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Piecewise polynomial chaos expansion with an application to brake squeal of a linear
brake system

E. Sarrouya,∗, O. Dessombza, JJ. Sinoua

aEcole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes (UMR CNRS 5513), 36 avenue Guy de Collongue, 69134 Ecully Cedex,
France

Abstract

This paper proposes numerical developments based on polynomial chaos (PC) expansions to process stochastic eigenvalue
problems efficiently. These developments are applied to the problem of linear stability calculations for a simplified brake
system: the stability of a finite element model of a brake is investigated when its friction coefficient or the contact stiffness
are modeled as random parameters. Getting rid of the statistical point of view of the PC method but keeping the principle
of a polynomial decomposition of eigenvalues and eigenvectors, the stochastic space is decomposed into several elements to
realize a low degree piecewise polynomial approximation ofthese quantities. An approach relying on continuation principles
is compared to the classical dichotomy method to build the partition. Moreover, a criterion for testing accuracy of the
decomposition over each cell of the partition without requiring evaluation of exact eigenmodes is proposed and implemented.

Several random distributions are tested, including a uniform-like law for description of friction coefficient variation.
Results are compared to Monte Carlo simulations so as to determine the method accuracy and efficiency. Some general rules
relative to the influence of the friction coefficient or the contact stiffness are also inferred from these calculations.

Keywords: brake squeal noise, stochastic, friction, eigenvalue problem

1. Introduction

Brake squeal noise is a real problem for the automotive [1, 2]and railway [3] industry: it is a discomfort for passengers,
generates high warranty costs for car manufacturers and causes problems to train operators that have to face claims of people
living next to train stations. Indeed, this complex phenomenon occurs at low speeds. It is acknowledged to come from the
vibration of the brake components with high and audible frequencies and high intensity (up to 130 dB).
Many deterministic studies are available in the literatureusing different mechanisms to explain brake squeal and going from
the simplest models with a few degrees of freedom only [4] to large finite element models taking many components into
account [5]. Among the mechanisms put forward to explain this noise generation, one finds the decreasing friction coefficient
with sliding speed, sprag-slip [6], stick-slip [7, 8] and self-excited vibration coming from mode coupling with a constant
friction coefficient [9, 10]. Besides the above mentioned references, an extensive review is available in [11, 12].
In this paper, a simple Coulomb friction law with a constant friction coefficient is used. Instability then occurs when two
modes couple. This can be detected by analyzing the eigenvalues of the linear problem or the tangent one if non-linear effects
are considered. In the latter case it is also possible to determine the limit cycles using frequency domain methods [13, 14]
or to conduct a transient analysis [15, 16]. In this work, we focus our attention on the stability analysis of a linear brake
system with uncertainties. The stability of the equilibrium of the linear system is investigated via the Complex Eigenvalue
Analysis (CEA) method. The eigenvalue problem has then to besolved. The objective of the present study is to propose
a methodology and numerical developments based on polynomial chaos expansions (PCE) to process stochastic eigenvalue
problems accurately and efficiently and to save time compared to Monte Carlo simulations. As no non-linear phenomena
are considered, the prediction of squeal frequencies are limited. Nonetheless, it is a first step towards faster calculations for
processing brake systems including uncertainties.

The present model is a linear finite element model (FEM) whoseequilibrium stability is investigated through the cor-
responding eigenvalue problem. Instead of refining the model to get precise information on its vibratory behavior, some
parameters are considered to be random. As pointed out by several papers [17, 18], some parameters such as the friction
coefficient are hard to characterize accurately for each brake andeach braking action. It then seems appropriate to conduct a
stochastic study to take into account this variability.

The main problems encountered for a stochastic study is the description of the random inputs and the numerical cost [19].
Indeed, a well known and robust method is the Monte Carlo simulation (MCS). It consists in the evaluation of quantities of
interest (for example here, the eigenvalues) for a large sample of uncertain inputs values. Statistical estimators (such as the
mean, standard deviation, etc.) can then be rebuilt (see forexample [20] for MCS applied to a brake model). For systems
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with more than a few degrees of freedom, this operation can have a prohibitive cost in terms of computation time even though
recent developments relying in particular on parallel processing [19] let MCS remain an attractive method. Apart from MCS,
three other classes of methods were developed [19]. First the perturbation methods are based on Taylor series expansionon a
set of zero mean random variables [21, 22]. The series are usually truncated to first or second order to avoid difficulties linked
to the evaluation of higher order derivatives. Hence they are mostly used in the case of small variation of random inputs.It is
to be noted that recent developments allow the computation of complex eigenvalues [23, 24]. The second family of methods
relies on the so-called Polynomial Chaos Expansions and wasfirst introduced in the field of structural dynamics by Ghanem
and Spanos [25]. It basically consists in the decompositionof quantities of interest on an orthogonal basis of polynomials
(see for example [26] for a detailed presentation of such methods). The procedure proposed in this paper derives from PCE
and its further developments. A new method to build the stochastic space partition is proposed, based on continuation method
principles. Moreover, an efficient accuracy criterion dedicated to the eigenvalue problem is developed to test the current
polynomial decomposition over each element of the partition without having to compare it to any exact result. These several
improvements aim at providing a method that returns accurate results in a lesser time. Section 2 exposes the method in detail.
Finally, Soize [27, 28] developed a non-parametric approach which does not require identification of the uncertain local
parameters. A deeper overview of these several methods is available in successive review papers by Ibrahimet al. [29, 30]
and Scḧuelleret al. [19, 31, 32].

This paper is organized as follows: first, Section 2 exposes the theoretical background. Then the stochastic study of a
FEM brake model is performed using the proposed method for several random laws. Accuracy and efficiency of the method
compared to MCS is evaluated and the stochastic results about system stability are commented.

2. Theoretical background used to process uncertainty

This section is devoted to the presentation of the mathematical background of the method proposed in order to handle
the eigenvalue problem of uncertain systems. First, quick recalls are proposed about the stability study of equilibriathrough
the tangent eigenvalue problem. Then, the general idea of using an approximation of quantities of interest by polynomial
decomposition is studied. Finally, a refinement of this approach that enables the study of uncertain quantities with strong
variations is presented. The last part is dedicated to the algorithm that organizes theses different points.

2.1. Deterministic study of stability through the eigenvalue problem

The deterministic equation for a general linear structure is:

M q̈ + Dq̇ + Kq = fe (1)

whereq, q̇ and q̈ denote the vector of degrees of freedom (dofs) and its first and second derivatives with respect to time.
M , D andK are the mass, damping and stiffness matrices respectively andfe is the vector of excitation forces. The static
equilibrium for such a formulation is solution ofKq s = fe. Its stability depends on real parts of eigenvalues of the following
problem [33]:

Auk = λkBuk,with A =
[

0 K
−K −D

]

andB =
[

K 0
0 M

]

(2)

Computing the 2n eigenvaluesλk and the matching eigenvectorsuk solutions of Eq. (2) (wheren denotes the system size),
one can determine the stability of the equilibrium: if thereexists at least one eigenvalue with strictly positive real part, then
it is unstable, otherwise, this is a stable equilibrium position. Moreover, in order to define the eigenvectorsuk uniquely, one
will use normalization with respect toB matrix:

uT
k Buk = 1 (3)

2.2. Introducing uncertainties

If some parts of the structure have uncertain properties, they can be rendered by adding uncertain terms to the dynamic
system (1):

(

M + M̃
)

q̈ +
(

D + D̃
)

q̇ +
(

K + K̃
)

q = fe (4)

Random contributions are denoted with tilde notation. It isassumed that they have zero mean and depend on a set of random
parameters denotedξ.
The stability study of the static equilibria of Eq. (4) is then achieved through the following eigenvalue problem

(

A + Ã
)

ũk = λ̃k

(

B + B̃
)

ũk (5)

with normalization equation
ũT

k

(

B + B̃
)

ũk = 1 (6)

whereũk andλ̃k denote thek-th stochastic eigenvector and eigenvalue respectively.
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The proposed method to compute these stochastic eigenmodesuses a decomposition of uncertain quantities on a poly-
nomial basis. Depending on the law followed by the set of random parametersξ, some basis are optimal considering the
convergence rate with polynomial degree [34]. For example Hermite polynomials are most adapted to normal law while Leg-
endre polynomials suit best the uniform law. One of the most popular methods based on such a polynomial decomposition
is the Polynomial Chaos expansion which uses a basis of Hermite multivariate polynomials [25, 35]. A previous work by
the authors addresses the dispersion of a finite element rotor modes using such a basis [36]. Recently, this method has been
extended to the polynomials of the Askey scheme leading to the so-called “generalized Polynomial Chaos” [37]. Note that
the expression “polynomial chaos” refers to the theory following Wiener’s developments [38] and is to be distinguishedfrom
the “deterministic chaos” [39].
The rest of this section is dedicated to the presentation of the method adapted to the stochastic normalized eigenvalue problem
(5) and (6).

To this end, let us denoteψψn, 1 ≤ n ≤ N the orthogonal polynomial basis withN elements used for uncertain quantities
decomposition and< ψψi , ψψ j > the associated scalar product.
First, matrices introducing uncertainty are decomposed asfollows, using a
Karhunen-Lòeve decomposition or assuming them so regarding experimental results [25, 37]:

X̃ =
NX
∑

n=2

Xnψψn(ξ) (7)

whereX can denoteM , D or K . ψψ1 will conventionally denote the constant polynomial equal to 1 (associated with determin-
istic component); this implies that polynomials with indexgreater or equal to 2 are zero mean.
Then stochastic eigenvalues and eigenvectors are decomposed on both the deterministic eigenmodes and the polynomial
basis:

λ̃k = λk

N
∑

s=1

(

(k)as + j (k)bs

)

ψψs(ξ) (8)

ũk =
∑

p∈Pk

(

(k)γ̃p(ξ) + j (k)µ̃p(ξ)
)

up (9)

with

(k)γ̃p(ξ) =
N
∑

n=1

(k)γn
pψψn(ξ) and (k)µ̃p(ξ) =

N
∑

n=1

(k)µn
pψψn(ξ) (10)

giving

ũk =
∑

p∈Pk















N
∑

n=1

(

(k)γn
p + j (k)µn

p

)

ψψn(ξ)















up (11)

where the coefficients (k)γn
p, (k)µn

p, (k)as and (k)bs are real and j denotes the imaginary unit (j2 = −1). Pk is the set of determinis-
tic modes used for thek-th stochastic mode decomposition. It containsPk elements. This decomposition is a generalization of
what is proposed in [40]. The use of complex weights(k)γn

p+ j (k)µn
p and (k)as+ j (k)bs lets real and imaginary parts of stochastic

eigenvectors and eigenvalues evolve independently. The selection of a few deterministic modes included inPk instead of
using all the deterministic modes (Pk = 2n) can lead to a great computation time reduction and is addressed in Section 3.3.
To get the final system of equations that leads to the unknowns(k)γn

p, (k)µn
p, (k)as and (k)bs, equations (5) and (6) are first

projected onto the polynomial basisψψn, 1 ≤ n ≤ N using the dedicated scalar product. This gives the set of equations (12)
and (13) for 1≤ i ≤ N.

∑

p∈Pk

NA
∑

nA=1

(AnAup)















N
∑

n=1

( (k)γn
p + j (k)µn

p) < ψψnAψψn, ψψi >















−λk

∑

p∈Pk

NB
∑

nB=1

(BnBup)×
















N
∑

n,s=1

( (k)γn
p + j (k)µn

p)( (k)as + j (k)bs) < ψψnBψψsψψn, ψψi >

















= 0

(12)

and
∑

p1,p2∈Pk

NB
∑

nB=1

(uT
p1

BnBup2)×
















N
∑

n1,n2=1

( (k)γn1
p1
+ j (k)µn1

p1
)( (k)γn2

p2
+ j (k)µn2

p2
) < ψψnBψψn1ψψn2, ψψi >

















−1 < ψψ1, ψψi >= 0

(13)

whereAnA andBnB are the matrices used to decompose random matricesÃ andB̃ respectively, in accordance with Eq. (7)
notation.
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Figure 1: Limitations of a simple polynomial approximation of a target curve: target curve; polynomial approximationy = ψ(ξ) whereψ has degree
D. (a)D = 2, (b)D = 4, (c)D = 10.

Separating real and imaginary parts of these equations, onegets 2N(2n+1) real scalar equations for 2N(Pk+1) real unknowns.
In case of a deterministic mode setPk which does not include all the deterministic modes (Pk , 2n), this system is over-
constrained. To get a square system, the final step is to pre-multiply Eqs. (12) by the transpose of the matrix containing
the deterministic modes inPk. This finally leads to a square non-linear (quadratic) system with size 2N(Pk + 1) that can be
processed using a dedicated non-linear solver.

This procedure lets us approximate eigenmodesλ̃k andũk by a complex sum of multivariate polynomialsψψn. The usual
statistical estimators such as mean and standard deviationcan then be quickly evaluated over a large sample ofξ points by
using formulas (8) and (11). This is equivalent to a Monte Carlo simulation but without the resolution of an eigenvalue
problem for each realization and is much faster.
As this is a polynomial approximation, one needs to use high degrees to approximate quantities with strong variations ac-
curately. For example, if an equilibrium becomes unstable over the input range under study, the first derivative of some
eigenvalue may not be continuous; this makes the polynomialapproximation very poorly appropriate to describe the eigen-
value evolution. From a more general point of view, studyingchanges in stability, it is obvious that different evolutions will
be observed over the different stable and unstable ranges. This is illustrated on Fig. 1. On this figure, the target curve has
a discontinuous derivative andy axis matches for example the evolution of the imaginary partof an eigenvalue whose mode
undergoes a change in stability forξ = −0.2. The several polynomial approximations using different polynomial degrees
displayed in Fig. 1 show that a high degree (pane (c) degree 10) is required to describe the change in slope accurately.
Decompositions using a polynomial basis with such a high degree generate very large systems (12) and (13) to solve. To
overcome this problem, one may use a piecewise polynomial approximation. The next section is devoted to the introduction
of this piecewise approach into the general method.

2.3. Working with a partitioned stochastic space

The idea of using piecewise polynomial approximation of uncertain quantities has already been developed in the field of
fluid mechanics [41, 42] for the study of limit cycles or equilibria. The subsequent method is referred to as Multi-Element
generalized Polynomial Chaos (MEgPC). These studies use a decomposition of the random space to which the random
variable vectorξ belongs. A polynomial approximation is then computed over each element of this decomposition. It is
generally developed considering uniform laws for the random variableξ which leads to using Legendre polynomials for the
approximation. This restriction to a uniform law can be alleviated as non-uniform random variables can be approximatedby
a sum of Legendre polynomials of uniform random variables [41, 34].

In this section, the decomposition of the random space and its consequences on the stochastic eigenmodes approximation
are exposed with a non-probabilistic point of view: it is presented as a piecewise polynomial fitting of eigenvalues and
eigenvectors components depending on a vector ofQ real variables grouped in vectorξ. The aim of the procedure is then
to get the expressions of eigenmodes using a decomposition on a Legendre orthogonal polynomial basis on each element of
the partition. Different statistical laws for uncertain input description arethen handled by adapting the sample used for the
Monte Carlo simulation. This MCS is expected to be realized quickly as the eigenmodes are evaluated using the piecewise
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polynomial approximation rather than by using a direct resolution of the eigenvalue problem.
One could object that the Legendre polynomial basis is not the one that suits best the input distribution (for example Gamma
distribution) and hence, that the weight function used in the associated scalar product does not put stress on the most probable
values. This is true except if the resulting description is accurate enough whatever the chosen point may be.

First the description of a quantity depending onξ belonging toSi , a bounded interval of IRQ using a basis of Legendre
multivariate polynomials depending on a variableζ belonging toIQ is exposed. Then, the problem of switching from such a
description overSi to the description overS j , included inSi is addressed. The global scheme using these fundamental steps
is presented in Section 2.4.

Let ψψn(ζ), 1 ≤ n ≤ N be the Legendre multivariate polynomials basis with degreeless or equal toD in the case ofQ
variables, defined overIQ, I = [α, β]. The scalar product associated is

< f ,g >=
∫

IQ
f (ζ)g(ζ)w(ζ)dζ (14)

wherew = 1 denotes the weight function associated to this polynomials family.
Let Si be a bounded interval of IRQ and denoteνi the diffeomorphism mappingSi intoIQ:

νi : Si → IQ

ξ 7→ νi(ξ) = ζ
(15)

If Si = [a(i)
1 ,b

(i)
1 ] × · · · × [a(i)

Q ,b
(i)
Q ], one will use

∀k ∈ [[1,Q]] , ζk =
αb(i)

k − βa(i)
k

b(i)
k − a(i)

k

+
β − α

b(i)
k − a(i)

k

ξk

asνi definition.
If f is a scalar function ofξ defined overS and{Si}i=1...NS is a partition ofS, its value overSi will then be computed using:

f (ξ) =
N
∑

n=1

f (i)
n ψψn(νi(ξ)) (16)

The f (i)
n are the coefficients of the decomposition off on the polynomial basisψψn overSi .

Considering the eigenvalue problem at stake, on will solve the following problem on each subsetSi :

Ã(i)ũ(i)
k = λ̃

(i)
k B̃(i)ũ(i)

k (17)

(

ũ(i)
k

)T
B̃(i)ũ(i)

k = 1 (18)

with the following notations for each quantity involved:

Ã(i)(ξ) =
NA
∑

n=1

A(i)
n ψψn(νi(ξ)) (19)

B̃(i)(ξ) =
NB
∑

n=1

B(i)
n ψψn(νi(ξ)) (20)

λ̃
(i)
k (ξ) = λk

N
∑

n=1

(

(k)a(i)
n + j (k)b(i)

n

)

ψψn(νi(ξ)) (21)

ũ(i)
k (ξ) =

∑

p∈Pk















N
∑

n=1

(

(k)λ
p(i)
n + j (k)µ

p(i)
n

)

ψψn(νi(ξ))















up (22)

To get the coefficientsA(i)
n andB(i)

n , one must be able to deduce the decomposition of any quantityover an intervalS j

included inSi knowing the decomposition overSi . This procedure is explained in the case of a scalar quantityf . It is easily
adaptable to non-scalar quantities.
Let S j be an interval included intoSi andg the restriction off over this interval.g decomposition over theψψn family is
denoted:

g(ξ) =
N
∑

n=1

f ( j)
n ψψn(ν j(ξ)) (23)
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Knowing the coefficients f (i)
n , one can compute thef ( j)

n coefficients in the following manner: first, considerξ ∈ S j and look
for decomposition coefficientsχn,k such that

ψψn(νi(ξ)) =
N
∑

k=1

χn,kψψk(ν j(ξ)) (24)

Theχn,k coefficients are found by solving for each 1≤ n ≤ N the system:

























ψψ1(ν j(ξ1)) . . . ψψN(ν j(ξ1))
...

ψψ1(ν j(ξN)). . . ψψN(ν j(ξN))



















































χn,1
...

χn,N



























=



























ψψn(νi(ξ1))
...

ψψn(νi(ξN))



























, ξp ∈ S j (25)

That is,N linear systems with sizeN are solved to establish theχ matrix such that:

∀ξ ∈ S j ,



























ψψ1(νi(ξ))
...

ψψN(νi(ξ))



























= χ



























ψψ1(ν j(ξ))
...

ψψN(ν j(ξ))



























(26)

Finally, the f ( j)
n coefficients are obtained from thef (i)

n using
[

f ( j)
1 , . . . , f ( j)

N

]

=
[

f (i)
1 , . . . , f (i)

N

]

χ (27)

2.4. The global algorithm: two possible strategies

To present the global algorithm, we assume that the random inputs are described usingQ uniform random variables
ξ1, . . . , ξQ that vary overS, a bounded interval of IRQ. The aim of the algorithm is to return a collection of polynomial
approximations of eigenmodes using a Legendre basis withN elements over a partition ofS whose elements are denotedSi ;
elements of the partition will be referred to as “cells”. Over eachSi , one then has to determine the coefficients (k)λ

p(i)
n , (k)µ

p(i)
n ,

(k)a(i)
s and (k)b(i)

s . For notation convenience, these 2N(Pk + 1) scalar coefficients are gathered in a vector denotedx(i).
Two strategies to process the stochastic space are deployedand will be compared in Section 3: the first one relies on the

dichotomy method and is close to the method proposed in [41, 42]. This method is exposed in Section 2.4.1. The second one
invokes continuation principles and is presented in Section 2.4.2.

That said, the two strategies share a common scheme presented in Fig. 2. First, the algorithm is initialized with the set
of matricesAn andBn that define the problem overS and a first guess for decomposition coefficientsx0; this vector can for
example be chosen such that the processed stochastic eigenmode matches the deterministic mode over the wholeS interval.
Then, the general loop is applied: first, if all the spaceS has been processed, algorithm stops. Otherwise, a cellSi is defined
in the remaining space as well as a startpointx(i)

i , depending on the chosen method. The collection of matricesA(i)
n andB(i)

n

defining the problem over the current cell are evaluated using (26) and (27) and the problem (12) and (13) is then solved,
returning a new set of coefficientsx(i)

f . Accuracy of the decomposition is tested as detailed in Section 2.4.3. If it satisfies the
criterion or the criterion is not satisfied but no more cell can be created (a maximum computation time, a maximum number
of cells or a minimum cell width has been reached), each element is stored (that is the current cell definition, eigenmode
decomposition coefficients, matrices decomposition and accuracy criterion result). Otherwise, the current cellSi is refined
accordingly to the chosen method.

2.4.1. First method: Dichotomy
The simplest way to refine a cell over which the decompositionis not satisfying is to split it in half in one direction to

generate two smaller sub-cells. Then, a startpoint has to bechosen for future processing of each of these sub-cells; different
choices are possible for this startpoint. First, one can always use the same startpointx0 that is provided by the user to
initialize the algorithm. Another possibility is to convert the final decompositionx(i)

f overSi into equivalent decompositions
over each of the sub-cell using formulas (26) and (27). Finally, one can extrapolate a decomposition from neighboring cells:
considering a one dimensional problem, once the decomposition over one cell is validated, the startpoint for each of the
two neighbors is the decomposition that matches constant values for eigenmodes over each sub-cell. The value is equal to
the value of eigenmodes at the validated cell border. Fig. 3 illustrates this procedure: once the decomposition overSi is
validated, eachx(i) componentx j of neighboring cellsSleft ansSright is initialized with the value at corresponding border of
Si . This procedure giving better results than the two previousones mentioned above, it is the one that is used for numerical
applications of Section 3.
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Initialization

Stochastic spaceS fully processed? Stop

* Pick a newSi in the
unprocessed space.

* Compute a startpointx(i)
i .

ProcessSi ; returnx(i)
f .

Is this result accurate enough?Store results

Can this cell be refined?

* Refine the cell.

Yes

No

Yes

No

Yes

No

Figure 2: Global algorithm flowchart. Steps implying different processes for the method relying on an dichotomy approach and the one taking advantage of
continuation principles are starred.

ξ

x j

SiSleft Sright

Figure 3: Method based on dichotomy: startpoint initialization strategy for cellsSleft andSright once decomposition over a cellSi is validated;x j is the j-th
component of the vector of unknowns containing the eigenmode decomposition coefficients.
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2.4.2. Second method: Continuation
Another point of view is to consider that the sought values are continuous from one cell to another and hence, to apply

some continuations principles (see [43] for the continuation methods). Hence, in one dimension, starting from the center of
the initial cell, new cells are built and processed by havingξ varying continuously to the right and then from the center to
the left. Once a cell has a proper decomposition (satisfyingthe accuracy criterion), another cell – contiguous – is computed:
its width depends on the current cell width and various parameters such as the number of iterations used to converge to the
decomposition over this cell. If only a few iterations were used, the new cell width is increased, if the number of iterations
exceeds a certain threshold, then the width of the next cell is decreased; otherwise, it is unchanged. When the decomposition
over the current cell is not satisfying, the cell width is decreased too.
The startpoint over each cell processed is computed using the contiguous cell decomposition which is extrapolated overthis
new cell. This method, compared to the one based on dichotomyinjects more information at each cell by using extrapolation
of the contiguous decomposition and using a more appropriate size for each cell. Its efficiency is tested in Section 3.

2.4.3. Testing the accuracy of the decomposition
Once the solutionx(i)

f has been evaluated for cellSi , one needs to decide whether the polynomial approximation is
satisfying or not. That is, one wants to test if it is accurateenough overSi . As comparing value of eigenmodes returned by
the approximation and a direct computation for several points over the interval would cost too much, one proposes an original
criterion based on the Rayleigh ratio that is very cheap to evaluate.

Combining Eqs. (17) and (18), one gets the Rayleigh ratio

∀ξ ∈ Si ,

(

ũ(i)
k

)T
Ã(i)ũ(i)

k
(

ũ(i)
k

)T
B̃(i)ũ(i)

k

= λ̃
(i)
k (28)

As the equations are satisfied in a weak sense only (only theirprojection over the polynomial basis are considered), thisratio
may not be verified exactly. This provides a criterion to estimate the quality of the current decomposition by testing

ǫk(ξ) =

∣

∣

∣

∣

∣

∣

∣

∣





















(

ũ(i)
k

)T
Ã(i)ũ(i)
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(29)

for several pointsξ in Si .

3. Application to a finite element model for brake squeal

This section is devoted to the application of the proposed method to a brake model in order to conduct a stochastic study
of brake squeal noise. First, the considered model is exposed along with the uncertain configurations. Then, the accuracy of
the method using successively a dichotomy and a continuation approach is evaluated through the comparison of their results
to direct resolutions. Finally, histograms are built, based on these results in order to support the stochastic study ofthe system
and demonstrate its efficiency compared to Monte Carlo simulations.

3.1. Brake model and uncertain configurations

The model used is derived from the finite element model described in [13, 44]. It consists of a rotating disc and a fixed
pad as displayed in Fig. 4. The disc and the pad are modeled using the finite element method. Each model is reduced using
a Craig and Bampton technique: 4 contact nodes are kept on each part (pad and disc) as well as 4 dofs (degrees of freedom)
on the backplate of the pad for application of hydraulic pressure; the first 30 eigenmodes are retained on each part. Such a
reduction may degrade the pertinence of the results regarding the real behavior of the brake system. This problem shouldbe
addressed carefully in the frame of a study which aims at getting quantitative results. The current model, used in previously
cited work, was provided as is to the authors. The assembled model has then 88 dofs and the set of equations can be written

M q̈ + Dq̇ + Kq + K cq = fe (30)

whereM is the mass matrix,K is the structural stiffness matrix,D is the damping matrix with a Rayleigh expressionD =
αM + βK , K c takes into account contact forces acting between the pad andthe disc andfe stands for the force due to brake
pressure applied on the pad.K c is a non-symmetric matrix that couples the two subsystems - the pad and the disc. It consists
in the addition of two matrices: a first one, symmetric, whichrepresents the normal force at the contact surface and which
is proportional to the contact stiffness denotedkc. The second matrix that contributes toK c is non-symmetric and stands for
the tangent force at the contact interface; it is proportional to the product of the friction coefficient - denotedµ - andkc. The
contact follows a Coulomb friction law with constant friction coefficient µ and assumption of permanent sliding is made;
more complex phenomenon such as stick-slip or sprag-slip are then put aside. Normal and tangential contact forces applied
by the pad over the disc are opposite to forces applied by the disc on the pad and can be formulated as follows for contact
nodei, 1 ≤ i ≤ 4:

Fi,normal= kc(Ui,Pad− Ui,Disc) (31)
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Figure 4: Brake model. (a) Plan; (b) FE model.

Fi,tangent= µFi,normalsign(Vi,rel) (32)

whereUi,Pad/Dic andVi,rel denotes the normal displacement of nodei for the pad or the disc and the relative velocity between
the pad and the disc at contact nodei respectively.
This coupling of the two substructures affects both lower and higher frequency modes as shown by Fig. 5.The upper part
(a) of this figure displays the absolute difference between the Modal Assurance Criterion (MAC, [45]) ofthe undamped
uncoupled system compared to itself and the MAC of the undamped coupled system compared to the uncoupled eigenvectors
(see Eq. (33)).

∆MAC =
∣

∣

∣MAC(Vuncoupled,Vcoupled) −MAC(Vuncoupled,Vuncoupled)
∣

∣

∣ (33)

Higher values of this difference let us detect the modes that are most affected by the coupling of pad and disc structures. One
considers here that thej-th mode is significantly modified if one of the terms of thej-th column of∆MAC is greater than
0.5. The lower part (b) then outlines eigenfrequencies of the coupled system that match these modes using red dots. Values
used for this comparison arekc = 1 · 107 N.m−1 andµ = 0.25.

As recalled in Section 2.1, the stability of any static equilibrium of Eq. (30) is determined by the following tangent
problem:

M r̈ + Dṙ + (K + K c)r = 0 (34)

One will then focus on the eigenvalues of this tangent systemwhile including some uncertain parameters.
Two nominal configurations are studied. A first one with a contact stiffnesskc = 1 · 107 N.m−1 and a second one with

a contact stiffness twice larger (kc = 2 · 107 N.m−1). These two configurations correspond to a tangent linear contact state
obtained by experimental tests of pad compression [44]. Foreach configuration, the variation of the friction coefficientµ or
the contact stiffnesskc is evaluated. Uncertainty is introduced as follows:

µ(ξ) = µ0(1+ ξ∆µ) (35)

with µ0 = 0.25 and∆µ = 0.5, and
kc(ξ) = kc0(1+ ξ∆kc) (36)

with kc0 = 1 · 107 N.m−1 or kc0 = 2 · 107 N.m−1 and∆kc = 0.5.
ξ is a random variable following a uniform law on [−1,1]. This means that for each configuration a variation of±50% of the
parameterµ or kc is examined. These large variation ranges will let us test the robustness of the method.

Unstable modes evolution along with the random variableξ are displayed in Fig. 6 for configuration 2, case 2 (kc varies).
For each mode, both real and imaginary parts are plotted. This figure shows that the evolution of the studied modes can be
quite complex and non-regular over the studied range. Configuration 1 and case 1 (whenµ varies) would produce similar
figures. Table 1 lists unstable areas per mode in the case whenµ varies for each configuration and case.

3.2. Algorithm accuracy

The two versions of the procedure exposed in Section 2.4 wereapplied to each configuration for each case. Unstable
modes were approximated one by one, using a Legendre polynomial basis with maximum degreeD = 2. As suggested in
Section 2.3, only a few deterministic modes were retained todescribe the stochastic modes. Based on the results of Fig. 5,
only the most impacted modes were kept (modes 1 to 34, 38 to 41 and 65 to 88 as well as their complex conjugates). This
leads to a setPk with Pk = 124 modes out of 176 for each unstable stochastic modeũk.
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eigenfrequencies for eigenmodes whose MAC columns maximum absolute differences are greater than 0.5.

Table 1: Unstable ranges per mode whenµ varies for (a) configuration 1 (kc = 1 · 107 N.m−1) and (b) configuration 2 (kc = 2 · 107 N.m−1).

(a)
Mode µ Im(λ) (rad.s−1)
6 [0.30 ,µmax] [5.59 · 103 , 5.65 · 103]
12 [µmin , 0.16] [9.21 · 103 , 9.22 · 103]

[0.20 ,µmax] [9.25 · 103 , 9.48 · 103]
69 [µmin , 0.13] [2.47 · 105 , 2.47 · 105]
78 [0.26 ,µmax] [3.54 · 105 , 3.57 · 105]
81 [0.33 ,µmax] [3.78 · 105 , 3.79 · 105]

(b)
Mode µ Im(λ) (rad.s−1)
6 [0.29 ,µmax] [6.10 · 103 , 6.28 · 103]
9 [0.31 ,µmax] [6.41 · 103 , 6.74 · 103]
13 [0.29 ,µmax] [9.92 · 103 , 1.01 · 104]
69 [0.35 ,µmax] [2.63 · 105 , 2.63 · 105]
73 [0.35 ,µmax] [2.92 · 105 , 2.92 · 105]
82 [0.20 ,µmax] [4.06 · 105 , 4.06 · 105]
86 [0.27 ,µmax] [4.75 · 105 , 4.76 · 105]
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Table 2: Accuracy of the method: Worst value over the unstablemodes set for each configuration and case considering (a) method based on dichotomy and
(b) method based on continuation principles.

(a)

Configuration 1 Configuration 2
Indicator Case 1 Case 2 Case 1 Case 2

%(eReλ < 2%) 97 76 91 75
%(eReλ < 5%) 98 97 97 97
%(eImλ < 2%) 100 87 100 97
%(eImλ < 5%) 100 100 100 100
%(eφ < 5%) 100 78 100 78
%(esign(Reλ)) 0 0.5 0.5 0.5

eξHopf 0.00062 0.0097 0.0042 0.0059

(b)

Configuration 1 Configuration 2
Indicator Case 1 Case 2 Case 1 Case 2

%(eReλ < 2%) 97 94 91 97
%(eReλ < 5%) 97 97 97 99
%(eImλ < 2%) 100 100 100 100
%(eImλ < 5%) 100 100 100 100
%(eφ < 5%) 100 100 100 100
%(esign(Reλ)) 0 0.5 0.5 0.5

eξHopf 0.00092 0.0097 0.0045 0.0012

Accuracy is evaluated by comparing results obtained using adirect evaluation and approximated ones over 201 points
equally spaced over the range [-1,1] of the random variableξ. To report the accuracy of the method, global indicators are
proposed instead of local ones that would generate a long list of values considering the total number of unstable modes that
have been approximated. One will focus on the relative errorover the real and imaginary parts of eigenvalues, the error on the
sign of the real part, the error on the Hopf bifurcation pointlocalization (point at which the real part of an eigenvalue crosses
the abscissa axis having a non-null imaginary part) and finally the error over the eigenvectors even if these are quantities of
lesser interest for this study. The formulas for the first tworelative error estimates are:

eReλ =

∣

∣

∣

∣

∣

∣

Re(λPC) − Re(λMC)

Re(λMC)

∣

∣

∣

∣

∣

∣

× 100 (37)

eImλ =

∣

∣

∣

∣

∣

∣

Im(λPC) − Im(λMC)

Im(λMC)

∣

∣

∣

∣

∣

∣

× 100 (38)

where PC and MC superscripts respectively denote results obtained using the approximation and a direct evaluation respec-
tively. The error on the sign of the real part of eigenvalues is a binary indicator telling whether the sign is the same for both
approximated and direct evaluation or not. The error on the Hopf bifurcation point localization is the distance betweenξ

points for which the bifurcation occurs. This distance is tobe compared to the width of the interval which is 2. Finally,
the relative error on eigenvectors is evaluated using the following formula which returns a scalar indicator for eachξ point
considered and each eigenvector:

eφ = max

∣

∣

∣

∣

∣

∣

|uPC| − |uMC|
max|uMC|

∣

∣

∣

∣

∣

∣

× 100 (39)

Rather than displaying these indicators over the [-1,1] range, one will give the percentage of points that are below 2% and
5% of error in case of relative errors on eigenvalues, below 5% for relative error on eigenvectors, the percentage of points for
which an error on the sign of the real part is committed and finally the distance betweenξ points at bifurcations.

Finally, these results are summed up in Table 2 for each configuration and case by returning the worst result among the
several modes. Obviously, both versions of the proposed method return very accurate results: stability is well evaluated (the
percentage of points whose real part sign is wrong,esign(Reλ), is lower than 0.5) and Hopf bifurcation points are properly
identified with errorseξHopf lower than 1·10−3 for an interval width equal to 2. Moreover, errors on the eigenfrequencieseImλ

are very limited too, all of the approximated values being equal to the exact ones more or less 5%. Real parts of eigenvalues
are also well estimated, particularly the one returned by the algorithm relying on continuation principles. Finally, it is worth
to be noted that eigenvectors are estimated with a satisfying accuracy by the second method (based on continuation principles)
especially, given that all the tested points present an overall error smaller than 5%. If these quantities are not of the utmost
importance in the context of a linear stability study, they may be useful when one aims at finding the limit cycle, providing a
useful direction in which to look for it or, to analyze variations of mode shapes whether the system undergoes a bifurcation
or not.
Considering this first set of results, both versions of the proposed method prove their ability to estimate eigenvalues of a
uncertain system accurately, with a slight advantage for the version invoking continuation principles with a variablecell size
and an extrapolation of neighboring cell result used as a startpoint.
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3.3. Stochastic study and comments - Method efficiency

Now that the method has been tested and showed a satisfying accuracy, this section is devoted to the stochastic analysis
of the brake system. As one of the advantages of this general method is to provide a decomposition accurate whatever the
input random law is, the decompositions of stochastic eigenmodes are used to test different random input laws for each case:
based on experimental work [18] a uniform-like input law wasdesigned to model friction coefficient variation. The following
probability density function (pdf) over [−1,1] was chosen to tend to reproduce the shape of experimental data available in
this work:



















f (ξ) = −10.0446ξ2 − 15.9375ξ − 5.8929 if − 1 ≤ ξ < −0.8
f (ξ) = 0.1339(ξ + 0.8)+ 0.4286 if − 0.8 ≤ ξ < 0.8
f (ξ) = −16.7411ξ2 + 26.9196ξ − 10.1786 if 0.8 ≤ ξ ≤ 1

(40)

The continuous pdf is depicted in Fig. 7 (a), superimposed tothe histogram describing the sample used for the simulation.
This law is almost uniform, with a greater probability for higher values to occur. The subsequent results are compared tothe
ones obtained via a truncated Gaussian input law whose sample histogram is provided in Fig. 8:

f (ξ) =
1

√
2π × 0.32

e−
ξ2

2×0.32 , −1 ≤ ξ ≤ 1 (41)

For case 2, when the contact stiffnesskc is uncertain, a uniform law, Fig. 9 (a.1) and (a.2), is compared to a truncated normal
law (41) depicted in Fig. 10 (a.1) for configuration 1 and Fig.10 (a.2) for configuration 2.
For each case and each law, the following results are given for configuration 1 (kc = 1 · 107 N.m−1, pane (b) of Figs. 7 to 10)
and 2 (kc = 2·107 N.m−1, pane (c) of Figs. 7 to 10): first, the percentage of stable andunstable occurrences with specification
of the number of unstable modes is displayed. This lets us analyze the propensity to squeal and the difficulty to prevent
squealing (related to the number of unstable modes to stabilize). Second, an histogram depicting the unstable frequencies
(that is the imaginary part of eigenvalues with positive real part) is provided. Finally, a third histogram displays therepartition
of real parts of unstable modes. This gives information about the instability growth rate.

The results displayed in Figs. 7, 8, 9 and 10 come from the second version of the method, based on continuation principles
which was proven to be more accurate. Nonetheless, the otherversion of the method was applied too so as to provide a
comparison of numerical resources consumption which is addressed in the last part of this section.

Considering the first case relative to friction coefficientµ variation for both configurations and two different input laws
whose results are depicted in Figs. 7 and 8, one can first denote that results notably vary when switching from a uniform-like
input law to a truncated Gaussian one: while the simulation based on a truncated Gaussian law parameter variation returns a
lower number of simultaneously unstable modes, it also decreases the number of stable occurrences for both configurations.
Moreover, unstable frequencies in the range [40,50] kHz that appear in the case of simulations using a uniform-like law for
the second configuration are not represented when considering a truncated normal distribution.
Similar remarks can be inferred from comparison of the second case simulations (whenkc varies) relying on the one hand on
a uniform law (Fig. 9) and on the other hand on a truncated Gaussian law (Fig. 10): the truncated Gaussian law returns more
pessimistic results in terms of stability with respectively 0.6 % and 22 % of stable occurrences for configurations 1 and 2 to
be compared to 7 % and 30 % in the case when a uniform distribution is used.
These comparisons of results based on the same decomposition of uncertain eigenvalues for different random laws emphasize
the interest of the method that lets us reuse the decompositions computed once for all and hence save time compared to Monte
Carlo simulations as will be discussed at the end of this section. Indeed, results returned when using several input lawsare
widely different and would merely not lead to the same optimization objectives in an engineering process. As the description
of a random parameter such as friction coefficient may not be easy, this ability to quickly simulate a large panel of laws,
including non-classical ones (such as the proposed uniform-like law) is a non-negligible advantage.

Comparing the results obtained for configuration 1 (kc = 1 · 107 N.m−1) and configuration 2 (kc = 2 · 107 N.m−1) for
the same random law leads to the conclusion that a more stiff contact leads to a greater number of simultaneously unstable
modes: up to 7 modes can become unstable simultaneously for configuration 2 (Figs. 7 (c) and 8 (c)) whereas a maximum
of 4 modes is observed in the first configuration (Figs. 7 (b) and 8 (b)) whenµ varies and these are 3 (Figs. 9 (c) and 10
(c)) against 2 (Figs. 9 (b) and 10 (b)) unstable modes for the second case studying variations ofkc. The number of stable
occurrences merely increases with contact stiffness turning, for the first processed case, from 12.5 % to 24 % in the case of
a uniform-like law forµ variation and from 7.6 % to 9.8 % in the case of a truncated Gaussian law. It is to be noted that a
greater stiffness generates also a wider spectral range with higher frequencies (see “Unstable frequencies” histograms from
panes (b) and (c) of Figs. 7 and 8). Finally, the real parts of unstable eigenvalues are increased too in configuration 2 which
implies that instability develops itself quicker.
These sets of results tend to demonstrate that, for the studied system, a more stiff contact between the pad and the disc is more
likely to lead to a stable brake behavior but that unstable ranges are harder to handle as a greater number of modes can be
simultaneously unstable and hence optimization should take into account more constraints; moreover instability growth rate
can become greater (larger positive real parts for eigenvalues).

The last part of this section is dedicated to the efficiency of the method compared to Monte Carlo simulations andthe effi-
ciency of each version of this method compared to the other. To this end, Table 3 summarizes CPU times for full simulations
over a sample with size 1000 and 10000. For each of the proposed method version, total durationttotal is split into tfit , that is
the time needed for getting the decomposition andtshoot which is the amount of CPU seconds spent for evaluating the 1000
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Figure 7: Simulations using a uniform-like law for case 1 (µ varies): histograms. (a) Random parameter value occurrences(%); System stability and
squeal information for (b.n) configuration 1 and (c.n) configuration 2; (b/c.1) Histogram of stable/unstable occurrences (%), (b/c.2) Histogram of unstable
frequencies (kHz) occurrences (%), (b/c.3) Histogram of real part of unstable modes occurrences (%).

Table 3: CPU times comparison between Monte Carlo (MC) simulations and both versions of the proposed method: (a) method based on dichotomy and (b)
method based on continuation principles;tfit : time for getting the decomposition,tshoot: time for evaluating the occurrences.

Number MC (a) Dichotomy (s) (b) Continuation (s)
of points (s) tfit + tshoot= ttotal tfit + tshoot= ttotal

1000 345 1455+ 4 = 1459 788+ 5 = 793
10000 3451 1455+ 44= 1498 788+ 46= 834
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Figure 8: Simulations using a normal law for case 1 (µ varies): histograms. (a) Random parameter value occurrences(%); System stability and squeal infor-
mation for (b.n) configuration 1 and (c.n) configuration 2; (b/c.1) Histogram of stable/unstable occurrences (%), (b/c.2) Histogram of unstable frequencies
(kHz) occurrences (%), (b/c.3) Histogram of real part of unstable modes occurrences (%).
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Figure 9: Simulations using a uniform law for case 2 (kc varies): histograms. (a.x) Random parameter values in (a.1) configuration 1 and (a.2) configuration
2; System stability and squeal information for (b.n) configuration 1 and (c.n) configuration 2; (b/c.1) Histogram of stable/unstable occurrences (%), (b/c.2)
Histogram of unstable frequencies (kHz) occurrences (%), (b/c.3) Histogram of real part of unstable modes occurrences (%).
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Figure 10: Simulations using a normal law for case 2 (kc varies): histograms. (a.x) Random parameter values in (a.1) configuration 1 and (a.2) configuration
2; System stability and squeal information for (b.n) configuration 1 and (c.n) configuration 2; (b/c.1) Histogram of stable/unstable occurrences (%), (b/c.2)
Histogram of unstable frequencies (kHz) occurrences (%), (b/c.3) Histogram of real part of unstable modes occurrences (%).
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or 10000 eigenmodes using their decomposition.
This table shows that the tested method is not advantageous if used on a small sample only (1000 points) for a single input
law but may become so if different laws are to be tested. However as soon as a large sample (10000 points) is considered, the
method is twice to four times faster than Monte Carlo simulations for a single sample, this ratio increasing with the number
of samples or distributions tested. Being also accurate as demonstrated in Section 3.2, this makes it a very interestingmethod
in terms of computational resources consumption.
This table also points out a large advantage for the second version of the method based on continuation principles which is
almost twice faster than the first version based on the more simple dichotomy approach.

4. Conclusions

This study takes place in the context of uncertain systems. Here, brake squeal noise is studied, viewed as an instability
of some modes of the linear system and hence driven by the underlying eigenvalue problem. Uncertain systems can be hard
to handle because of the the computation duration in the caseof Monte Carlo simulations; hence a class of methods were
developed to attempt to avoid the problem of repeated resolutions of a same problem with different values for uncertain pa-
rameters. A polynomial basis whose polynomials are functions of the random variables, is used to decompose the eigenmodes
- eigenvalues and eigenvectors: this is the Polynomial Chaos, introduced by Ghanem and Spanos in 1991 [25] in the field of
structural dynamics. Having the quantities of interest described continuously via polynomials, it is then easy to evaluate them
over large samples and hence to compute the statistical estimators such as the mean or higher order moments.
Depending on the problem, one can be confronted with quantities whose variations with respect to the random parameters
are not continuous, that is all the more true when studying changes of stability of a dynamic system. Hence, the degree of the
polynomial basis must be very large. The size of the system tosolve growing with the maximum degree of the chosen basis,
one can switch to another strategy and divide the stochasticspace, then using a lower degree on each element of the partition:
this Multi-Element generalized Polynomial Chaos (MEgPC) method was recently introduced by previous papers, mostly to
study equilibria or limit cycles via time integration methods. The present work applied this approach to a structural dynamic
system - pad and disc assembly - whose stability is investigated when either the friction coefficient or the contact stiffness is
uncertain: the quantities of interest are the eigenmodes, solutions of the eigenvalue problem. The MEgPC method introduced
in fluid dynamics is modified in two ways: the classical dichotomy approach to create the partition of the stochastic spaceis
compared to a new version of the method based on continuationprinciples which happens to be more efficient. Moreover, a
criterion to check the decomposition accuracy over the processed cell is proposed. This criterion, developed specifically for
the stochastic eigenvalue problem is based on the Rayleigh ratio and lets us evaluate accuracy of the decomposition overa
cell without any comparison to the exact values, which makesit an efficient criterion.

Both versions of the method were applied to a reduced finite element model of a brake, consisting of a pad in contact
with a disc. Variations of two important yet hard to characterize interface parameters were investigated for two nominal
configurations: friction coefficient and contact stiffness; results obtained via the proposed method were compared to Monte
Carlo simulations. As the developed method returns a decomposition that does not depend on the random input law, different
distributions were tested once the decomposition was obtained. This highlighted both accuracy and efficiency of the method,
especially the version implementing continuation principles.

Post-processing of the results are to be examined in two ways.
First, the choice of a random law for description of the varying parameter impacts greatly the stability profile of the brake;
as characterizing this random entry is not always easy to perform, the proposed tool presents the advantage to enhance the
possibility to test different input laws in a few seconds. Furthermore, the random law used can be whatever is physically
thought relevant with no restriction such as being a standard normal law.
Second, comparing the different contact stiffness results, one can conclude that, for the current system,the more stiff the
contact is, the less the brake exhibits a squeal propensity but the more unstable modes can coexist outside of stable ranges
and the greater the instability growth rate is.
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