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Piecewise polynomial chaos expansion with an application to brake squeal ofra linea
brake system
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3Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynguei des Systemes (UMR CNRS 5513), 36 avenue Guy de Co|l68G3é Ecully Cedex,
France

Abstract

This paper proposes numerical developments based on poighohaos (PC) expansions to process stochastic eigenvalu
problems éiciently. These developments are applied to the problemnefli stability calculations for a simplified brake
system: the stability of a finite element model of a brake vedtigated when its friction céiécient or the contact dthess
are modeled as random parameters. Getting rid of the &tatipbint of view of the PC method but keeping the principle
of a polynomial decomposition of eigenvalues and eigemrecthe stochastic space is decomposed into several dietoen
realize a low degree piecewise polynomial approximatiothese quantities. An approach relying on continuationgipies
is compared to the classical dichotomy method to build thaitimm. Moreover, a criterion for testing accuracy of the
decomposition over each cell of the partition without reimgj evaluation of exact eigenmodes is proposed and impitede
Several random distributions are tested, including a umifttke law for description of friction coficient variation.
Results are compared to Monte Carlo simulations so as tordiete the method accuracy anfiieiency. Some general rules
relative to the influence of the friction cfigient or the contact gthess are also inferred from these calculations.

Keywords: brake squeal noise, stochastic, friction, eigenvaluelprob

1. Introduction

Brake squeal noise is a real problem for the automotive [&n# railway [3] industry: it is a discomfort for passengers,
generates high warranty costs for car manufacturers arsgsguroblems to train operators that have to face claimsagfiee
living next to train stations. Indeed, this complex phenooreoccurs at low speeds. It is acknowledged to come from the
vibration of the brake components with high and audibledssgies and high intensity (up to 130 dB).

Many deterministic studies are available in the literausig diferent mechanisms to explain brake squeal and going from
the simplest models with a few degrees of freedom only [4latgé finite element models taking many components into
account [5]. Among the mechanisms put forward to explais tioise generation, one finds the decreasing frictioffictent

with sliding speed, sprag-slip [6], stick-slip [7, 8] andfsexcited vibration coming from mode coupling with a coenst
friction codficient [9, 10]. Besides the above mentioned references,t@nsxe review is available in [11, 12].

In this paper, a simple Coulomb friction law with a constaittion codficient is used. Instability then occurs when two
modes couple. This can be detected by analyzing the eigerw/af the linear problem or the tangent one if non-linéots

are considered. In the latter case it is also possible tamate the limit cycles using frequency domain methods [13, 1
or to conduct a transient analysis [15, 16]. In this work, weuls our attention on the stability analysis of a linear brak
system with uncertainties. The stability of the equililbniof the linear system is investigated via the Complex Eigkre/
Analysis (CEA) method. The eigenvalue problem has then tedbeed. The objective of the present study is to propose
a methodology and numerical developments based on polgha@miaos expansions (PCE) to process stochastic eigenvalue
problems accurately andfeiently and to save time compared to Monte Carlo simulatiohs no non-linear phenomena
are considered, the prediction of squeal frequencies miteti. Nonetheless, it is a first step towards faster cdicus for
processing brake systems including uncertainties.

The present model is a linear finite element model (FEM) whezgalibrium stability is investigated through the cor-
responding eigenvalue problem. Instead of refining the inimdget precise information on its vibratory behavior, some
parameters are considered to be random. As pointed out leyadgapers [17, 18], some parameters such as the friction
codficient are hard to characterize accurately for each brakeacid braking action. It then seems appropriate to conduct a
stochastic study to take into account this variability.

The main problems encountered for a stochastic study isgbeription of the random inputs and the numerical cost [19].
Indeed, a well known and robust method is the Monte Carlo lgitimn (MCS). It consists in the evaluation of quantities of
interest (for example here, the eigenvalues) for a largepkaof uncertain inputs values. Statistical estimatorst{sas the
mean, standard deviation, etc.) can then be rebuilt (seeximnple [20] for MCS applied to a brake model). For systems
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with more than a few degrees of freedom, this operation cae agrohibitive cost in terms of computation time even thoug
recent developments relying in particular on parallel pesing [19] let MCS remain an attractive method. Apart fro@3/
three other classes of methods were developed [19]. Fegidhturbation methods are based on Taylor series expamsian
set of zero mean random variables [21, 22]. The series aadlysuuncated to first or second order to avoiffidulties linked
to the evaluation of higher order derivatives. Hence theynamstly used in the case of small variation of random ingduts.
to be noted that recent developments allow the computafiocoraplex eigenvalues [23, 24]. The second family of methods
relies on the so-called Polynomial Chaos Expansions andimgamtroduced in the field of structural dynamics by Ghanem
and Spanos [25]. It basically consists in the decompositiofuantities of interest on an orthogonal basis of polyredsni
(see for example [26] for a detailed presentation of suchhout). The procedure proposed in this paper derives from PCE
and its further developments. A new method to build the stetib space partition is proposed, based on continuatidinade
principles. Moreover, anficient accuracy criterion dedicated to the eigenvalue prokik developed to test the current
polynomial decomposition over each element of the pantitiithout having to compare it to any exact result. Theserséve
improvements aim at providing a method that returns aceuesults in a lesser time. Section 2 exposes the methodait. det
Finally, Soize [27, 28] developed a non-parametric apgraahich does not require identification of the uncertain loca
parameters. A deeper overview of these several methodsilalate in successive review papers by Ibraletal. [29, 30]
and Sclielleret al.[19, 31, 32].

This paper is organized as follows: first, Section 2 exposegheoretical background. Then the stochastic study of a
FEM brake model is performed using the proposed method f@rakrandom laws. Accuracy angtieiency of the method
compared to MCS is evaluated and the stochastic resultg apstem stability are commented.

2. Theoretical background used to process uncertainty

This section is devoted to the presentation of the mathealdtackground of the method proposed in order to handle
the eigenvalue problem of uncertain systems. First, quécklts are proposed about the stability study of equilitmaugh
the tangent eigenvalue problem. Then, the general ideaind a® approximation of quantities of interest by polyndmia
decomposition is studied. Finally, a refinement of this apph that enables the study of uncertain quantities witingtr
variations is presented. The last part is dedicated to tfwrigthm that organizes thesedfdrent points.

2.1. Deterministic study of stability through the eigennsaproblem
The deterministic equation for a general linear structsre i

Mg +Dg+Kg =fe Q)

whereq, ¢ and{ denote the vector of degrees of freedom (dofs) and its fidtsgeond derivatives with respect to time.
M, D andK are the mass, damping andf§tess matrices respectively ahds the vector of excitation forces. The static
equilibrium for such a formulation is solution &fq s = f.. Its stability depends on real parts of eigenvalues of tHeviing
problem [33]:

0 K
-K -D

K 0
0 M

Computing the 8 eigenvaluesly and the matching eigenvectaug solutions of Eq. (2) (whera denotes the system size),
one can determine the stability of the equilibrium: if thesgsts at least one eigenvalue with strictly positive reat,phen

it is unstable, otherwise, this is a stable equilibrium posi Moreover, in order to define the eigenvectogsiniquely, one
will use normalization with respect ® matrix:

Auy = A4Bug, with A = [ (2

andB =[

ugBuy = 1 ®)

2.2. Introducing uncertainties

If some parts of the structure have uncertain propertiey, tan be rendered by adding uncertain terms to the dynamic
system (1):
(M+M)g+(D+D)a+(K+K)g=fe (4)
Random contributions are denoted with tilde notation. #isumed that they have zero mean and depend on a set of random

parameters denoted
The stability study of the static equilibria of Eq. (4) is thechieved through the following eigenvalue problem

(A+A)Gk=7lk(B+I§)ﬁk (5)

with normalization equation
g (B+B) =1 (6)

whereii, and 1, denote thek-th stochastic eigenvector and eigenvalue respectively.



The proposed method to compute these stochastic eigenmsdses decomposition of uncertain quantities on a poly-
nomial basis. Depending on the law followed by the set of oamgbarameterg, some basis are optimal considering the
convergence rate with polynomial degree [34]. For exampm@etite polynomials are most adapted to normal law while Leg-
endre polynomials suit best the uniform law. One of the mogiutar methods based on such a polynomial decomposition
is the Polynomial Chaos expansion which uses a basis of emiltivariate polynomials [25, 35]. A previous work by
the authors addresses the dispersion of a finite elememtmatdes using such a basis [36]. Recently, this method has bee
extended to the polynomials of the Askey scheme leadingd®ticalled “generalized Polynomial Chaos” [37]. Note that
the expression “polynomial chaos” refers to the theoryofeing Wiener’s developments [38] and is to be distinguisinedh
the “deterministic chaos” [39].

The rest of this section is dedicated to the presentatiomeofitethod adapted to the stochastic normalized eigenvedtéem
(5) and (6).

To this end, let us denoig,, 1 < n < N the orthogonal polynomial basis with elements used for uncertain quantities
decomposition anet ¢;,y; > the associated scalar product.

First, matrices introducing uncertainty are decomposed asfollows, using a
Karhunen-L@ve decomposition or assuming them so regarding experainestults [25, 37]:

Nx
X = Z ann(f) (7)
n=2

whereX can denotéM, D or K. y; will conventionally denote the constant polynomial eqoél {associated with determin-
istic component); this implies that polynomials with indgneater or equal to 2 are zero mean.

Then stochastic eigenvalues and eigenvectors are decethposboth the deterministic eigenmodes and the polynomial
basis:

7lk=ﬂkZN;((k)as+J(k)Os)ll/s(§) )
Gc= > (“p@) +] Yip() up ©)
with N pepk
®p(&) = > ©ypun(€) and Vip(#) = Z (&) (10)
giving "

N
=) (Z(@y“ +1 ) (§)Jup (11)

pePi \n=1

where the coiicients ®/5, 5, ®asand ®bs are real and j denotes the imaginary urfit—1). P is the set of determinis-
tic modes used for thieth stochastic mode decomposition. It contdi®lements. This decomposition is a generalization of
what is proposed in [40]. The use of complex weighttg, +j ) and “as + j ¥b; lets real and imaginary parts of stochastic
eigenvectors and eigenvalues evolve independently. Tleetsm of a few deterministic modes includedt instead of
using all the deterministic modeBy = 2n) can lead to a great computation time reduction and is adéddeis Section 3.3.

To get the final system of equations that leads to the unkndiyfs 5, ®as and ®bs, equations (5) and (6) are first
projected onto the polynomial bagig, 1 < n < N using the dedicated scalar product. This gives the set dcitems (12)

and (13) for 1<i < N.
> Z(Am ) [Z(W +§ UB) < Yo, 5 > ]

pePy Na=1

= Z(Bnaup)x (12)

pePy ng=1
N
(Z (M +i M) (“as + ¥bs) < grngtrthn, v >] =0
n,s=1
and

N
Z i (U, BngUp,)X

plspzéﬁok ng=1

Z (94 )y 4§ O < g, U > ]

My, N2=

_1 <¢l?¢l >= 0

whereA,, andB,, are the matrices used to decompose random mathicsd B respectively, in accordance with Eq. (7)
notation.

(13)
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Figure 1: Limitations of a simple polynomial approximation ofeget curve=— target curve;— polynomial approximatioy = y(£) wherey has degree
D. (@)D =2,(b)D =4, (c)D = 10.

Separating real and imaginary parts of these equationgetseéN(2n+ 1) real scalar equations foNZPy + 1) real unknowns.

In case of a deterministic mode 38t which does not include all the deterministic modBg & 2n), this system is over-
constrained. To get a square system, the final step is to phépip Egs. (12) by the transpose of the matrix containing
the deterministic modes iR. This finally leads to a square non-linear (quadratic) sysigth size N(Py + 1) that can be
processed using a dedicated non-linear solver.

This procedure lets us approximate eigenmotieand i, by a complex sum of multivariate polynomiags. The usual
statistical estimators such as mean and standard deviiothen be quickly evaluated over a large samplg pdints by
using formulas (8) and (11). This is equivalent to a Montel@aimulation but without the resolution of an eigenvalue
problem for each realization and is much faster.

As this is a polynomial approximation, one needs to use higdraks to approximate quantities with strong variations ac
curately. For example, if an equilibrium becomes unstablker ¢the input range under study, the first derivative of some
eigenvalue may not be continuous; this makes the polynaspiatoximation very poorly appropriate to describe the rige
value evolution. From a more general point of view, studyihgnges in stability, it is obvious thatfffirent evolutions will

be observed over theftirent stable and unstable ranges. This is illustrated on Eign this figure, the target curve has
a discontinuous derivative arydaxis matches for example the evolution of the imaginary pbain eigenvalue whose mode
undergoes a change in stability for= —0.2. The several polynomial approximations usinffetent polynomial degrees
displayed in Fig. 1 show that a high degree (pane (c) degrgésl@quired to describe the change in slope accurately.
Decompositions using a polynomial basis with such a highekgenerate very large systems (12) and (13) to solve. To
overcome this problem, one may use a piecewise polynomgabapnation. The next section is devoted to the introdurctio
of this piecewise approach into the general method.

2.3. Working with a partitioned stochastic space

The idea of using piecewise polynomial approximation ofartain quantities has already been developed in the field of
fluid mechanics [41, 42] for the study of limit cycles or edila. The subsequent method is referred to as Multi-Elemen
generalized Polynomial Chaos (MEgPC). These studies ustantgposition of the random space to which the random
variable vecto belongs. A polynomial approximation is then computed owaheelement of this decomposition. It is
generally developed considering uniform laws for the randariable£ which leads to using Legendre polynomials for the
approximation. This restriction to a uniform law can bedléed as non-uniform random variables can be approximated
a sum of Legendre polynomials of uniform random variablds g4].

In this section, the decomposition of the random space arabiisequences on the stochastic eigenmodes approximation
are exposed with a non-probabilistic point of view: it is ggated as a piecewise polynomial fitting of eigenvalues and
eigenvectors components depending on a vect® odal variables grouped in vectgr The aim of the procedure is then
to get the expressions of eigenmodes using a decompositiarLegendre orthogonal polynomial basis on each element of
the partition. Diferent statistical laws for uncertain input description thien handled by adapting the sample used for the
Monte Carlo simulation. This MCS is expected to be realizeitkdy as the eigenmodes are evaluated using the piecewise



polynomial approximation rather than by using a direct hatdan of the eigenvalue problem.

One could object that the Legendre polynomial basis is rebtie that suits best the input distribution (for example Gam
distribution) and hence, that the weight function used énabsociated scalar product does not put stress on the robstye
values. This is true except if the resulting descriptioncisuaiate enough whatever the chosen point may be.

First the description of a quantity depending$ébelonging toS;, a bounded interval of Rusing a basis of Legendre
multivariate polynomials depending on a variableelonging taZ ? is exposed. Then, the problem of switching from such a
description ovefS; to the description ove$;, included inS; is addressed. The global scheme using these fundamergsal ste
is presented in Section 2.4.

Letyn({), 1 < n < N be the Legendre multivariate polynomials basis with dedgsee or equal td in the case ofQ
variables, defined oveff?, I = [, 8]. The scalar product associated is

< fg>= fj 19w (14)

wherew = 1 denotes the weight function associated to this polynanfizghily.
Let S; be a bounded interval of Rand denote; the difeomorphism mapping; into 7<:

ViZSi - IQ

£ o WO =¢ (15)

If Sj = [ag), bg)] X oo X [ag),bg)], one will use

o) =) pa
0k

Yke[1,Q], &k = — =+ —

asv; definition.
If fis a scalar function of defined oveS and{S;}i-1..n, IS a partition ofS, its value ovelS; will then be computed using:

N
H©) = D, 1un(i(€)) (16)
n=1

The f{” are the coflicients of the decomposition dfon the polynomial basig, oversS;.
Considering the eigenvalue problem at stake, on will sdiesfollowing problem on each subsst

AOG0 = F0BOGO 17)
(@0) 8950 = 1 (18)
with the following notations for each quantity involved:
Na
AOE) = ) Awn04(€)) (19)
n=1
~ NB .
BO@) = )" BOwa((£) (20)
n=1
N
A0 = 4O (“ad) + ) ya((8)) (21)
n=1
N
6@ = > [ (D0 + ) gn((€)) |up (22)
pePyr \n=1

To get the coficientsA{ andBY, one must be able to deduce the decomposition of any quatyan intervalS;
included inS; knowing the decomposition ov&;. This procedure is explained in the case of a scalar quaftilyis easily
adaptable to non-scalar quantities.

Let S; be an interval included int&; andg the restriction off over this interval.g decomposition over thg, family is
denoted:

N .
GEDIRAGG) (23)
n=1



Knowing the coéicients ", one can compute théj) codficients in the following manner: first, considgre S; and look
for decomposition cdéicientsy,k such that

N
(i) = > xnidhi(vi(€)) (24)
k=1

The ynx codlicients are found by solving for eachs<ln < N the system:

(Vi) . on(iEN] (xna Un(vi(€Y)
: R : , EP €S (25)
(v (") .. n (i EM)] nn In(vi(€"))

That is,N linear systems with sizN are solved to establish thematrix such that:

Y1(vi(6)) Ya(vi(€)
V¢ €S, ; =y : (26)
Un(vi(€) n(vi(8)
Finally, thefrsj) codficients are obtained from tkféi) using
2RO A S AL Al P (27)

2.4. The global algorithm: two possible strategies

To present the global algorithm, we assume that the randpotsrare described using uniform random variables
é1,...,&q that vary overS, a bounded interval of R The aim of the algorithm is to return a collection of polyriam
approximations of eigenmodes using a Legendre basisNvilements over a partition & whose elements are denotgd
elements of the partition will be referred to as “cells”. ®eachS;, one then has to determine the fiaents ®Wa20, (PO
®a® and @Y. For notation convenience, thes(®y + 1) scalar cofficients are gathered in a vector denatéd

Two strategies to process the stochastic space are depogedill be compared in Section 3: the first one relies on the
dichotomy method and is close to the method proposed in PI1,This method is exposed in Section 2.4.1. The second one
invokes continuation principles and is presented in Se@id.2.

That said, the two strategies share a common scheme préseriig. 2. First, the algorithm is initialized with the set
of matricesA,, andB,, that define the problem ov& and a first guess for decomposition fit@entsxg; this vector can for
example be chosen such that the processed stochastic eidematches the deterministic mode over the wiSoieterval.
Then, the general loop is applied: first, if all the sp&deas been processed, algorithm stops. Otherwise, &cislidefined
in the remaining space as well as a startpaffit depending on the chosen method. The collection of matAg&andBY)
defining the problem over the current cell are evaluatedgu&i®) and (27) and the problem (12) and (13) is then solved,
returning a new set of cdaacientsx(f". Accuracy of the decomposition is tested as detailed ini@eet4.3. If it satisfies the
criterion or the criterion is not satisfied but no more ceh t& created (a maximum computation time, a maximum number
of cells or a minimum cell width has been reached), each eleisestored (that is the current cell definition, eigenmode
decomposition cdécients, matrices decomposition and accuracy criterionlflesOtherwise, the current cef; is refined
accordingly to the chosen method.

2.4.1. First method: Dichotomy

The simplest way to refine a cell over which the decomposigamot satisfying is to split it in half in one direction to
generate two smaller sub-cells. Then, a startpoint has thbgen for future processing of each of these sub-cefferdnt
choices are possible for this startpoint. First, one caragbause the same startpoi that is provided by the user to
initialize the algorithm. Another possibility is to contéhe final decompositiow(f') overS; into equivalent decompositions
over each of the sub-cell using formulas (26) and (27). Binahe can extrapolate a decomposition from neighboritig:ce
considering a one dimensional problem, once the decommositer one cell is validated, the startpoint for each of the
two neighbors is the decomposition that matches constdmévdor eigenmodes over each sub-cell. The value is equal to
the value of eigenmodes at the validated cell border. Fidlu8tiates this procedure: once the decomposition &yds
validated, eackx® componenik; of neighboring cellsSiet ansSiign: is initialized with the value at corresponding border of
Si. This procedure giving better results than the two previmes mentioned above, it is the one that is used for numerical
applications of Section 3.
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2.4.2. Second method: Continuation

Another point of view is to consider that the sought valuesamtinuous from one cell to another and hence, to apply
some continuations principles (see [43] for the contirarathethods). Hence, in one dimension, starting from theecenft
the initial cell, new cells are built and processed by havingrying continuously to the right and then from the center to
the left. Once a cell has a proper decomposition (satisfiiegaccuracy criterion), another cell — contiguous — is atexi:
its width depends on the current cell width and various patars such as the number of iterations used to converge to the
decomposition over this cell. If only a few iterations wesed, the new cell width is increased, if the number of iterei
exceeds a certain threshold, then the width of the nextEdkcreased; otherwise, it is unchanged. When the decoroposit
over the current cell is not satisfying, the cell width is e&sed too.
The startpoint over each cell processed is computed usegdhtiguous cell decomposition which is extrapolated ¢visr
new cell. This method, compared to the one based on dichoigjegts more information at each cell by using extrapotatio
of the contiguous decomposition and using a more apprepsiaé for each cell. Itsfigciency is tested in Section 3.

2.4.3. Testing the accuracy of the decomposition

Once the solutiorx(f" has been evaluated for ced}, one needs to decide whether the polynomial approximason i
satisfying or not. That is, one wants to test if it is accugteugh ove5;. As comparing value of eigenmodes returned by
the approximation and a direct computation for severaltsawer the interval would cost too much, one proposes ainatig
criterion based on the Rayleigh ratio that is very cheap &uate.

Combining Egs. (17) and (18), one gets the Rayleigh ratio

~O\T R (i) (D)
u FANUT .
(6) K Z 30 (28)

V€ e S, ——— =
0\ Bein0
(uk') BOG(

As the equations are satisfied in a weak sense only (onlyphagection over the polynomial basis are considered),rttis
may not be verified exactly. This provides a criterion toraste the quality of the current decomposition by testing

SOV & ()
[(Uk) A Uk ]/i(i) _ 1‘

Ek(f) = NT ~ . k
(@?) Bogd

(29)

for several pointg in S;.

3. Application to a finite element model for brake squeal

This section is devoted to the application of the proposetthatktto a brake model in order to conduct a stochastic study
of brake squeal noise. First, the considered model is expaleag with the uncertain configurations. Then, the acguoéc
the method using successively a dichotomy and a continuapproach is evaluated through the comparison of theiitsesu
to direct resolutions. Finally, histograms are built, lthee these results in order to support the stochastic stutheafystem
and demonstrate itsfeciency compared to Monte Carlo simulations.

3.1. Brake model and uncertain configurations

The model used is derived from the finite element model desdrin [13, 44]. It consists of a rotating disc and a fixed
pad as displayed in Fig. 4. The disc and the pad are modeled tha finite element method. Each model is reduced using
a Craig and Bampton technique: 4 contact nodes are kept drpaac(pad and disc) as well as 4 dofs (degrees of freedom)
on the backplate of the pad for application of hydraulic poes; the first 30 eigenmodes are retained on each part. Such a
reduction may degrade the pertinence of the results regatde real behavior of the brake system. This problem shoeild
addressed carefully in the frame of a study which aims atrgetfuantitative results. The current model, used in pieslip
cited work, was provided as is to the authors. The assembtelkhnas then 88 dofs and the set of equations can be written

Mg +Dqg+Kqg+Keq=Te (30)

whereM is the mass matrixK is the structural sfiness matrixD is the damping matrix with a Rayleigh expression=
aM + BK, K. takes into account contact forces acting between the patherdisc and, stands for the force due to brake
pressure applied on the pad is a non-symmetric matrix that couples the two subsystefms pad and the disc. It consists
in the addition of two matrices: a first one, symmetric, whiepresents the normal force at the contact surface and which
is proportional to the contact filess denotel.. The second matrix that contributeskg is non-symmetric and stands for
the tangent force at the contact interface; it is propodtido the product of the friction cdcient - denoted: - andk.. The
contact follows a Coulomb friction law with constant frioti codficientu and assumption of permanent sliding is made;
more complex phenomenon such as stick-slip or sprag-stiph&n put aside. Normal and tangential contact forcesegpli
by the pad over the disc are opposite to forces applied byittweah the pad and can be formulated as follows for contact
nodei, 1<i<4:

I:i,normal = kc(Ui,Pad_ lJi,Disc) (31)
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Figure 4: Brake model. (a) Plan; (b) FE model.

Fi,tangent= /lFi,normaﬁign(Vi,rel) (32)

whereU; pagpic andVi il denotes the normal displacement of nodler the pad or the disc and the relative velocity between
the pad and the disc at contact nadespectively.
This coupling of the two substructureffiects both lower and higher frequency modes as shown by Figh&.upper part
(a) of this figure displays the absolutefdrence between the Modal Assurance Criterion (MAC, [45]jhef undamped
uncoupled system compared to itself and the MAC of the undahspupled system compared to the uncoupled eigenvectors
(see Eq. (33)).

AMAC = |MAC(Vuncoupled Vcouplecb - MAC(Vuncoupled Vuncouple()| (33)

Higher values of this dierence let us detect the modes that are midsteed by the coupling of pad and disc structures. One
considers here that thieth mode is significantly modified if one of the terms of thth column ofAMAC is greater than
0.5. The lower part (b) then outlines eigenfrequencies of thepted system that match these modes using red dots. Values
used for this comparison ake = 1- 10’ N.m* andy = 0.25.
As recalled in Section 2.1, the stability of any static eiiilim of Eg. (30) is determined by the following tangent
problem:
Mi +Dr +(K +Kr=0 (34)

One will then focus on the eigenvalues of this tangent systhite including some uncertain parameters.

Two nominal configurations are studied. A first one with a eohstifnessk. = 1- 10’ N.m™* and a second one with
a contact sffness twice largerk{ = 2- 10’ N.m™Y). These two configurations correspond to a tangent lineaiaco state
obtained by experimental tests of pad compression [44]eBoh configuration, the variation of the friction €éibeentu or
the contact sffnessk. is evaluated. Uncertainty is introduced as follows:

u(é) = po(1 + &Ap) (35)

with uo = 0.25 andAu = 0.5, and
ke(€) = keo(1 + £AK) (36)

with kg = 1- 10" N.m™ orkgp = 2- 10° N.m~* andAk; = 0.5.
£ is arandom variable following a uniform law or1, 1]. This means that for each configuration a variatioa59% of the
parametep or k. is examined. These large variation ranges will let us testdbustness of the method.

Unstable modes evolution along with the random varigldee displayed in Fig. 6 for configuration 2, cas&k2varies).
For each mode, both real and imaginary parts are plotteds fichire shows that the evolution of the studied modes can be
quite complex and non-regular over the studied range. Qanafign 1 and case 1 (whenvaries) would produce similar
figures. Table 1 lists unstable areas per mode in the casemwaaies for each configuration and case.

3.2. Algorithm accuracy

The two versions of the procedure exposed in Section 2.4 eygpéed to each configuration for each case. Unstable
modes were approximated one by one, using a Legendre polghbasis with maximum degrel@ = 2. As suggested in
Section 2.3, only a few deterministic modes were retainategzribe the stochastic modes. Based on the results of Fig. 5
only the most impacted modes were kept (modes 1 to 34, 38 tomdB% to 88 as well as their complex conjugates). This
leads to a sePy with P, = 124 modes out of 176 for each unstable stochastic rigde
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Table 1: Unstable ranges per mode whevaries for (a) configuration k¢ = 1- 10" N.m™1) and (b) configuration 2 = 2- 10" N.m™1).
(@)

Mode u Im(2) (rad.s1)

6 [0.30 ,umax] [5.59-10°, 5.65- 10°]

12 [umin » 0.16]  [9.21-1C%, 9.22-10°]
[0.20 ,umad  [9.25-10°%, 9.48- 10°]

69 [umin, 0.13]  [247-1C°, 247-10°]

78 [026 ,umad  [3.54-1C°, 357-10°]

81 [033 ,umad  [3.78-1C°, 3.79-10°]

(b)

Mode u Im(2) (rad.s1)

6 [029 ,umay] [6.10-10°, 6.28- 107

9 [0.31 ,umax]  [6.41-10°, 6.74- 10°]

13 [029 ,umax] [9.92-10%,1.01-107]
69 [035,umad  [2.63-10°, 2.63- 1(°]

73 [035 ,umax  [2.92-10°,2.92-10°]
82 [0.20 ,umad [4.06-1C°, 4.06- 10°]
86 [027 ,umaxd  [4.75-10°, 476 107]
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Table 2: Accuracy of the method: Worst value over the unstadadldes set for each configuration and case considering (a) the#sed on dichotomy and
(b) method based on continuation principles.

@

Configuration 1 Configuration 2
Indicator Case 1 Case2 Casel Case?2
%(erer < 2%) 97 76 91 75
%(erer < 5%) 98 97 97 97
%(Eima < 2%) 100 87 100 97
%(@ema < 5%) 100 100 100 100
%(ey < 5%) 100 78 100 78
%(Esign(Ret)) 0 0.5 0.5 0.5
€¢Hopf 0.00062 0.0097 0.0042 0.0059
(b)
Configuration 1 Configuration 2
Indicator Case 1 Case2 Casel Case?2
%(Erer < 2%) 97 94 91 97
%(erer < 5%) 97 97 97 99
%(@ma < 2%) 100 100 100 100
%(eima < 5%) 100 100 100 100
%(e, < 5%) 100 100 100 100
%(Esign(Ret)) 0 0.5 0.5 0.5
€:Hopf 0.00092 0.0097 0.0045 0.0012

Accuracy is evaluated by comparing results obtained usidgext evaluation and approximated ones over 201 points
equally spaced over the range [-1,1] of the random vari&bl€o report the accuracy of the method, global indicators are
proposed instead of local ones that would generate a longflislues considering the total number of unstable modass th
have been approximated. One will focus on the relative ewer the real and imaginary parts of eigenvalues, the err¢th®
sign of the real part, the error on the Hopf bifurcation péacalization (point at which the real part of an eigenvalugsses
the abscissa axis having a non-null imaginary part) andlyitia¢ error over the eigenvectors even if these are quastitf
lesser interest for this study. The formulas for the first telative error estimates are:

Re@™) - Re(?")

el = [ gogic) | * 100 (37)
_ [Im(2P€) — Im(aM©)

8mi = ImQve) x 100 (38)

where PC and MC superscripts respectively denote resutdénelol using the approximation and a direct evaluationeesp
tively. The error on the sign of the real part of eigenvalises binary indicator telling whether the sign is the same @hb
approximated and direct evaluation or not. The error on thpfHbifurcation point localization is the distance between
points for which the bifurcation occurs. This distance id®compared to the width of the interval which is 2. Finally,
the relative error on eigenvectors is evaluated using thewimg formula which returns a scalar indicator for eagcpoint

considered and each eigenvector:
|uPC| _ |uMC|

€, = max x 100 (39)

max|uMC|

Rather than displaying these indicators over the [-1,1§jeammne will give the percentage of points that are below 2# an
5% of error in case of relative errors on eigenvalues, belewfdr relative error on eigenvectors, the percentage oftpdor
which an error on the sign of the real part is committed andl§itlae distance betweefipoints at bifurcations.

Finally, these results are summed up in Table 2 for each amafign and case by returning the worst result among the
several modes. Obviously, both versions of the proposetiodetturn very accurate results: stability is well evaddatthe
percentage of points whose real part sign is wroBgsre), is lower than 0.5) and Hopf bifurcation points are properly
identified with errorggqpr lower than 1 1073 for an interval width equal to 2. Moreover, errors on the efgequenciegm,
are very limited too, all of the approximated values beingatdo the exact ones more or less 5%. Real parts of eigersvalue
are also well estimated, particularly the one returned byalljorithm relying on continuation principles. Finallyjs worth
to be noted that eigenvectors are estimated with a satgsgnuracy by the second method (based on continuationgesg
especially, given that all the tested points present anativemror smaller than 5%. If these quantities are not of ttmeast
importance in the context of a linear stability study, thegyrbe useful when one aims at finding the limit cycle, prowdn
useful direction in which to look for it or, to analyze vai@is of mode shapes whether the system undergoes a biturcati
or not.

Considering this first set of results, both versions of theppsed method prove their ability to estimate eigenvaldes o
uncertain system accurately, with a slight advantage fw#rsion invoking continuation principles with a variabtdl size
and an extrapolation of neighboring cell result used asr#psiat.

12



3.3. Stochastic study and comments - Methfidiency

Now that the method has been tested and showed a satisfyéngaay, this section is devoted to the stochastic analysis
of the brake system. As one of the advantages of this generthla is to provide a decomposition accurate whatever the
input random law is, the decompositions of stochastic eigates are used to tesftidirent random input laws for each case:
based on experimental work [18] a uniform-like input law wiasigned to model friction céiécient variation. The following
probability density function (pdf) over]l, 1] was chosen to tend to reproduce the shape of experimeattlagailable in
this work:

f(£) = 0.1339¢ + 0.8) + 0.4286 if —08<¢<08 (40)
f(£) = ~16.741%2 + 269196 — 101786 f08<é<1

The continuous pdf is depicted in Fig. 7 (a), superimposdtiechistogram describing the sample used for the simulation
This law is almost uniform, with a greater probability fogher values to occur. The subsequent results are compatteel to
ones obtained via a truncated Gaussian input law whose sdrigdbgram is provided in Fig. 8:

{ f(£) = ~10.04462 - 15937% — 58929 if -1 <& <-038

f(¢) = ———e 502, -1<£<1 (41)

For case 2, when the contactBtessk. is uncertain, a uniform law, Fig. 9 (a.1) and (a.2), is corepdp a truncated normal
law (41) depicted in Fig. 10 (a.1) for configuration 1 and Hi.(a.2) for configuration 2.

For each case and each law, the following results are giweroffiguration 1k, = 1- 10" N.m™%, pane (b) of Figs. 7 to 10)
and 2 k. = 2- 10" N.m™%, pane (c) of Figs. 7 to 10): first, the percentage of stableuastable occurrences with specification
of the number of unstable modes is displayed. This lets ulyzmghe propensity to squeal and thefidulty to prevent
squealing (related to the number of unstable modes to g@bilSecond, an histogram depicting the unstable freqeenc
(that is the imaginary part of eigenvalues with positivd peat) is provided. Finally, a third histogram displays thpartition

of real parts of unstable modes. This gives information abwiinstability growth rate.

The results displayed in Figs. 7, 8, 9 and 10 come from thergbeersion of the method, based on continuation principles
which was proven to be more accurate. Nonetheless, the wéhsion of the method was applied too so as to provide a
comparison of numerical resources consumption which isess$ed in the last part of this section.

Considering the first case relative to friction éideenty variation for both configurations and twofi@irent input laws
whose results are depicted in Figs. 7 and 8, one can first elématt results notably vary when switching from a uniforkeli
input law to a truncated Gaussian one: while the simulatesed on a truncated Gaussian law parameter variation sedurn
lower number of simultaneously unstable modes, it alsoadsas the number of stable occurrences for both configasatio
Moreover, unstable frequencies in the range 50} kHz that appear in the case of simulations using a un#idenlaw for
the second configuration are not represented when congidetruncated normal distribution.

Similar remarks can be inferred from comparison of the sé@ase simulations (whdq varies) relying on the one hand on

a uniform law (Fig. 9) and on the other hand on a truncated Slangaw (Fig. 10): the truncated Gaussian law returns more
pessimistic results in terms of stability with respectiv@lé % and 22 % of stable occurrences for configurations 1 and 2 to
be compared to 7 % and 30 % in the case when a uniform diswibigiused.

These comparisons of results based on the same decompaditincertain eigenvalues forftiérent random laws emphasize
the interest of the method that lets us reuse the decommusitbomputed once for all and hence save time compared toeMont
Carlo simulations as will be discussed at the end of this@ectndeed, results returned when using several input es
widely different and would merely not lead to the same optimizationabiffEes in an engineering process. As the description
of a random parameter such as friction f@éent may not be easy, this ability to quickly simulate a éaganel of laws,
including non-classical ones (such as the proposed unifisaraw) is a non-negligible advantage.

Comparing the results obtained for configuratiorkd £ 1 - 10" N.m™) and configuration 2k = 2 - 10’ N.m™) for
the same random law leads to the conclusion that a mdfecstitact leads to a greater number of simultaneously urestabl
modes: up to 7 modes can become unstable simultaneouslgriigaration 2 (Figs. 7 (c) and 8 (c)) whereas a maximum
of 4 modes is observed in the first configuration (Figs. 7 (k) &rfb)) whenu varies and these are 3 (Figs. 9 (c) and 10
(c)) against 2 (Figs. 9 (b) and 10 (b)) unstable modes for ¢tersd case studying variationslef The number of stable
occurrences merely increases with contadfretss turning, for the first processed case, fromd 22 to 24 % in the case of
a uniform-like law foru variation and from B % to 98 % in the case of a truncated Gaussian law. It is to be notedtha
greater sfiness generates also a wider spectral range with higherenetps (see “Unstable frequencies” histograms from
panes (b) and (c) of Figs. 7 and 8). Finally, the real partaxstable eigenvalues are increased too in configuration 2hwhi
implies that instability develops itself quicker.

These sets of results tend to demonstrate that, for thesstggistem, a more fitcontact between the pad and the disc is more
likely to lead to a stable brake behavior but that unstabtgea are harder to handle as a greater number of modes can be
simultaneously unstable and hence optimization shoulel itato account more constraints; moreover instability drorate

can become greater (larger positive real parts for eigaegl

The last part of this section is dedicated to thecency of the method compared to Monte Carlo simulationsthedffi-
ciency of each version of this method compared to the otlethis end, Table 3 summarizes CPU times for full simulations
over a sample with size 1000 and 10000. For each of the prdposthod version, total duratidg, is split intots, that is
the time needed for getting the decomposition &g which is the amount of CPU seconds spent for evaluating te@ 10
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Figure 7: Simulations using a uniform-like law for caseilvaries): histograms. (a) Random parameter value occurréfggsSystem stability and
squeal information for (b.n) configuration 1 and (c.n) confidgion 2; (c.1) Histogram of stabjanstable occurrences (%),/€2) Histogram of unstable
frequencies (kHz) occurrences (%)/qI8) Histogram of real part of unstable modes occurrences (%)

Table 3: CPU times comparison between Monte Carlo (MC) sinarlatand both versions of the proposed method: (a) method bastidhmtomy and (b)
method based on continuation principlgg; time for getting the decompositiofyneot time for evaluating the occurrences.
Number MC  (a) Dichotomy (s)  (b) Continuation (s)
of points (s) tfit + tshoot = ttotal tfit + tshoot = tiotal
1000 345 1455- 4 = 1459 788+ 5=793
10000 3451 1455 44=1498 788+ 46 =834
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mation for (b.n) configuration 1 and (c.n) configuration 2¢(b) Histogram of stablanstable occurrences (%),/€2) Histogram of unstable frequencies
(kHz) occurrences (%), (b.3) Histogram of real part of unstable modes occurrences (%)
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Figure 9: Simulations using a uniform law for casekg\aries): histograms. (a.x) Random parameter values in (arffigtration 1 and (a.2) configuration
2; System stability and squeal information for (b.n) configion 1 and (c.n) configuration 2; /b1) Histogram of stablanstable occurrences (%)/¢)
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or 10000 eigenmodes using their decomposition.

This table shows that the tested method is not advantagéased on a small sample only (1000 points) for a single input
law but may become so if fierent laws are to be tested. However as soon as a large sai@p@O(points) is considered, the
method is twice to four times faster than Monte Carlo sinatet for a single sample, this ratio increasing with the nemb
of samples or distributions tested. Being also accurateamdstrated in Section 3.2, this makes it a very interestiathod

in terms of computational resources consumption.

This table also points out a large advantage for the secorsibveof the method based on continuation principles whsch i
almost twice faster than the first version based on the morplsidichotomy approach.

4, Conclusions

This study takes place in the context of uncertain systenese Horake squeal noise is studied, viewed as an instability
of some modes of the linear system and hence driven by thelyimdeeigenvalue problem. Uncertain systems can be hard
to handle because of the the computation duration in the aiastnte Carlo simulations; hence a class of methods were
developed to attempt to avoid the problem of repeated résniiof a same problem with fliérent values for uncertain pa-
rameters. A polynomial basis whose polynomials are funetif the random variables, is used to decompose the eigezsmod
- eigenvalues and eigenvectors: this is the Polynomial €hatroduced by Ghanem and Spanos in 1991 [25] in the field of
structural dynamics. Having the quantities of interestdbed continuously via polynomials, it is then easy to aaté them
over large samples and hence to compute the statisticalagstis such as the mean or higher order moments.

Depending on the problem, one can be confronted with quesitithose variations with respect to the random parameters
are not continuous, that is all the more true when studyirmghs of stability of a dynamic system. Hence, the degrdeeof t
polynomial basis must be very large. The size of the systesolie@ growing with the maximum degree of the chosen basis,
one can switch to another strategy and divide the stochgstice, then using a lower degree on each element of thaqartit
this Multi-Element generalized Polynomial Chaos (MEgP@Xtimod was recently introduced by previous papers, mostly to
study equilibria or limit cycles via time integration mett® The present work applied this approach to a structursdmhjc
system - pad and disc assembly - whose stability is investigahen either the friction céiécient or the contact dthess is
uncertain: the quantities of interest are the eigenmoadgjens of the eigenvalue problem. The MEgPC method intcad

in fluid dynamics is modified in two ways: the classical didry approach to create the partition of the stochastic sigsace
compared to a new version of the method based on continyatiociples which happens to be mor&&ent. Moreover, a
criterion to check the decomposition accuracy over thegsesed cell is proposed. This criterion, developed speltyfifta

the stochastic eigenvalue problem is based on the Raylatghand lets us evaluate accuracy of the decompositionaver
cell without any comparison to the exact values, which métkas dficient criterion.

Both versions of the method were applied to a reduced fingmeht model of a brake, consisting of a pad in contact
with a disc. Variations of two important yet hard to charaize interface parameters were investigated for two nomina
configurations: friction ca@icient and contact $fhess; results obtained via the proposed method were cothfiaionte
Carlo simulations. As the developed method returns a deositipn that does not depend on the random input lafietint
distributions were tested once the decomposition wasmddaiThis highlighted both accuracy arfi@ency of the method,
especially the version implementing continuation prifesp

Post-processing of the results are to be examined in two.ways
First, the choice of a random law for description of the viagyparameter impacts greatly the stability profile of thekbra
as characterizing this random entry is not always easy tmpey the proposed tool presents the advantage to enhaece th
possibility to test dferent input laws in a few seconds. Furthermore, the randanuted can be whatever is physically
thought relevant with no restriction such as being a stahdarmal law.

Second, comparing theftirent contact sfiness results, one can conclude that, for the current syskemmore sft the
contact is, the less the brake exhibits a squeal propensitthb more unstable modes can coexist outside of stable@sang
and the greater the instability growth rate is.
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