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We describe a statistical method for characterizing the topological properties of radial net-
works based on the distribution of their ‘energy’ states, which are determined from the struc-
tural triangulation of the network. The partition function obtained from these energy states
is used to calculate thermodynamic functions that embody the statistical properties of the
network. The entropy, in particular, is a measure of the distribution of triangulated areas
in the network, with a larger entropy corresponding to a higher symmetry in the branching
structure. By varying the distribution parameter, which corresponds to an inverse ‘tempera-
ture’ in the statistical thermodynamic interpretation, we are able to vary the weight of the
different generations of the network. This analysis identifies similar networks at their matura-
tion state – the state when the system stops growing – as well as enabling the development of
a network to be investigated. The latter feature is especially important for biological systems,
where the details of the expansion of the network are not typically available. We illustrate our
methodology with a model for the optimal transport of nutrients within tree leaves and show
that statistical thermodynamic functions are capable of discriminating between various types
of such radial networks. We conclude with a discussion about applications to the vasculature
of the human placenta, which is our main motivation in developing this approach.

Keywords: radial networks, triangulation, topological invariants, partition function,
statistical thermodynamics

1. Introduction

A network consists of edges connecting objects called vertices or nodes. A modern
example of a network is the internet, where the vertices are routers and computers,
and the edges are physical or wireless links. Networks describe many important
functions and processes, among the best-known of which are the distribution or
flow, for example, of information on the internet, power on a grid, people and freight
on road, rail, and air networks, and nutrients within biological networks. Interest
in networks has expanded rapidly in recent years [1–3]. In particular, there has
been substantial interest in modelling venation patterns [4, 5], optimizing supply
networks [6, 7], and determining final system shapes and sizes based on a simulated
growth mechanisms [8–10].

The study of networks dates back to the celebrated Königsberg bridge problem,
which asks if the seven bridges in the city of Königsberg can be traversed in a
single journey without doubling back and ending in the same place as it began.
By abstracting this problem into one of edges and nodes, Euler [11] answered this
question in the negative and thereby laid the foundation for what has become

∗ Email: rak-kyeong.seong05@imperial.ac.uk
† Email: carolyn.salafia@gmail.com
‡ Email: d.vvedensky@imperial.ac.uk

ISSN: 1478-6435 print/ISSN 1478-6443 online
c© 2010 Taylor & Francis
DOI: 10.1080/14786435.20xx.xxxxxx
http://www.informaworld.com

Page 1 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 8, 2011 4:18 Philosophical Magazine manuscript-revised

2 Rak-Kyeong Seong, Carolyn M. Salafia, and Dimitri D. Vvedensky

known as graph theory. Further developments were not immediate. Some 100 years
after Euler’s paper, the theory of trees was initiated by Kirchhoff [12] for appli-
cations to electrical networks and by Cayley [13] for enumerating the isomers of
saturated hydrocarbons. The modern incarnation of graph theory is due in large
part to König, who collated his own work and that of other mathematicians in the
first book on the subject [14].

An expansion of the foregoing work on regular graphs was the introduction of
random graphs by Erdös and Rényi [15, 16] and by Gilbert [17] in the late 1950s.
Random graphs have no particular distributions of vertices and edges and their
organization principles are not readily identified. The Erdös–Rényi construction
starts with N nodes that are connected pairwise with probability p, creating a
graph with approximately 1

2pN(N − 1) randomly distributed edges. This model
had been the starting point for discussions about networks for many years, but the
growing interest in complex systems prompted a re-evaluation of this paradigm
[1, 18]. Many of the features of real networks that have attracted interest concern
the ways in which such networks differ from random graphs. Complex systems are
expected to have organizing principles based upon the competition between ex-
tending the network and the ‘cost’ of this extension. At some level, this should be
encoded in the topology and geometry of the network. Indeed, the geometry of real
networks is extremely varied, with the different structures reflecting the different
functions that networks perform. Thus, the development of theoretical principles
and measures to capture and quantify the underlying organizing principles of net-
works is of paramount importance.

There are several levels of description of physical and biological networks. In the
‘coarse-grained’ approach that is the domain of statistical mechanics, the statistical
properties of the ‘skeletal’ network are of primary interest. These include global
properties, such as the fractal dimension and other scaling properties [19, 20],
to more local quantities such as the degree distribution, where the degree of a
node is the number of edges emanating from that node. At a more microscopic
level, the main interest focuses on the function of the network, such as the flow
of nutrients, to characterize, in the case of vascular networks [21], the flow rate
and the length and diameter of vessel branches. The problem of the maximal flow
through networks given the capacity of the edges was solved long ago by Ford and
Fulkerson [22], though the formulation of this problem goes back much further
[23, 24]. Our interest is not in maximal flow per se, but in how flow affects the
expansion of a network based on some criteria, such as optimization based on a
cost function. Here, the coarse-grained and macroscopic approaches come together
because the spreading of the network is driven by the fulfilment of a function, such
as the delivery of nutrients, but limited by the overall cost incurred by extending
the network.

The rules and parameters governing the supply and demand of a system are ex-
pected to be invariant over time scales beyond its lifespan. Hence, the same rules
and parameters govern the creation and extinction states of a system. What hap-
pens in between is affected by external factors. An important question is whether
systems can be grouped according to their shape and venation at a given state in
their development. Going a step further, one may ask whether interpretations of
life history can be made by analyzing and comparing a state in the lifespan of a
system to a comparable state of another system. We expect that the growth history
of a system is encoded in the distribution of energy in its venation, i.e. the work
done in building up the supply system. Due to external factors and the existing
structure of the system, some parts of a network may have required more energy
to build up than others.
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In this paper, we introduce a method for studying the statistical topology of
networks based on the distribution of their ‘energy’ states, as represented by the
structural triangulation of the network. The partition function obtained from these
states is used to calculate thermodynamic functions in the usual manner as deriva-
tives of the Helmholtz free energy. The ‘temperature’-dependence of these functions
provides a way of assigning weights to different generations of the network. The
statistical thermodynamic functions identify similar networks at their maturation
state – the state when the system stops growing – as well as enabling the devel-
opment of a network to be investigated. The latter feature is especially important
for biological networks, where the details of the expansion of the network are not
always available. We illustrate our methodology by analyzing a model for optimal
transport in tree leaves to demonstrate that our approach allows networks to be
examined in a systematic manner and, most significantly, allows similar networks
to be identified and grouped together.

The organization of this paper is as follows. The leaf network and the optimal
transport model for leaf growth [10] are formulated in Secs. 2 and 3, respectively.
This model accounts for the variations of leaf sizes and shapes seen in nature
and provides a useful test case for our approach because the characteristics of
these networks can be varied systematically. The triangulation of radial networks
and their statistical analysis is the subject of Sec. 3. Applications to tree leaves
are discussed in Sec. 4, where the model in Sec. 2 is used to produce leaves of
different sizes and shapes. Our analysis shows that the set of leaves produced can
be partitioned into distinct classes. We summarize our results in Sec. 5 and discuss
the application to biological networks and, in particular, to the human placenta,
which is the motivation for developing this approach.

2. The Supply Network of Tree Leaves

2.1. Coordinate System of the Leaf

A leaf consists of living cells that may be regarded as lying on a plane. Plant cells
differ from other cells in that they can be approximated by squares or rectangles.
Accordingly, we place cells on a lattice with spacing h such that a particular cell
in the leaf is labelled by coordinates (m,n), where m and n are integers. The
actual location of the biological cell in relation to the entire leaf is given by the
cell coordinate xm,n = (mh,nh). The lattice Λ = {(m,n)} is the set of all possible
lattice labels, and the grid Γh = {(mh,nh)} is the set of all possible cell positions.
The leaf itself is a finite selection of grid positions, Ωh = {xm1,n1

, . . . ,xmN ,nN
}, for a

total of N living cells. We always start the growth of the leaf from an infinitesimally
small seed identified as the origin O = (0, 0).

2.2. The Supply Network

The leaf cells require water and minerals for the production of nutrients from
photosynthesis. The nutrients need to be transported back to the root and stem
of the plant, where they are stored. The supply network G consists of a subset of
lattice vertices {(m,n)} in Λ, edge vectors e = ((mp, np), (mc, nc)) that point from
a parent vertex u = (mp, np) to a child vertex v = (mc, nc), and positive integer
weights w that are assigned to the edges. The weight of an edge counts the child
vertices v that follow after the edge. The supply network G of the leaf lattice is
defined as the vertex subset V (G) = {(m,n)}, edges E(G), and weight function
w: G = {V (G), E(G), w}.
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For leaf cells, the parent vertex is the first object supplied with nutrients prior
to the child vertices. We interpret edges E(G) as tubes connecting two leaf cells,
and weights w on edges as a measure of the amount of supply flowing through that
particular element of the transport system. This enables the lattice supply network
G to be mapped directly to the venation of the leaf ΛG. For the following discussion,
we set h = 1, which allows us to use the terms ‘lattice’ and ‘leaf’ interchangeably.

A key property of the supply network is that each vertex has only one parent
vertex. This is in line with the biological observation that cell division is a con-
structive process. Thus, introducing the more compact edge notation ev = (p(v), v)
with p(v) being the parent of v, there cannot be two edges e1 = (p(v1), v1) and
e2 = (p(v2), v2) such that v1 = v2, i.e. two edges cannot end at the same vertex.
This has the natural consequence that a single supply network can never be closed
through loops. The origin O has, by definition, no parent, so we have eO = 0.
Let us define the set of ancestors VA(u) = {pk(u)} with positive integer k, and
descendants VD(u) = {pk(u)}, with negative integer k, of a given vertex v in V (G),
such that the origin O has no ancestors and its descendants form the entire vertex
set of the leaf: VD(O) ≡ V (G). We can now give an explicit recursive form of the
weight function w(e), of a given edge e = (u, v),

w(e) = w((u, v)) = w((v, p−1(v))) + 1 , (1)

which conforms to our definition of the weight function as being the size of VD(v)
for a given edge e = (u, v).

3. Optimization and the Cost Function

3.1. Measuring Cost

Supplying a leaf with water and minerals has an associated cost. Minimizing this
cost determines the shape of the leaf. A primary source of cost arising in the supply
network is due to the flow direction of nutrients. Transport cost is minimized when
nutrients are moved in the same direction and maximized when moved in opposing
directions. For two consecutive edges e1 = (u, v) and e2 = (v, p−1(v)), we define
the instantaneous cost parametrized by the quantity βi as

Hβi
(e1,e2) =

{

|e1 · e2|
−βi , if e1 · e2 > 0;

g, otherwise,
(2)

where e1 · e2 = (u − v) · (v − p−1(v)) with u and v being 2-vectors, as defined in
Sec. 2.2. By setting the function g → ∞, we eliminate the possibility of opposite
flows in the transport network, i.e. e1 · e2 ≤ 0. For all other flows, βi scales the
extent to which the flow direction contributes to the total cost of sustaining the
supply network. We note also that, by definition, the instantaneous cost is ex-
pressed in terms of two consecutive edge vectors, e1 and e2, such that correlations
between edge directions separated by many generations are limited and contribute
minimally to the total cost of the supply network.

In addition to the instantaneous cost, there is also the cost due to the amount
of supply flow through a network edge. More matter flowing through a section
of a transport system leads to a larger cross-sectional area of that edge, hence
requiring more energy to sustain the pressure in the descendant supply network.
The ‘thickness’ of a given edge is proportional to the edge’s weight and, accordingly,
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the cost of maintaining an edge e with a given weight w(e), called the αf -cost, is
defined as

Hαf
(e) = (w(e))αf `(e) , (3)

where `(e) = `(u, v) = |v−u| is the lattice length of the edge. We note that Hαf
(e)

is proportional to the volume of fluid present at the edge at a given time.
There is an important characteristic difference between the αf - and βi-costs.

Whereas the αf -cost of a single edge e = (u, v) is independent of the costs associated
with its ancestors, the total βi-cost depends on the instantaneous βi-costs Hβi

(e)
associated with these ancestors due to the fact that the fluid arriving at e had
to experience the curvature of the transport system connecting this edge to the
origin. Accordingly, the total βi-cost at a given edge e = (u, v) can be given in a
recursive form as

mβi
(e) = mβi

((u, v)) = mβi
((p(u), u)) Hβi

(e, (p(u), u)) . (4)

We can consider the number D of edges in the transport system as the dimension
of a vector space. Then, we define the two cost vectors,

Hαf
= (Hαf

(e1),Hαf
(e2), . . . ,Hαf

(eD)),

mβi
= (mβi

(e1),mβi
(e2), . . . ,mβi

(eD)),
(5)

with components H
(αf )
n = Hαf

(en) and m
(βi)
n = mβi

(en), where n = 1, . . . ,D. The
total cost of sustaining the entire transport system G can then be defined as the
sum over the total cost of sustaining each edge:

F (G) =
D

∑

n=1

H(αf )
n m(βi)

n . (6)

3.2. Growth, Supply and Optimizing Cost

Growth is defined by the addition of an edge such that the cost is always less
than or equal to the supply available. For the leaf, supply is defined as the energy
available for the pumping process, and energy is supplied mainly by the process
of photosynthesis. Accordingly, the supply should be proportional to the area of a
leaf cell – the larger the area, the more light is absorbed for photosynthesis. We
define the lattice supply function Sεp

as

Sεp
(G) = Dk(h) εp , (7)

where εp is the efficiency coefficient of the photosynthesis process, and k(h) is an
area function which for the square lattice is k(h) = h2.

Between each growth step Gi 7→ Gj we add a new vertex (mb, nb) to V (Gi),
where b = (mb, nb) is identified as a boundary element of the transport system.
For a given growth step Gi 7→ Gj , there is the possibility of minimizing the cost
F (Gj) to min(F (Gj)) ≤ F (Gj) by connecting b to the rest of the transport network
appropriately. The desirable situation for continued growth is when the condition

min(F (Gj)) < Sεp
(Gj) < F (Gj) (8)
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Figure 1. A leaf produced with parameters αf = 0.6, βi = 0.5 and εp = 3.0. Numbers in white indicate
edge weights w and numbers in pink indicate the historical order of the vertices. The thicknesses of the
edges indicate the relative amount of material flow.

is maintained at each growth step. The growth history

G1 7→ G2 7→ . . . 7→ GNH−1 7→ GNH
(9)

has a fixed length NH where the history length is determined when the condition

Sεp
(GNH+1) < min(F (GNH+1)) ≤ F (GNH+1) (10)

is satisfied for the first time. We note that NH = NH(αf , βi, εp) is a function of
the cost and supply parameters, leading to the conclusion that the shape of the
final leaf is solely determined by the cost and supply parameters αf , βi and εp. By
introducing alterations to the system (both cost and supply) as outlined in the
following section, it is possible to vary the final shape of the leaf.

An example of a leaf generated by the model described above is shown in Fig. 1
with the parameters αf = 0.6, βi = 0.5 and εp = 3.0. Numbers in white indicate
edge weights w and numbers in pink indicate the historical order of the vertex.
Several large-scale features of this leaf are immediately apparent. This leaf is sym-
metric and finite in extent, as are all leaves that are produced under the model
described above. Asymmetric leaves can be obtained by introducing defects into
the lattice either before or during growth, e.g. no-growth zones. The finite extent
of the leaf is, of course, a natural result of the optimal transport algorithm. An
examination of the historical order of the vertices shows that, while the mature
leaf is symmetric, the leaf during growth is decidedly asymmetric. This is likely
an artefact of our model – the important aspect for our analysis is the number of
edges emerging from the vertices of the mature leaf.

4. Statistical Thermodynamics and Weighted Topology

4.1. Triangulation

Topological invariants are used to characterize shapes and structures of geometrical
objects. A prominent example is the Euler characteristic χ [25], a measure of the
topological structure of a space that is invariant under certain deformations. For
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Figure 2. Two radial networks (a,d) shown with the generation number of their vertices indicated with
circles centered at each vertex (b,e) and the corresponding triangulations, with the generation of each
triangle indicated by the enclosed number (c,f).

any convex polytope, for example, χ = V − E + F = 2 where V , E and F are the
numbers of vertices, edges and faces, respectively, of the polytope.

We focus now on planar radial networks, such as the tree leaf model described
in Secs. 2 and 3. Recall that edges e = (vi, vj) connect vertices vi = (xi, yi) and
vj = (xj , yj), with one vertex designated as the origin v0 = (0, 0). The origin is
the first generation vertex, g(v0) = 1, and an edge e = (vi, vj) always connects an
nth generation vertex, g(vi) = n, to an (n + 1)th generation vertex, g(vj) = n + 1.
We define a triangular element ∆ as a set of three vertices, ∆ = {vi, vj , vk}, such
that the associated vertex generations are g(vi) = n and g(vj) = g(vk) = n+1 and
p(vj) = p(vk) = vi. A triangular element is assigned the generation g(∆) = g(vi).
It is important to avoid an overlap of area between two elements with a common
vertex. Let the vertex u with g(u) = n be the parent of the c vertices vm with
g(vm) = n + 1, where m = 1, . . . , c with c + 1 ≡ 1 labelling the vertices vm in a
counterclockwise direction around the parent vertex u. Such an ordering is unique
if no two vertices vm lie on a ray from u (if multiple vertices vm lie on a ray from u,
the furthest away from u is taken). With these conventions, ∆m = {u, vm, vm+1},
given that the counterclockwise angle from vm to vm+1 is less than 180◦. The
resulting fan {∆m}u, therefore, does not contain overlapping triangular elements.
We call the set of all triangular elements in a network the ‘triangulation’ M. Since
M consists of fans associated with vertices in the network, it is unique for a given
network.

Two radial networks and their triangulations are shown in Fig. 2. Each triangular
element ∆m has an associated generation g(∆m) and an associated area A(∆m).
While the structure of a triangulation is unchanged by deformations of the network,
the areas of the elements allow the original and transformed networks to be dis-
tinguished. Motivated by this property, we use the generation and area associated
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with the triangular elements as a measure of the energy distribution in a venation.
In effect, we have a weighted topological description of the network based on its
triangulation.

For increasing generation number g, the system expends correspondingly more
energy by creating a vertex v and element ∆ associated with g(v). The system must
move material from the supply source at the origin to the position at generation
g. A reasonable physical interpretation for g is, therefore, as an energy level of the
system. If the energy unit of the system is E0, the energy Eg is the work required to
produce a unit at generation g: Eg = gE0. Building on this point of view, a natural
interpretation of the area A(∆) of an element ∆ is a measure of the material needed
to assemble this element at generation g(∆). In general, if the material needed for
an element of the system is N , then N(∆) = ρA(∆), where ρ is a proportionality
constant.

Taking the system of tree leaves, which is embedded in an integer lattice with
lattice spacing h = 1 as discussed above, the smallest triangular element ∆min has
an area A(∆min) = 1

2 . In order to deal only with integer N , we set the proportion-
ality constant to ρ = 2. This choice is not a requirement of our model, but it allows
us to interpret N(∆) as the number of ‘particles’ with energy Eg(∆) required to
create the triangle element ∆. In general, ρ should be kept constant for analysis
within the chosen system.

4.2. Statistical Thermodynamics from Triangulation

We are now able to define the partition function of the triangulation M as

Z(M) =
∑

∆∈M

N(∆) tg(∆) , (11)

where t = e−βE0 and β is a parameter that controls the thermodynamic weight
given to successive generations. The range of β is 0 < β < ∞, so the range of
t is 0 < t < 1. The factor tg(∆) originates from the fact that particles in the
same generation are assigned to the same energy level Eg(∆) = g(∆)E0. Hence, the
partition function is a polynomial whose order is the number of generations in M.
The partition functions for the networks in Fig. 2 are

Z(Mc) = 16t + 16t2 + 8t3 ,

Z(Mf ) = 5t + 9t2 + 9t3 + 4t4 + t5 ,
(12)

where Mc and Mf are the triangulations in Fig. 2(c) and 2(f), respectively. Note
that the triangular elements are distributed among a greater number of generations
in the network in Fig. 2(c) than that in Fig. 2(a).

The partition function is the sum over the microstates the system can occupy.
These are identified in the network as ‘particles’ that have an associated history.
To create a particle in element ∆, the network had to occupy a specific state where
work Eg(∆) was done to create this particle. Accordingly, when we sum over all
network system particles in (11), we are indeed summing over all microstates in
its history with associated energy Eg(∆). Because energy levels depend on the gen-
eration g of the triangle elements which, in turn, depend on the structure of the
venation, the partition function in (11) can be considered not only as a statisti-
cal measure of the network, but also as a measure of the network tree structure.
Therefore, we expect two systems with similar partition functions to display similar
venation structures. Interestingly enough, this does not exclude the possibility of
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Figure 3. (a) Internal energy and (b) entropy for the networks in Fig. 2(a) (solid curves) and Fig. 2(d)
(broken curves). determined from their triangulations.

having systems with ostensibly different partition functions that can show similar
behavior over restricted ranges of β.

4.3. Statistical Topology

The partition function enables us to calculate thermodynamic variables for the
network. The internal energy is

U = −
∂ ln Z

∂β
. (13)

Figure 3(a) shows that U(Mf ) > U(Mc) for all β. In the first few generations
(large β), the internal energies of the two networks are similar, but diverge as higher
generations are included (decreasing β). A physical rationale for this behavior is
suggested by using the definition of the partition function (11) in the definition of
the internal energy to obtain

U = E0

∑

∆∈M
N(∆)g(∆)tg(∆)

∑

∆∈M
N(∆)tg(∆)

≡ 〈E0g(∆)〉 , (14)

which is the thermodynamic average of the work required to produce a unit across
all generations. As β → ∞ (t → 0), i.e. in the initial stages of development,

lim
β→∞

U = E0 , (15)

since only the first generation contributes. For each network, we work in energy
units of E0, so all internal energy profiles approach 1 at β → ∞. The other limit,
where β → 0 (t → 1) is, according to (14),

lim
β→0

U = E0

∑

∆∈M
N(∆)g(∆)

∑

∆∈M
N(∆)

, (16)

which is the average work required to produce a unit across all generations, with
each generation weighed equally. Hence, internal energy profiles of all networks
coincide initially (β → ∞), but then differences in later generations are manifested
as deviations in these profiles as β → 0. Thus, the structure of the asymmetric
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( a ) ( b ) ( c ) ( d ) ( e )

Figure 4. Simulated leaves (top panels) with parameters (a) αf = 0.6, βi = 0.5, (b) αf = 0.65, βi =
0.38, (c) αf = 0.6, βi = 0.8, (d) αf = 0.75, βi = 0.7, and (e) αf = 0.65, βi = 0.7, with corresponding
triangulations (bottom panels). All leaves have εp = 4.0.

network in Fig. 2(b) displays a higher internal energy through more elements being
in higher generations of the system than in the symmetric network in Fig. 2(a).

The entropy is defined as

S = kB(lnZ + βU) (17)

in the canonical ensemble, where we set Boltzmann’s constant kB = 1. As Fig. 3(b)
shows, S(Mc) > S(Mf ) for all β. To understand this result, we identify entropy
as a measure of energy dispersal in the network, rather than as a measure of struc-
tural ‘disorder’. The energy in the symmetric network is more evenly distributed
between the different generations than in the asymmetric network and, hence, has
the higher entropy. As β → ∞ (t → 0), the entropy approaches the logarithm of
the triangulated area associated with the first generation:

lim
β→∞

S = ln

[

N(∆)
∣

∣

∣

g=1

]

. (18)

The other limit is β → 0 (t → 1), where the entropy approaches the logarithm of
the area of the entire triangulation:

lim
β→0

S = ln

[

∑

∆∈M

N(∆)

]

. (19)

Both of these limits can be obtained directly from the partition function; the in-
teresting situation is when the entropy curves of different networks cross. The next
section will provide examples of where this occurs.

5. Analysis of Tree Leaves

We have simulated the growth of five tree leaves using the model of leaf growth
described in the preceding section. These are shown in Fig. 4, together with their
parameters in the cost and supply function. There are discernible differences in
size, shape, and branching patterns. In fact, the modelling of tree leaf venation
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Figure 5. The internal energy U , Helmholtz free energy F , and the entropy S for each of the simulated
leaf networks in Fig. 4. Large β corresponds to the early stages of development of each network, while
small β corresponds to the fully developed network. The entropy shows the greatest variation in the leaves
as a function of β, with the Helmholtz free energy showing the smallest variation. The thermodynamic
relation F = U − β−1S indicates that the information provided by the three thermodynamic functions is
not independent.

patterns is an active area of research that involves several branches of science and
engineering [8–10]. Our objective here is not to account for the variety of naturally
occurring venation patterns per se, but to use a model of network generation with
enough variability to enable us to demonstrate the utility of the methodology
described in Sec. 4.

The thermodynamic functions calculated from the triangulations in Fig. 4 are
shown in Fig. 5. The thermodynamic profiles of the tree leaves have two regimes
that are of particular interest. The high-energy regime (β → 0) is associated with
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the late stage of the leaf development process, and the low-energy regime (β → ∞)
with the initial stage of development. The internal energy profiles show that, in
the early stages of growth, a similar amount work has been done to ‘build’ all five
leaves, as expected from the discussion in Sec. 4.3. However, in the later stages of
development, the average amount of work for leaf (d) becomes the lowest of the
five leaves, which agrees with intuitive expectations, since this leaf is the smallest
in the sample.

The entropy, in conjunction with (18) and (19) provides a complementary de-
scription of leaf development to the internal energies. In the early stages of network
development (β → ∞),

Sa(∞) ≈ Sb(∞) > Sc(∞) ≈ Sd(∞) ≈ Se(∞) . (20)

According to (18), the lower panels in Fig. 4 support this order because of the qual-
itative differences in their first-generation triangulations. Some of these similarities
persist as the network develops, but the development of leaf (d) is altogether dif-
ferent from the others. Leaves (a) and (b) and leaves (c) and (e) shows differences
only in the late stages of network expansion. At β = 0, we have

Sa(0) > Sb(0) ≈ Sc(0) > Se(0) > Sd(0) . (21)

Equation (19) indicates that this ordering corresponds to the total triangulations
area of the leaves, which again broadly conforms to our expectations based on the
lower panels of Fig. 4.

The Helmholtz free energy F = U − β−1S represents a weighted sum of the
internal energy and entropy and so does not provide any substantial additional
information about our networks. In particular, in the initial stages of leaf devel-
opment (β → ∞), F ≈ U , so differences between leaves are small, for reasons
discussed above, while for the fully-developed leaf (β → 0), F ≈ β−1S, which
shows the largest differences of this quantity. The internal energy and entropy sep-
arately provide a more discriminating interrogation of the venation network. On
this basis, we are able to classify the sample leaves in Fig. 4 into three main cat-
egories: {a, b}, {c, e}, and {d}. This grouping is confirmed by the low-energy limit
(β → ∞) of the entropy profiles of the tree leaves, and the qualitatively different
profile for leaf (d). For our purposes the significance of this result is the ability of
our method to discriminate between different types of radial networks where the
microscopic rules for the formation of such networks are not available.

6. Summary and Further Applications

There are two main topics that have been discussed in this paper. We have de-
scribed a model in which supplying a leaf with water and nutrients has a cost.
Minimizing that cost determines the size and shape of the leaf. The transport cost
is minimized when nutrients are moved in the same direction, with movement in
opposing directions being prohibited. For all other flows, the parameter βi scales
the extent to which the flow direction contributes to the total cost of sustaining the
supply network. Another cost is associated with supply flowing through a network
edge. The ‘thickness’ of a given edge is proportional to its weight, so the cost of
maintaining an edge with a particular weight leads to a second parameter, αf . A
third parameter, εp, is an efficiency coefficient for photosynthesis.

While a model for leaf growth is interesting in its own right, both for analyzing
tree leaves that occur in nature, as well as highlighting the role of optimal transport
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in living systems, we have introduced this model as a test for analyzing radial
networks. We have described a method based on a structural triangulation that
associates an energy with each generation of the network. This enables a partition
function to be constructed from which standard thermodynamic functions can be
directly computed. The interpretation of these functions for networks provides a
powerful classification scheme. The comparison of the internal energy, entropy, and
Helmholtz free energy for several simulated leaves, all of which grow by the same
mechanism, but with differently parametrized cost functions, illustrates how our
methodology is able to discriminate between networks that show subtle structural
differences. Our method differs from other thermodynamic formulations of networks
[26, 27] in that individual networks are characterized through their triangulation,
rather than as an average over ensembles.

The analysis method reported here can be applied to biological networks, such
as the vasculature of the human placenta. There are two levels of description. At
the most basic level is the description of the expansion of such a system with an
accompanying cost function. A benchmark for vascular systems was proposed by
the physiologist Cecil Murray [28] in 1926 as a compromise between the frictional
and metabolic costs, which was expressed as a cost function. The formulation of a
minimum energy hypothesis led to a scaling law, Q ∝ d3, where Q and d are the
volumetric flow rate and the diameter of a blood vessel segment, respectively. This
scaling law is universal for all trees whose internal flows are laminar. Subsequently,
Uylings [29] argued that the exponent in Murray’s scaling law can be reduced from
3 to near 2.3 if the fluid flow is turbulent. Numerous studies have found support
for Murray’s scaling law [30, 31], but with significant scatter. Moreover, a recent
report [32] on the applicability of Murray’s law to botanical trees suggests that
animals and plants have reached similar solutions for efficient fluid transport.

An alternative approach in the absence of a cost function for placental vascula-
ture is the method described in Sec. 4, which based solely on statistical topology,
i.e. an analysis only of the network itself. The vascular system of a placenta has
a branching structure within the chorion that resembles a tree. The origin of the
tree is the umbilical cord insertion in the placenta. The vasculature and its branch-
ing points are represented by edges and vertices, in order to apply the method of
analysis of our work. The characterization of placental vasculature is only now be-
coming available in sufficient numbers to enable statistically significant conclusions
to be reached. A noteworthy early effort [33], based on scanned x-ray angiograms
to produce a binary image of the edges of the blood vessels, focussed largely on
the fractal dimension of the vascular tree (see below), which is a global (average)
measure of the branching. But we envisage an analysis where the statistical anal-
ysis of a cohort will reveal systematic differences between ‘normal’ placentas and
those with various abnormalities. Such studies are in progress and will be reported
elsewhere.
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[24] A. N. Tolstŏi, Methods of finding the minimal total kilometrage in cargo transportation planning

in space (in Russian), in Transportation Planning, Vol. 1 (TransPress of the National Commissariat
of Transportation, Moscow, 1930), p. 23.

[25] M. Nakahara, Geometry, Topology and Physics (IOP Publishing Ltd., Bristol, UK, 2003).
[26] G. Bianconi, EPL 81 (2008), 28005.
[27] G. Bianconi, Phys. Rev. E 79 (2009) 036114.
[28] C. D. Murray, Proc. Natl. Acad. Sci. USA 12 (1926), p. 207.
[29] H. B. M. Uylings, Bull. Math. Biol. 399 (1977), p. 509.
[30] T. F. Sherman, J. Gen. Physiol. 78 (1981), p. 431.
[31] P. R. Painter, P. Edén, and H. U. Bengtsson, Theor Biol Med Model. 3 (2006), p. 31.
[32] K. A. McCulloh, J. S. Sperry, and F. R. Alder, Nature 421 (2003), p. 939.
[33] D. L. Bergman and U. Ullberg, J. Theor. Biol. 193 (1998), p. 731.

Page 14 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


