈ N i.

Lemma 12. Let B be a complete and open branch, let N i be an element of SB,
and Bi the blocking relation for N i. Then N i is pseudo-saturated with respect
to Bi.

Proof. The proof is by induction on i.
N 0 is pseudo-saturated with respect to B0 because B is a complete and open

branch. In particular:

• items 1 and 2 hold for N 0 because B is open.

• Item 3 holds because B is complete, hence during its construction each
non-phantom node labelled by a non-trivial equality has been expanded
by the equality rule, and the only phantom nodes of B possibly occurring
in N 0 have the form a:F where F ∈ Cmp(B).

• Items 4–7 hold because if n is not a phantom and non-phantom nodes
labelled by its expansion(s) were not present in B, n would have to be
expanded before completing the branch, generatings siblings having the
same non-phantom status as n.

• Items 8, 10 and 12 hold for N 0 because, if a blockable node n is in N 0,
then it is not a phantom in B, and if B0 contains no triple of the form
(n, n′, π), then n is not blocked in B. Since B is complete, it contains a
non-phantom node (m) d:F , for some nominal d, and, in cases 8 and 10, a
non-phantom node k labelled by a:✸d or d:✸a, respectively. N 0 contains
m (and k) because it contains all non-phantom nodes.

• Item 9 holds because, if (m) a:✸d ∈ N 0, then m is not a phantom in B.
If also (n) a:✷G ∈ N 0 ⊆ B and N 0 did not contain any node (k) d:G,
then any node labelled by d:G in B (if present) would be a phantom.
Therefore, in order for B to be complete, the ✷ rule should be applied to
n and m, generating a node (k) d:G ∈ B. Since m and k would be siblings
w.r.t. ≺B, k would not be a phantom in B, therefore k ∈ N 0. A similar
argument shows that item 11 holds for N 0.

37



• In order to show that item 13 holds for N 0, let us assume that (n) a:AF ∈
N 0 and d occurs in N 0. By Lemma 10, d occurs in some non-phantom
node in B. As a consequence, by item 2 of Lemma 3, there exists a non-
phantom node (m) d:F in B, and m ∈ N 0.

Let us now assume that N i−1 is pseudo-saturated. The pseudo-saturation
property in N i still holds for all nodes already belonging to N i−1. We show
that the newly added nodes do not spoil pseudo-saturation.

1. If some node ni in N i is labelled by a formula of the form a:¬a, then
for some node n ∈ N 0, a:¬a = θi(label(n)). Therefore label(n) =
θ−i (a:¬a) = c:¬c, for some nominal c, contradicting the fact that N 0

is pseudo-saturated.

2. Let us assume that, for some p ∈ PROP, (nj) a: p ∈ N i and (mk) a:¬p ∈
N i. By the induction hypothesis, nj and mk cannot be both in N i−1.

So let us consider three cases:

(a) (nj) a: p ∈ N i−1 and (mk) a:¬p 6∈ N i−1, thus k = i and label(mi) =
θi(label(m)) = θi(c:¬p) for some (m) c:¬p ∈ N 0 and nominal c such
that θi(c) = a. By item 2 of Lemma 11, a and c are compatible in
N i, therefore c: p ∈ N i. Since c occurs in N 0, by item 1 of Lemma
11, c: p ∈ N 0, contradicting the fact that N 0 is pseudo-saturated.

(b) (nj) a: p 6∈ N i−1 and (mk) a:¬p ∈ N i−1, thus j = i. By item 1 of
Lemma 11, a = bi is the fresh nominal introduced at stage i, which
does not occur in N i−1. So, it cannot be the case that mk ∈ N i−1,
i.e. this case is actually impossible.

(c) Neither nj nor mk are in N i−1, and j = k = i. Since label(ni) = a: p,
by item 1 of Lemma 11, a = bi is the fresh nominal introduced at stage
i. Therefore, for some nodes n,m ∈ N 0, label(n

i) = θi(label(n)) and
label(mi) = θi(label(m)). Therefore, label(n) = θ−i (a: p) = θ−i (a): p
and label(m) = θ−i (a:¬p) = θ−i (a):¬p, contradicting the fact that
N 0 is pseudo-saturated.

3. Let ni be a new node added at stage i and labelled by a formula of the
form a: d, where where a and d are nominals. Therefore a: d = θi(c): θi(d)
for some c: d ∈ N 0. Since N 0 is pseudo-saturated, c = d, therefore also
a = d.

4. Let (ni) a:F ∧ G be a node newly added to N i, and let c:F ′ ∧ G′ be
the label of the node n ∈ N 0. By construction, label(ni) = a:F ∧ G =
θi(label(n)) = θi(c): θi(F

′)∧ θi(G
′). Since N 0 is pseudo-saturated, it con-

tains nodes (n1) c:F
′ and (n2) c:G

′. Therefore N i contains nodes labelled
by θi(label(n1)) = θi(c:F

′) = a:F and θi(label(n2)) = θi(c:G
′) = a:G.

5. Let a node ni ∈ N i be labelled by a:F ∨G, and let c:F ′ ∨G′ be the label
of the node n ∈ N 0. Then label(ni) = θi(label(n)) = θi(c): θi(F

′)∨θi(G
′).

Since N 0 is pseudo-saturated, N 0 contains either a node (n1) c:F
′ or a

node (n2) c:G
′. As a consequence, either θi(c:F

′) = a:F or θi(c:G
′) =

a:G occurs as a node label in N i.

38



6. Let a node ni ∈ N i be labelled by a: d:F , and let c: e:F ′ be the label
of the node n ∈ N 0. Then label(ni) = θi(label(n)) = θi(c: e:F

′). Since
N 0 is pseudo saturated, it contains a node labelled by e:F ′, therefore N i

contains a node labelled by θi(e:F
′) = d:F .

7. Let us assume that (ni) a: ↓x.F ∈ N i. Then θ−i (a: ↓x.F ) = c: ↓x.G is the
label of the node n ∈ N 0, where θi(c) = a and θi(G) = F . Since N 0

is pseudo-saturated, it also contains a node labelled by c:G[c/x]. There-
fore N i contains a node labelled by θi(c:G[c/x]) = θi(c): θi(G)[θi(c)/x] =
a:F [a/x].

8. Let (n) a:✸F ∈ N i, where F is not a nominal. If n has no witness in
N i (there is no nominal b and nodes (m) a:✸b ∈ N i and (k) b:F ∈ N i),
then Bi contains a triple of the form (n, n′, π), by the invariant 2 of the
construction of SB defined in Section 5.2.1.

9. Let us assume that (n) a:✷F ∈ N i and (m) a:✸d ∈ N i. By Lemma 4, F
does not contain any non-top nominal, hence θi(F ) = F for any i (for the
sake of generality, θ0 is taken to be the identity).

We distinguish two cases:

(a) (n) a:✷F 6∈ N i−1. By item 1 of Lemma 11, then, a = bi is the
new nominal introduced at stage i. Therefore, N 0 contains nodes la-
belled by θ−i (b

i:✷F ) = θ−i (b
i):✷F and θ−i (b

i:✸d) = θ−i (b
i):✸θ−i (d).

Since N 0 is pseudo-saturated, θ−i (d):F ∈ N 0, so that θi(θ
−
i (d)):F =

d:F ∈ N i.

(b) (n) a:✷F ∈ N i−1. If also (m) a:✸d ∈ N i−1, then d:F ∈ N i−1 ⊆ N i

by the induction hypothesis. Otherwise, θ−i (a):✸θ−i (d) ∈ N 0. Let
a′ = θ−i (a) and d′ = θ−i (d). By item 2 of Lemma 11, a and a′

are compatible in N i, therefore a′:✷F ∈ N i. Moreover, since a′

occurs in N 0, by item 1 of Lemma 11, a′:✷F ∈ N 0. Since also
a′:✸d′ ∈ N 0 and N 0 is pseudo-saturated, d′:F ∈ N 0, so that also
θi(d

′):F = d:F ∈ N i.

10–11. Items 10 and 11 are proved similarly to cases 8 and 9, respectively.

12. Let (n) a:EF ∈ N i. If n has no witness in N i (there is no node labelled
by d:F in N i), then Bi contains a triple of the form (n, n′, π), by the
invariant 2 of the construction of SB defined in Section 5.2.1.

13. Let us assume that (n) a:AF ∈ N i and let d be any nominal occurring
in N i. By Lemma 4, F does not contain any non-top nominal, hence
θi

−(F ) = F for any i. As a consequence there is a node m ∈ N 0 whose
label is θ−j (a):AF for some j (if j = 0, θj is the identity). If d occurs
in N i−1, since m ∈ N i−1 ⊇ N 0, some node labelled by d:F belongs to
N i−1 ⊆ N i, by the induction hypothesis. Otherwise, d is the new nominal
bi introduced at stage i and, since N 0 is pseudo-saturated, θ

−
i (d):F ∈ N 0,

so that θi(θ
−
i (d)):F = d:F ∈ N i.

Now we have all that is needed to build a model of any complete and open
branch B, i.e. an interpretation M such that for any node label a : F ∈ B, F
holds in the state denoted by a.

39



Lemma 13. If B is a complete and open branch, then the possibly infinite set
N∞

B has a model.

Proof. Let M = 〈W,R,N, I〉 be defined as follows: W is the set of all the
nominals occurring in N∞

B and, for a, b ∈ W : aRb if and only if a:✸b is the
label of some node in N∞

B , N(a) = a and, for any p ∈ PROP, p ∈ I(a) if and
only if a: p is the label of some node in N∞

B . Such an interpretation is well
defined because of Lemma 12. Since

⋂

i∈IN Bi = Ø, every blockable node in
N∞

B has a witness. Exploiting this fact and Lemma 12, an easy induction on F
shows that for any label a:F of a node in N∞

B , Ma |= F .

Theorem 2 (Completeness). If a formula F is unsatisfiable, then any complete
tableau for F is closed.

Proof. We show, as usual, that if a tableau for F has a complete and open
branch, then F is satisfiable. So, let B be a complete and open branch in a
tableau for the formula F , and let a:F0 be its top formula. Since the equality
rule may be used during the construction of B, F0 = F [c1/a1, . . . , cn/an], where
a1, . . . , an do not occur in B. By Lemma 13, there exists a model of F0. Such
a model can easily be extended to a model of F , establishing that I(ai) = I(ci)
for i = 1, . . . , n.

The model built in the proof is potentially infinite, even though the con-
sidered hybrid fragment enjoys the finite model property (since the same holds
for guarded logic [8]). As already remarked at the beginning of this section,
it is not possible to construct a finite model just reusing existing nominals
as witnesses, instead of creating a fresh one for each blocked node. More-
over, in general, if a given stage of the construction uses the blocking mapping
πi = {a0/c0, . . . , ak/ck}, it might be the case that the branch constructed so
far contains some inequality aj :¬cj , so that aj and cj cannot be interpreted by
the same state in the model. Whether different nominals can be semantically
identified at some stage, so that the existing construction can sooner or later
terminate, is still an open question.

6 Concluding Remarks

In this work a tableau calculus for full hybrid logic (FHL, which includes the
binder and the global and converse modalities) is defined, which is provably
terminating (independently of the rule application strategy) and complete for
formulae belonging to the fragment FHL \↓✷. A preprocessing step transforming
formulae into equisatisfiable ones turns the calculus into a satisfiability decision
procedure for FHL \✷↓✷.

The main features of the calculus can be summarized as follows. A tableau
branch is a sequence of nodes, each of which is labelled by a satisfaction state-
ment. Nominal equalities are dealt with by means of substitution, and, in the
context of the considered fragment, this ensures a key property of the calculus,
used to prove both termination and completeness: any universal formula occur-
ring in a tableau branch is a subformula of the top formula, therefore a branch
cannot contain an unbounded number of universal formulae. As an effect of
nominal substitution, different occurrences of the same formula may occur as
labels of different nodes in a branch, because, when two formulae become equal

40



by an application of the equality rule, the corresponding nodes do not collapse.
Alhough this fact is responsible for a significant amount of technicalities in the
proofs, it is essential for the definition of a binary relation ≺B on nodes which
organizes them into a family of trees (i.e. each node has at most one “parent”).

Each tree of the family has a bounded depth, and this is guaranteed by a
blocking mechanism which forbids the application of the blockable rules (✸, ✸−

and E) to a node n whenever there exists a previous node whose label is equal
to the label of n, modulo non-top nominal renaming (accompanied by suitable
restrictions). Renaming is essential, because, in the presence of the binder, non-
top nominals may occur in the body of any node label. The blocking mechanism
is anywhere blocking, paired with indirect blocking, relying on the relation ≺B.

Moreover, each tree has a bounded width, and this is essentially due to the
following peculiarities of the relation ≺B: (i) when applying a two-premiss rule
(either ✷ or ✷−), it is the minor premiss, labelled by a relational formula, which
is taken to be the “main responsible” of the expansion, i.e. the node producing
the conclusion; and (ii) the main responsible of an application of the A rule
adding a node labelled by b:F is not its premiss, but the first node containing
the focused nominal b, provided that such a node is not indirectly blocked.

We remark that indirect blocking is necessary to ensure termination, even in
the absence of the converse modalities, since the binder allows a state to convey
information to other states from which it is accessible (its “past”).

A blocking mechanism similar to ours is used in the tableau calculus testing
satisfiability of formulae in the constant-free clique guarded fragment, proposed
in [9]. A restriction of the algorithm to the guarded fragment has been defined
and implemented [10]. In these calculi, a tableau branch (called completion tree)
is a tree where each node is labelled by a set of formulae. Termination in the
considered tableau systems is also due to anywhere blocking with indirect block-
ing, which relies on the ancestor relation in the tree. A node is directly blocked
by a previously created node if, essentially, their labels are the same modulo
constant renaming. Our comparison modulo renaming method was originally
inspired by [9, 10], although it is not exactly the same (and is embedded in a
different context). As already observed in Section 5.1, the cardinality of node
labels in a completion tree has an exponential upper bound w.r.t. the size of the
initial formula. As a consequence, considering all the formulae in the node label
for blocking instead of a single formula (paired, in the setting of our calculus
for hybrid logic, with a polynomial amount of information on nominal compati-
bility) leads to an exponentially higher number of “blockable node types” and,
consequently, to an exponentially higher bound on the number of nodes in a
tableau branch.

In order to compare the calculus defined in the present paper with other
terminating tableau systems for binder-free hybrid logic, it may be useful to see
what it looks like in the absence of the binder. In the binder-free sub-calculus,
for any node label a:F , F contains only top nominals. Therefore, a blockable
node (n) a:F is directly blocked by a previous non-blocked nodem in a branch B
if and only if label(m) = b:F and a and b label, in B, the same set of propositions
in PROP and the same formulae of the form ∇G, for ∇ ∈ {✷,✷−}. As remarked
in Section 4, the blocking condition for E in our calculus can actually ignore the
compatibility restriction on the outermost nominal. In the absence of the binder,
this amounts to saying that (n) a:EF is blocked whenever the branch contains
a previous non-blocked node labelled by b:EF for some nominal b.

41



The blocking mechanism used in the calculus defined in the present paper
differs from [4, 5], where calculi for hybrid logic with the global and converse
modalities (and no binders) are defined. Such calculi adopt ancestor blocking,
where nominals (and not nodes) are blocked, and indirect blocking relies on a
partial order on nominals (instead of nodes), depending on the “nominal gener-
ating” relation (holding between a and b when the expansion of a:F produces
the new nominal b by application of a rule that generates fresh nominals, i.e.
one of our blockable rules). In the considered works, moreover, in order for a
formula a:F to be directly blocked by an ancestor b:F , a and b are required to
label exactly the same set of formulae (equality blocking) – except for the E rule
in [5], where the outermost nominal is ignored. Differently from [5], finally, the
calculus defined in this work, though still treating nominal equalities by means
of substitution, does not require nominal deletion to ensure termination. This
is due, again, to the fact that a branch is not a set of formulae, but a sequence
of nodes.

In [12] a terminating system for binder-free hybrid logic with the global,
converse and difference modalities, as well as reflexive and transitive relations,
is defined. In the sub-calculus without the converse modalities, a formula a:✸F
is blocked if the branch already contains a formula b:F , such that b:G is in
the branch for every a:✷G in the branch; a formula a:EF is blocked if the
branch already contains b:F for some nominal b. The blocking condition for E
is therefore quite similar to that used in the present paper. It is actually the same
as restriction R5, but for the fact that our restriction requires the witness to be
non-phantom (however, indirect blocking could be dispensed with, when neither
the binder nor the converse modalities are present). Also the blocking rule for
✸ (pattern based blocking) is similar to our restrictions on the applicability of
the corresponding expansion rule. However, the sub-calculus does not terminate
under every rule application strategy, but only if applications of the ✷ rule are
prioritized. Pattern based blocking is not extended to the converse modalities.
In the full calculus, in fact, ancestor blocking with indirect blocking is adopted:
a formula of the form a:∇F for ∇ ∈ {✸,✸−} is directly blocked by b:∇F if b is
an ancestor of a (w.r.t. the “nominal generating” relation),6 and the outermost
nominals a and b are modally equivalent, i.e. they label the same set of formulae
taken from a given finite set.

Since the presence of the converse modalities (or the binder) necessarily re-
quires indirect blocking to ensure termination, a partial order on the elements
of a tableau branch (either nodes or formulae) has to be considered. The main
novelty of the present work w.r.t. [4, 5, 12] is that indirect blocking relies on a
partial order that is not the usual ordering on nominals induced by the nom-
inal generating rules. Paired with a suitable notion of nominal compatibility
which is sufficient for completeness, this partial order arranges tableau nodes in
a bounded-sized forest of bounded-sized trees, independently of the rule appli-
cation strategy.

Directions for future work include both practical and theoretical issues. An
implementation of the tableau calculus defined in this paper (which requires a
careful analysis of some non-trivial mechanisms) would allow for an experimental
comparison of the direct method w.r.t. translation based systems. Midway

6The nominal generating relation in the considered paper is somewhat more complicated
than in [4, 5], because of an implicit treatment of nominal equalities.

42



between practice and theory is the question of turning the construction given in
the completeness proof (which builds a potentially infinite model although the
logic itself enjoys the finite model property) into one ensuring the output of a
finite model. On the theoretical side, investigating the possibility of enriching
the language with transitive relations and number restrictions might open the
way to exporting our results to description logics.

Acknowledgments. The authors wish to thank the anonymous reviewers of
this paper for their comments and suggestions, and Rajeev Goré for helpful
remarks on the content of this work.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer
Science Logic, volume 1683 of LNCS, pages 307–321. Springer, 1999.

[2] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter,
and J. van Benthem, editors, Handbook of Modal Logics, pages 821–868.
Elsevier, 2007.

[3] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-
guage and Information, 4:251–272, 1995.

[4] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal
of Logic and Computation, 17(3):517–554, 2007.

[5] S. Cerrito and M. Cialdea Mayer. Nominal substitution at work with the
global and converse modalities. In L. Beklemishev, V. Goranko, and V. She-
htman, editors, Advances in Modal Logic, volume 8, pages 57–74. College
Publications, 2010.

[6] S. Cerrito and M. Cialdea Mayer. A tableaux based decision procedure
for a broad class of hybrid formulae with binders. In K. Brünnler and
G. Metcalfe, editors, Automated Resoning with Analytic Tableaux and Re-
lated Methods (TABLEAUX 2011), volume 6793 of LNAI, pages 104–118.
Springer, 2011.

[7] H. Ganzinger and H. De Nivelle. A superposition decision procedure for
the guarded fragment with equality. In Proc. 14th Symposium on Logic in
Computer Science, pages 295–305. IEEE Computer Society Press, 1999.

[8] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719–1742, 1998.

[9] C. Hirsch and S. Tobies. A tableau algorithm for the clique guarded frag-
ment. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev,
editors, Advances in Modal Logic, volume 3, pages 257–277. CSLI Publica-
tions, 2001.

[10] J. Hladik. Implementation and evaluation of a tableau algorithm for the
guarded fragment. In U. Egly and C. G. Fermüller, editors, Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX 2002),
volume 2381 of LNAI, pages 145–159. Springer, 2002.

43



[11] I. Horrocks, B. Glimm, and U. Sattler. Hybrid logics and ontology lan-
guages. Electronic Notes in Theoretical Computer Science, 174:3–14, 2007.

[12] M. Kaminski and G. Smolka. Terminating tableau systems for hybrid logic
with difference and converse. Journal of Logic, Language and Information,
18(4):437–464, 2009.

[13] M. Marx. Narcissists, stepmothers and spies. In International Workshop
on Description Logics (DL 2002), volume 53. CEUR, 2002.

[14] B. ten Cate and M. Franceschet. Guarded fragments with constants. Jour-
nal of Logic, Language and Information, 14:281–288, 2005.

[15] B. ten Cate and M. Franceschet. On the complexity of hybrid logics with
binders. In L. Ong, editor, Proceedings of Computer Science Logic 2005,
volume 3634 of LNCS, pages 339–354. Springer, 2005.

44


